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Abstract

We study the problem of high-dimensional regression when there may be interacting vari-
ables. Approaches using sparsity-inducing penalty functions such as the Lasso can be
useful for producing interpretable models. However, when the number variables runs into
the thousands, and so even two-way interactions number in the millions, these methods
may become computationally infeasible. Typically variable screening based on model fits
using only main effects must be performed first. One problem with screening is that impor-
tant variables may be missed if they are only useful for prediction when certain interaction
terms are also present in the model.

To tackle this issue, we introduce a new method we call Backtracking. It can be
incorporated into many existing high-dimensional methods based on penalty functions,
and works by building increasing sets of candidate interactions iteratively. Models fitted
on the main effects and interactions selected early on in this process guide the selection
of future interactions. By also making use of previous fits for computation, as well as
performing calculations is parallel, the overall run-time of the algorithm can be greatly
reduced.

The effectiveness of our method when applied to regression and classification problems
is demonstrated on simulated and real data sets. In the case of using Backtracking with
the Lasso, we also give some theoretical support for our procedure.

Keywords: high-dimensional data, interactions, Lasso, path algorithm

1. Introduction

In recent years, there has been a lot of progress in the field of high-dimensional regression.
Much of the development has centred around the Lasso (Tibshirani, 1996), which given a
vector of responses Y ∈ Rn and design matrix X ∈ Rn×p, solves

(µ̂, β̂) := arg min
(µ,β)∈R×Rp

{ 1
2n‖Y − µ1−Xβ‖22 + λ‖β‖1}, (1)

where 1 is an n-vector of ones and the regularisation parameter λ controls the relative
contribution of the penalty term to the objective. The many extensions of the Lasso allow
most familiar models from classical (low-dimensional) statistics to now be fitted in situations
where the number of variables p may be tens of thousands and even greatly exceed the
number of observations n (see the monograph Bühlmann and van de Geer (2011b) and
references therein).
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However, despite the advances, fitting models with interactions remains a challenge.
Two issues that arise are:

(i) Since there are p(p − 1)/2 possible first-order interactions, the main effects can be
swamped by the vastly more numerous interaction terms and without proper regular-
isation, stand little chance of being selected in the final model (see Figure 1b).

(ii) Monitoring the coefficients of all the interaction terms quickly becomes infeasible as p
runs into the thousands.

1.1 Related Work

For situations where p < 1000 or thereabouts and the case of two-way interactions, a lot
of work has been done in recent years to address this need. To tackle (i), many of the
proposals use penalty functions and constraints designed to enforce that if an interaction
term is in the fitted model, one or both main effects are also present (Lin and Zhang, 2006;
Zhao et al., 2009; Yuan et al., 2009; Radchenko and James, 2010; Jenatton et al., 2011;
Bach et al., 2012a,b; Bien et al., 2013; Lim and Hastie, 2015; Haris et al., 2015). See also
Turlach (2004) and Yuan et al. (2007), which consider modifications of the LAR algorithm
Efron et al. (2004) that impose this type of condition.

In the moderate-dimensional setting that these methods are designed for, the compu-
tational issue (ii) is just about manageable. However, when p is larger—the situation of
interest in this paper—it typically becomes necessary to narrow the search for interactions.
Comparatively little work has been done on fitting models with interactions to data of
this sort of dimension. An exception is the method of Random Intersection Trees (Shah
and Meinshausen, 2014), which does not explicitly restrict the search space of interactions.
However this is designed for a classification setting with a binary predictor matrix and does
not fit a model but rather tries to find interactions that are marginally informative.

One option is to screen for important variables and only consider interactions involving
the selected set. Wu et al. (2010) and others take this approach: the Lasso is first used
to select main effects; then interactions between the selected main effects are added to the
design matrix, and the Lasso is run once more to give the final model.

The success of this method relies on all main effects involved in interactions being se-
lected in the initial screening stage. However, this may well not happen. Certain interactions
may need to be included in the model before some main effects can be selected. To address
this issue, Bickel et al. (2010) propose a procedure involving sequential Lasso fits which, for
some predefined number K, selects K variables from each fit and then adds all interactions
between those variables as candidate variables for the following fit. The process continues
until all interactions to be added are already present. However, it is not clear how one
should choose K: a large K may result in a large number of spurious interactions being
added at each stage, whereas a small K could cause the procedure to terminate before it
has had a chance to include important interactions.

Rather than adding interactions in one or more distinct stages, when variables are
selected in a greedy fashion, the set of candidate interactions can be updated after each
selection. This dynamic updating of interactions available for selection is present in the
popular MARS procedure of Friedman (1991). One potential problem with this approach
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is that particularly in high-dimensional situations, overly greedy selection can sometimes
produce unstable final models and predictive performance can suffer as a consequence.

The iFORT method of Hao and Zhang (2014) applies forward selection to a dynamically
updated set of candidate interactions and main effects, for the purposes of variable screening.
In this work, we propose a new method we call Backtracking, for incorporating a similar
model building strategy to that of MARS and iFORT into methods based on sparsity-
inducing penalty functions. Though greedy forward selection methods often work well,
penalty function-based methods such as the Lasso can be more stable (see Efron et al.
(2004)) and offer a useful alternative.

1.2 Outline of the Idea

When used with the Lasso, Backtracking begins by computing the Lasso solution path,
decreasing λ from∞. A second solution path, P2, is then produced, where the design matrix
contains all main effects, and also the interaction between the first two active variables in
the initial path. Continuing iteratively, subsequent solution paths P3, . . . , PT are computed
where the set of main effects and interactions in the design matrix for the kth path is
determined based on the previous path Pk−1. Thus if in the third path, a key interaction
was included and so variable selection was then more accurate, the selection of interactions
for all future paths would benefit. In this way information is used as soon as it is available,
rather than at discrete stages as with the method of Bickel et al. (2010). In addition,
if all important interactions have already been included by P3, we have a solution path
unhindered by the addition of further spurious interactions.

It may seem that a drawback of our proposed approach is that the computational cost
of producing all T solution paths will usually be unacceptably large. However, computation
of the full collection of solution paths is typically very fast. This is because rather than
computing each of the solution paths from scratch, for each new solution path Pk+1, we first
track along the previous path Pk to find where Pk+1 departs from Pk. This is the origin of
the name Backtracking. Typically, checking whether a given trial solution is on a solution
path requires much less computation than calculating the solution path itself, and so this
Backtracking step is rather quick. Furthermore, when the solution paths do separate, the
tail portions of the paths can be computed in parallel.

An R (R Development Core Team, 2005) package for the method is available on the
author’s website.

1.3 Organisation of the Paper

The rest of the paper is organised as follows. In Section 2 we describe an example which
provides some motivation for our Backtracking method. In Section 3 we develop our method
in the context of the Lasso for the linear model. In Section 4, we describe how our method
can be extended beyond the case of the Lasso for the linear model. In Section 5 we report
the results of some simulation experiments and real data analyses that demonstrate the
effectiveness of Backtracking. Finally, in Section 6, we present some theoretical results
which aim to give a deeper understanding of the way in which Backtracking works. Proofs
are collected in the appendix.
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2. Motivation

In this section we introduce a toy example where approaches that select candidate interac-
tions based on selected main effects will tend to perform poorly. We consider a linear model
with interactions involving a design matrix X ∈ Rn×p with n = 200, p = 500 and where

Yi =

6∑
j=1

βjXij +β7Xi1Xi2 +β8Xi3Xi4 +β9Xi5Xi6 +εi, εi ∼ N(0, σ2), i = 1, . . . , n. (2)

We take X with i.i.d. rows having a distribution such that Xi5 is uncorrelated with {Xij :
j 6= 5}. We then choose β1, . . . , β9 in such a way that Xi5 is also uncorrelated with the
response yet β5 6= 0. The precise construction is detailed in the appendix.

In order to select variable 5 using that Lasso, we would need to have already selected
some important interactions. Thus if we first select important main effects using the Lasso,
for example, it is very unlikely that variable 5 will be selected. Then if we add all two-way
interactions between the selected variables and fit the Lasso once more, the interaction
between variables 5 and 6 will not be included. Of course, one can again add interactions
between selected variables and compute another Lasso fit, and then there is a chance the
interaction will be selected. Thus it is very likely that at least three Lasso fits will be needed
in order to select the right variables.

Figure 1a shows the result of applying the Lasso to data generated according to (2), σ
chosen to give a signal-to-noise ratio (SNR) of 4, and

β = (−1.25,−0.75, 0.75,−0.5,−2, 1.5, 2, 2, 1)T .

As expected, we see variable 5 is nowhere to be seen and instead many unwanted variables
are selected as λ is decreased. Figure 1b illustrates the effect of including all p(p − 1)/2
possible interactions in the design matrix. Even in our rather moderate-dimensional situa-
tion, we are not able to recover the true signal. Though all the true interaction terms are
selected, now neither variable 4 nor variable 5 are present in the solution paths and many
false interactions are selected.

Although this example is rather contrived, it illustrates how sometimes the right in-
teractions need to be augmented to the design matrix in order for certain variables to be
selected. Even when interactions are only present if the corresponding main effects are too,
main effects can be missed by a procedure that does not consider interactions. In fact, we
can see the same phenomenon occurring when the design matrix has i.i.d. Gaussian entries
(see Section 5.1). Thus multiple Lasso fits might be needed to have any chance of selecting
the right model.

This raises the question of which tuning parameters to use in the multiple Lasso fits.
One option, which we shall refer to as the iterated Lasso, is to select tuning parameters
by cross-validation each time. A drawback of this approach, though, is that the number of
interactions to add can be quite large if cross-validation chooses a large active set. This is
often the case when the presence of interactions makes some important main effects hard to
distinguish from noise variables in the initial Lasso fit. Then cross-validation may choose a
low λ in order to try to select those variables, but this would result in many noise variables
also being included in the active set.
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We take an alternative approach here and include suspected interactions in the design
matrix as soon as possible. That is, if we progress along the solution path from λ =∞, and
two variables enter the model, we immediately add their interaction to the design matrix
and start computing the Lasso again. We could now disregard the original path, but there
is little to lose, and possibly much to gain, in continuing the original path in parallel with
the new one. We can then repeat this process, adding new interactions when necessary, and
restarting the Lasso, whilst still continuing all previous paths in parallel. We show in the
next section how computation can be made very fast since many of these solution paths
will share the same initial portions.

3. Backtracking with the Lasso

In this section we introduce a version of the Backtracking algorithm applied to the Lasso (1).
First, we present a naive version of the algorithm, which is easy to understand. Later in Sec-
tion 3.2, we show that this algorithm performs a large number of unnecessary calculations,
and we give a far more efficient version.

3.1 A Naive Algorithm

As well as a base regression procedure, the other key ingredient that Backtracking requires is
a way of suggesting candidate interactions based on selected main effects, or more generally
a way of suggesting higher-order interactions based on lower-order interactions. In order
to discuss this and present our algorithm, we first introduce some notation concerning
interactions.

Let X be the original n × p design matrix, with no interactions. In order to consider
interactions in our models, rather than indexing variables by a single number j, we use
subsets of {1, . . . , p}. Thus by variable {1, 2}, we mean the interaction between variables 1
and 2, or in our new notation, variables {1} and {2}. When referring to main effects {j}
however, we will often omit the braces. As we are using the Lasso as the base regression
procedure here, interaction {1, 2} will be the componentwise product of the first two columns
of X. We will write Xv ∈ Rn for variable v.

The choice of whether and how to scale and centre interactions and main effects can be
a rather delicate one, where domain knowledge may play a key role. In this work, we will
centre all main effects, and scale them to have `2-norm

√
n. The interactions will be created

using these centred and scaled main effects, and they themselves will also be centred and
scaled to have `2-norm

√
n.

For C a set of subsets of {1, . . . , p} we can form a modified design matrix XC , where
the columns of XC are given by the variables in C, centred and scaled as described above.
Thus C is the set of candidate variables available for selection when design matrix XC is
used. This subsetting operation will always be taken to have been performed before any
further operations on the matrix, so in particular XT

C means (XC)T .
We will consider all associated vectors and matrices as indexed by variables, so we may

speak of component {1, 2} of β, denoted β{1,2}, if β were multiplying a design matrix which
included {1, 2}. Further, for any collection of variables A, we will write βA for the subvector
whose components are those indexed by A. To represent an arbitrary variable which may
be an interaction, we shall often use v or u and reserve j to index main effects.
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(a) Main effects only
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(b) All interactions added
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(c) Step 3: {1, 2}, {2, 6}. {1, 6} added in step 2.
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(d) Step 4: {1, 3}, {2, 3}, {3, 6}.
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(e) Step 5: {1, 4}, {2, 4}, {3, 4}, {4, 6}.

1
2
3
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5
6
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NI

(f) Step 6: {1, 5}, {2, 5}, {3, 5}, {4, 5}, {5, 6}.

Figure 1: For data generated as described in Section 2, the coefficient paths against λ
of the Lasso with main effects only, (a); the Lasso with all interactions added,
(b); and Backtracking with k = 3, . . . , 6, ((c)–(d)); when applied to the example
in Section 2. Below the Backtracking solution paths we give Ck \ Ck−1: the
interactions which have been added in the current step. The solid red, green,
yellow, blue, cyan and magenta lines trace the coefficients of variables 1, . . . , 6
respectively, with the alternately coloured lines representing the corresponding
interactions. The dotted blue and red coefficient paths indicate noise main effect
(‘NM’) and interaction (‘NI’) terms respectively. Vertical dotted black and dashed
grey lines give the values of λstart

k and λadd
k respectively.
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We will often need to express the dependence of the Lasso solution β̂ (1) on the tuning
parameter λ and the design matrix used. We shall write β̂(λ,C) when XC is the design
matrix. We will denote the set of active components of a solution β̂ by A(β̂) = {v : β̂v 6= 0}.

We now introduce a function I that given a set of variables A, suggests a set of inter-
actions to add to the design matrix. The choice of I we use here is as follows:

I(A) = {v ⊆ {1, . . . , p} : for all u ( v, u 6= ∅, u ∈ A}.

In other words, I(A) is the set of variables not in A, all of whose corresponding lower
order interactions are present in A. To ease notation, when A contains only main ef-
fects j1, . . . , js, we will write I(j1, . . . , js) = I(A). For example, I(1, 2) = {{1, 2}}, and
I(1, 2, 3) = {{1, 2}, {2, 3}, {1, 3}}. Note {1, 2, 3} /∈ I(1, 2, 3) as the lower order interaction
{1, 2} of {1, 2, 3} is not in {{1}, {2}, {3}}, for example. Other choices for I can be made,
and we discuss some further possibilities in Section 4.

Backtracking relies on a path algorithm for computing the Lasso on a grid of λ values
λ1 > · · ·λL. Several algorithms are available and coordinate descent methods (Friedman
et al., 2010) appears to work well in practice.

We are now in a position to introduce a naive version of our Backtracking algorithm
applied to the Lasso (Algorithm 1). We will assume that the response Y is centred in
addition to the design matrix, so no intercept term is necessary.

Algorithm 1 A naive version of Backtracking with the Lasso

Set T to be the (given) maximum number of candidate interaction sets to generate. Let the
initial candidate set consist of just main effects: C1 = {{1}, . . . , {p}}. Set the index for the
candidate sets k = 1. Let λstart

1 = λ1, the largest λ value on the grid. In the steps which
follow, we maintain a record of the set of variables which have been non-zero at any point
in the algorithm up to the current point (an “ever active set”, A).

1. Compute the solution path of the Lasso with candidate set Ck from λstart
k onwards

until the ever active set A has I(A) * Ck (if the smallest λ value on the grid is reached
then go to 5). Let the λ value where this occurs be λadd

k . We will refer to this solution
path as Pk.

2. Set Ck+1 = Ck ∪ I(A) so the next candidate set contains all interactions between
variables in the ever active set.

3. Set λstart
k+1 = λ1.

4. Increment k. If k > T go to 5, otherwise go back to 1.

5. For each k complete the solution path Pk by continuing it until λ = λL. Computing
these final pieces of the solution paths can be done in parallel.

The algorithm computes Lasso solution paths whose corresponding design matrices in-
clude interactions chosen based on previous paths. The quantity λadd

k records the value
of λ at which interaction terms were added to the set of candidates Ck. Here λstart

k is a
redundant quantity and can be replaced everywhere with λ1 to give the same algorithm.
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We include it at this stage though to aid with the presentation of an improved version of
the algorithm where λstart

k in general takes values other than λ1. We note that the final step
of completing the solution paths can be carried out as the initial paths are being created,
rather than once all initial paths have been created. Though here the algorithm can include
three-way or even higher order interactions, it is straightforward to restrict the possible
interactions to be added to first-order interactions, for example.

3.2 An Improved Algorithm

The process of performing multiple Lasso fits is computationally cumbersome, and an im-
mediate gain in efficiency can be realised by noticing that the final collection of solution
paths is in fact a tree of solutions: many of the solution paths computed will share the same
initial portions.

To discuss this, we first recall the KKT conditions for the Lasso dictate that β̂ is a
solution to (1) when the design matrix is XC if and only if

1
nXT

v (Y −XCβ̂) = λsgn(β̂v) for β̂v 6= 0 (3)

1
n |X

T
v (Y −XCβ̂)| ≤ λ for β̂v = 0. (4)

Note the µ̂XT
v 1 term vanishes as the columns of XC are centred.

We see that if for some λ

1
n‖X

T
Ck+1\Ck

(Y −XCk
β̂(λ,Ck))‖∞ ≤ λ, (5)

then

β̂Ck+1\Ck
(λ,Ck+1) = 0, β̂Ck

(λ,Ck+1) = β̂(λ,Ck).

Thus given solution path Pk, we can attempt to find the smallest λl such that (5) holds.
Up to that point then, path Pk+1 will coincide with Pk and so those Lasso solutions need
not be re-computed. Note that verifying (5) is a computationally simple task requiring only
O(|Ck+1 \ Ck|n) operations.

Our final Backtracking algorithm therefore replaces step 3 of Algorithm 1 with the
following:

3a. Find the smallest λ1 ≥ λl ≥ λadd
k such that (5) holds with λ = λl and set this to be

λstart
k+1 . If no such λl exists, set λstart

k+1 to be λ1.

Figures 1c–1f show steps 3–6 (i.e. k = 3, . . . , 6) of Backtracking applied to the example
described in Section 2. Note that Figure 1a is in fact step 1. Step 2 is not shown as the
plot looks identical to that in Figure 1a. We see that when k = 6, we have a solution path
where all the true variable and interaction terms are active before any noise variables enter
the coefficient plots.

We can further speed up the algorithm by first checking if Pk coincides with Pk+1 at
λadd
k . If not, we can perform a bisection search to find any point where Pk and Pk+1 agree,

but after which they disagree. This avoids checking (5) for every λl up to λadd
k . We will

work with the simpler version of Backtracking here using step 3a, but use this faster version
in our implementation.
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4. Further Applications of Backtracking

Our Backtracking algorithm has been presented in the context of the Lasso for the linear
model. However, the real power of the idea is that it can be incorporated into any method
that produces a path of increasingly complex sparse solutions by solving a family of convex
optimisation problems parametrised by a tuning parameter. For the Backtracking step,
the KKT conditions for these optimisation problems provide a way of checking whether a
given trial solution is an optimum. As in the case of the Lasso, checking whether the KKT
conditions are satisfied typically requires much less computational effort than computing a
solution from scratch. Below we briefly sketch some applications of Backtracking to a few
of the many possible methods with which it can be used.

4.1 Multinomial Regression

An example, which we apply to real data in Section 5.2, is multinomial regression with a
group Lasso (Yuan and Lin, 2006) penalty. Consider n observations of a categorical response
that takes J levels, and p associated covariates. Let Y be the indicator response matrix,
with ijth entry equal to 1 if the ith observation takes the jth level, and 0 otherwise. We
model

P(Yij = 1) := Πij(µ
∗,β∗; XS∗) :=

exp
(
µ∗j +

(
XS∗β

∗
j

)
i

)
∑J

j′=1 exp
(
µ∗j′ +

(
XS∗β

∗
j′
)
i

) .
Here µ∗ is a vector of intercept terms and β∗ is a |S∗|×J matrix of coefficients; β∗j denotes
the jth column of β∗. This model is over-parametrised, but regularisation still allows us
produce estimates of µ∗ and β∗ and hence also of Π (see Friedman et al. (2010)). When
our design matrix is XC , these estimates are given by (µ̂, β̂) := arg min

µ,β
Q(µ,β;λ) where

Q(µ,β;λ) := 1
n

J∑
j=1

YT
j (µj1+XCβj)− 1

n1T log

 J∑
j=1

exp(µj1 + XCβj

+λ
∑
v∈C
‖(βT )v‖2.

The functions log and exp are to be understood as applied componentwise and the rows of
β are indexed by elements of C. To derive the Backtracking step for this situation, we turn
to the KKT conditions which characterise the minima of Q:

1
n{Y

T −ΠT (µ̂, β̂; XC)}1 = 0,

1
n{Y

T −ΠT (µ̂, β̂; XC)}Xv = −λ (β̂
T

)v

‖(β̂T )v‖2
for (β̂

T
)v 6= 0,

1
n‖{Y

T −ΠT (µ̂, β̂; XC)}Xv‖2 ≤ λ for (β̂
T

)v = 0.

Thus, analogously to (5), for D ) C, (β̂
T

(λ,D))D\C = 0 and (β̂
T

(λ,D))C = β̂
T

(λ,C) if
and only if

max
v∈D\C

1
n‖{Y

T −ΠT (µ̂(λ,C), β̂(λ,C); XC)}Xv‖2 ≤ λ.
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4.2 Structural Sparsity

Although in our Backtracking algorithm, interaction terms are only added as candidates for
selection when all their lower order interactions and main effects are active, this hierarchy
in the selection of candidates does not necessarily follow through to the final model: one can
have first-order interactions present in the final model without one or more of their main
effects, for example. One way to enforce the hierarchy constraint in the final model is to
use a base procedure which obeys the constraint itself. Examples of such base procedures
are provided by the Composite Absolute Penalties (CAP) family (Zhao et al., 2009).

Consider the linear regression setup with interactions. For simplicity we only describe
Backtracking with first-order interactions. Let C be the candidate set and let I = C \ C1

be the (first-order) interaction terms in C. In order to present the penalty, we borrow some

notation from Combinatorics. Let C
(r)
1 denote the set of r-subsets of C1. For A ⊆ C(r)

1 and
r ≥ 1, define

∂l(A) = {v ∈ C(r−1)
1 : v ⊂ u for some u ∈ A}

∂u(A) = {v ∈ C(r+1)
1 : v ⊂ u for some u ∈ A}

These are known as the lower shadow and upper shadow respectively (Bollobás, 1986).

Our objective function Q is given by

Q(µ,β) = 1
2n‖Y − µ1−XCβ‖22 + λ‖βC1\∂l(I)‖1 + λ

∑
v∈∂l(I)

‖β{v}∪(∂u({v})∩I)‖γ + λ‖βI‖1,

where γ > 1. For example, if C = {{1}, . . . , {4}, {1, 2}, {2, 3}}, then omitting the factor of
λ, the penalty terms in Q are

|β4|+ ‖(β1, β{1,2})
T ‖γ + ‖(β2, β{1,2}, β{2,3})

T ‖γ + ‖(β3, β{2,3})
T ‖γ + |β{1,2}|+ |β{2,3}|.

The form of this penalty forces interactions to enter the active set only after or with their
corresponding main effects.

The KKT conditions for this optimisation take a more complicated form than those
for the Lasso. Nevertheless, checking they hold for a trial solution is an easier task than
computing a solution.

4.3 Nonlinear Models

If a high-dimensional additive modelling method (Ravikumar et al., 2009; Meier et al., 2009)
is used as the base procedure, it is possible to fit nonlinear models with interactions. Here
each variable is a collection of basis functions, and to add an interaction between variables,
one adds the tensor product of the two collections of basis functions, penalizing the new
interaction basis functions appropriately. Structural sparsity approaches can also be used
here. The VANISH method of Radchenko and James (2010) uses a CAP-type penalty in
nonlinear regression, and this can be used as a base procedure in a similar way to that
sketched above.
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4.4 Introducing more Candidates

In our description of the Backtracking algorithm, we only introduce an interaction term
when all of its lower order interactions and main effects are active. Another possibility, in
the spirit of MARS (Friedman, 1991), is to add interaction terms when any of their lower
order interactions or main effects are active. As at the kth step of Backtracking, there will
be roughly kp extra candidates, an approach that can enforce the hierarchical constraint
may be necessary to allow main effects to be selected from amongst the more numerous
interaction candidates. The key point to note is that if the algorithm is terminated after
T steps, we are having to deal with roughly at most Tp variables rather than O(p2), the
latter coming from including all first-order interactions.

Another option proposed by a referee is to augment the initial set of candidates with
interactions selected through a simple marginal screening step. If only pairwise interactions
are considered here, then this would require O(p2n) operations. Though this would be
infeasible for very large p, for moderate p this would allow important interactions whose
corresponding main effects are not strong to be selected.

5. Numerical Results

In this section we evaluate the performance of Backtracking on both simulated and real
data sets.

5.1 Simulations

Here we consider five numerical studies designed to demonstrate the effectiveness of Back-
tracking with the Lasso and also highlight some of the drawbacks of using the Lasso with
main effects only, when interactions are present. In each of the five scenarios, we generated
200 design matrices with n = 250 observations and p = 1000 covariates. The rows of the
design matrices were sampled independently from Np(0,Σ) distributions. The covariance
matrix Σ was chosen to be the identity in all scenarios except scenario 2, where

Σij = 0.75−||i−j|−p/2|+p/2.

Thus in this case, the correlation between the components decays exponentially with the
distance between them in Z/pZ.

We created the responses according to the linear model with interactions and set the
intercept to 0:

Y = XS∗β
∗
S∗ + ε, εi

i.i.d.∼ N(0, σ2). (6)

The error variance σ2 was chosen to achieve a signal-to-noise ratio (SNR) of either 2 or
3. The set of main effects in S∗, S∗1 , was 1, . . . , 10. The subset of variables involved in
interactions was 1, . . . , 6. The set of first-order interactions in S∗ chosen in the different
scenarios, S∗2 , is displayed in Table 1, and we took S∗ = S∗1 ∪ S∗2 so S∗ contained no higher
order interactions. In each simulation run, β∗S∗1 was fixed and given by

(2,−1.5, 1.25,−1, 1,−1, 1, 1, 1, 1)T .
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Scenario S∗2
1 ∅
2 ∅
3 {{1, 2}, {3, 4}, {5, 6}}
4 {{1, 2}, {1, 3}, . . . , {1, 6}}
5 I(1, 2, 3) ∪ I(4, 5, 6)

Table 1: Simulation settings.

Each component of β∗S∗2 was chosen to be
√
‖β∗S∗1‖

2
2/ |S∗1 |. Thus the squared magnitude of

the interactions was equal to average of the squared magnitudes of the main effects.

In all of the scenarios, we applied four methods: the Lasso using only the main effects;
iterated Lasso fits; marginal screening for interactions followed by the Lasso; and the Lasso
with Backtracking. Note that due to the size of p in these examples, most of the methods for
finding interactions in lower-dimensional data discussed in Section 1, are computationally
impractical here.

For the iterated Lasso fits, we repeated the following process. Given a design matrix,
first fit the Lasso. Then apply 5-fold cross-validation to give a λ value and associated active
set. Finally add all interactions between variables in this active set to the design matrix,
ready for the next iteration. For computational feasibility, the procedure was terminated
when the number of variables in the design matrix exceeded p+ 250× 249/2.

With the marginal screening approach, we selected the 2p interactions with the largest
marginal correlation with the response and added them to the design matrix. Then a regular
Lasso was performed on the augmented matrix of predictors.

Additionally, in scenarios 3–5, we applied the Lasso with all main effects and only the
true interactions. This theoretical Oracle approach provided a gold standard against which
to test the performance of Backtracking.

We used the procedures mentioned to yield active sets on which we applied OLS to
give a final estimator. To select the tuning parameters of the methods we used cross-
validation randomly selection 5 folds but repeating this a total of 5 times to reduce the
variance of the cross-validation scores. Thus for each λ value we obtained an estimate of
the expected prediction error that was an average over the observed prediction errors on
25 (overlapping) validation sets of size n/5 = 50. Note that for both Backtracking and the
iterated Lasso, this form of cross-validation chose not just a λ value but also a path rank.
When using Backtracking, the size of the active set was restricted to 50 and the size of Ck
to p+ 50× 49/2 = 1225, so T was at most 50.

In scenarios 1 and 2, the results of the methods were almost indistinguishable except
that the screening approach performed far worse in scenario 1 where it tended to select
several false interactions which in turn hampered the selection of main effects and resulted
in a much larger prediction error.

The results of scenarios 3–5, where the signal contains interactions, are more interesting
and given in Table 2. For each scenario, method and SNR level, we report 5 statistics. ‘L2-
sq’ is the expected squared distance of the signal f∗ and our prediction functions f̂ based
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on training data (Ytrain,Xtrain), evaluated at a random independent test observation xnew:

Exnew,Ytrain,Xtrain
(f∗{xnew)− f̂(xnew; Ytrain,Xtrain)}2.

‘FP Main’ and ‘FP Inter’ are the numbers of noise main effects and noise interaction terms
respectively, incorrectly included in the final active set. ‘FN Main’ and ‘FN Inter’ are the
numbers of true main effects and interaction terms respectively, incorrectly excluded from
the final active set.

For all the statistics presented, lower numbers are to be preferred. However, the higher
number of false selections incurred by both Backtracking and the Oracle procedure com-
pared to using the main effects only or iterated Lasso fits, is due to the model selection
criterion being the expected prediction error. It should not be taken as an indication that
the latter procedures are performing better in these cases.

Backtracking performs best out of the four methods compared here. Note that under all
of the settings, iterated Lasso fits incorrectly selects more interaction terms than Backtrack-
ing. We see that the more careful way in which Backtracking adds candidate interactions,
helps here. Unsurprisingly, fitting the Lasso on just the main effects performs rather poorly
in terms of predictive performance. However, it also fails to select important main effects;
Backtracking and Iterates have much lower main effect false negatives. The screening ap-
proach appears to perform worst here. This is partly because it is not making use of the
fact that in all of the examples considered, the main effects involved in interactions are
also informative. However, its poor performance is also due the fact that too many false
interactions are added to the design matrix after the screening stage. Reducing the number
added may help to improve results, but choosing the number of interactions to include via
cross-validation, for example, would be computationally costly, unless a Backtracking-type
strategy of the sort introduced in this paper were used. We also note that for very large
p, marginal screening of interactions would be infeasible due to the quadratic scaling in
complexity with p.

5.2 Data Analyses

In this section, we look at the performance of Backtracking using two base procedures,
the Lasso for the linear model and the Lasso for multinomial regression, on a regression
and a classification data set. As competing methods, we consider simply using the base
procedures (‘Main’), iterated Lasso fits (‘Iterated’), Lasso following marginal screening for
interactions (‘Screening’), Random Forests (Breiman, 2001), hierNet (Bien et al., 2013)
and MARS (Friedman, 1991) (implemented using Hastie et al. (2013)). Note that we do
not view the latter two methods as competitors of Backtracking, as they are designed for
use on lower dimensional data sets than Backtracking is capable of handling. However, it
is still interesting to see how the methods perform on data of dimension that is perhaps
approaching the upper end of what is easily manageable for methods such as hierNet and
MARS, but at the lower end of what one might use Backtracking on.

Below we describe the data sets used which are both from the UCI machine learning
repository (Asuncion and Newman, 2007).
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SNR = 2 SNR = 3

Scenario Statistic Main
Iter-
ate

Screen-
ing

Back-
tracking

Ora-
cle

Main
Iter-
ate

Screen-
ing

Back-
tracking

Ora-
cle

3

L2-sq 6.95 1.40 12.87 1.21 0.82 5.67 0.27 9.24 0.27 0.18
FP Main 3.18 2.43 0.01 2.89 3.19 1.91 0.65 0.00 0.73 0.79
FN Main 1.26 0.38 7.24 0.24 0.14 0.52 0.05 5.14 0.04 0.01
FP Inter 0.00 0.93 11.05 0.45 0.00 0.00 0.27 13.57 0.12 0.00
FN Inter 3.00 0.18 2.06 0.14 0.01 3.00 0.03 1.39 0.04 0.00

4

L2-sq 12.05 3.25 17.68 2.72 1.68 10.44 0.63 15.19 0.41 0.31
FP Main 2.22 3.88 0.02 5.34 7.05 2.58 1.80 0.04 2.08 2.21
FN Main 3.12 0.90 8.13 0.61 0.26 1.77 0.11 6.94 0.04 0.00
FP Inter 0.00 2.50 12.33 0.77 0.00 0.00 1.77 17.90 0.28 0.00
FN Inter 5.00 0.66 4.07 0.51 0.08 5.00 0.08 3.39 0.03 0.00

5

L2-sq 14.12 5.08 19.96 4.52 2.14 12.84 1.56 16.99 1.17 0.44
FP Main 3.07 4.75 0.02 5.87 8.57 3.43 3.01 0.05 3.23 3.77
FN Main 3.20 1.26 8.26 0.98 0.33 2.35 0.25 7.00 0.19 0.02
FP Inter 0.00 3.28 17.97 0.87 0.00 0.00 3.05 21.92 0.55 0.00
FN Inter 6.00 1.34 5.00 1.23 0.14 6.00 0.39 4.14 0.30 0.00

Table 2: Simulation results.

5.2.1 Communities and Crime

This data set available at http://archive.ics.uci.edu/ml/datasets/Communities+and+
Crime+Unnormalized contains crime statistics for the year 1995 obtained from FBI data,
and national census data from 1990, for various towns and communities around the USA.
We took violent crimes per capita as our response: violent crime being defined as murder,
rape, robbery, or assault. The data set contains two different estimates of the populations
of the communities: those from the 1990 census and those from the FBI database in 1995.
The latter was used to calculate our desired response using the number of cases of violent
crimes. However, in several cases, the FBI population data seemed suspect and we discarded
all observations where the maximum of the ratios of the two available population estimates
differed by more than 1.25. In addition, we removed all observations that were missing a
response and several variables for which the majority of values were missing. This resulted
in a data set with n = 1903 observations and p = 101 covariates. The response was scaled
to have empirical variance 1.

5.2.2 ISOLET

This data set consists of p = 617 features based on the speech waveforms generated from
utterances of each letter of the English alphabet. The task is to learn a classifier which
can determine the letter spoken based on these features. The data set is available from
http://archive.ics.uci.edu/ml/datasets/ISOLET; see Fanty and Cole (1991) for more
background on the data. We consider classification on the notoriously challenging E-set
consisting of the letters ‘B’, ‘C’, ‘D’, ‘E’, ‘G’, ‘P’, ‘T’, ‘V’ and ‘Z’ (pronounced ‘zee’). As
there were 150 subjects and each spoke each letter twice, we have n = 2700 observations
spread equally among 9 classes. The dimension of this data is such that MARS and hierNet
could not be applied.
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5.3 Methods and Results

For the Communities and crime data set, we used the Lasso for the linear model as the
base regression procedure for Backtracking and Iterates. Since the per capita violent crime
response was always non-negative, the positive part of the fitted values was taken. For
Main, Backtracking, Iterates, Screening and hierNet, we employed 5-fold cross-validation
with squared error loss to select tuning parameters. For MARS we used the default settings
for pruning the final fits using generalised cross-validation. With Random Forests, we used
the default settings on both data sets. For the classification example, penalised multinomial
regression was used (see Section 4.1) as the base procedure for Backtracking and Iterates,
and the deviance was used as the loss function for 5-fold cross-validation. In all of the
methods except Random Forests, we only included first-order interactions. When using
Backtracking, we also restricted the size of Ck to p+ 50× 49/2 = p+ 1225.

To evaluate the procedures, we randomly selected 2/3 for training and the remaining
1/3 was used for testing. This was repeated 200 times for each of the data sets. Note that
we have specifically chosen data sets with n large as well as p large. This is to ensure that
comparisons between the performances of the methods can be made with more accuracy.
For the regression example, out-of-sample squared prediction error was used as a measure
of error; for the classification example, we used out-of-sample misclassification error with
0–1 loss. The results are given in Table 3.

Random Forests has the lowest prediction error on the regression data set, with Back-
tracking not far behind, whilst Backtracking wins in the classification task, and in fact
achieves strictly lower misclassification error than all the other methods on 90% of all test
samples. Note that a direct comparison with Random Forests is perhaps unfair, as the latter
is a black-box procedure whereas Backtracking is aiming for a more interpretable model.

MARS performs very poorly indeed on the regression data set. The enormous prediction
error is caused by the fact that whenever observations corresponding to either New York
or Los Angeles were in the test set, MARS predicted their responses to be far larger than
they were. However, even with these observations removed, the instability of MARS meant
that it was unable to give much better predictions than an intercept-only model.

HierNet performs well on this data set, though it is worth noting that we had to scale the
interactions to have the same `2-norm as the main effects to get such good results (the default
scaling produced error rates worse than that of an intercept-only model). Backtracking does
better here. One reason for this is that the because the main effects are reasonably strong
in this case, a low amount of penalisation works well. However, because with hierNet, the
penalty on the interactions is coupled with the penalty on the main effects, the final model
tended to include close to two hundred interaction terms. The Screening approach similarly
suffers from including too many interactions and performs only a little better than a main
effects only fit.

The way that Backtracking creates several solution paths with varying numbers of in-
teraction terms means that it is possible to fit main effects and a few interactions using
a low penalty without this low penalisation opening the door to many other interaction
terms. The iterated Lasso approach also has this advantage, but as the number of inter-
actions are increased in discrete stages, it can miss a candidate set with the right number
of interactions that may be picked up by the more continuous model building process used
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Error
Method Communities and crime ISOLET

Main 000000.414 (6.5× 10−3) 00000.0641 (4.7× 10−4)
Iterate 000000.384 (5.9× 10−3 00000.0641 (4.7× 10−4)

Screening 000000.390 (7.8× 10−3) -
Backtracking 000000.365 (3.7× 10−3) 00000.0563 (4.5× 10−4)

Random Forest 000000.356 (2.4× 10−3) 00000.0837 (6.0× 10−4)
hierNet 000000.373 (4.7× 10−3) -
MARS 005580.586 (3.1× 103) -

Table 3: Real data analyses results. Average error rates over 200 training–testing splits are
given, with standard deviations of the results divided by

√
200 in parentheses.

by Backtracking. This occurs in a rather extreme way with the ISOLET data set where,
since in the first stage of the iterated Lasso, cross-validation selected far too many variables
(> 250), the second and subsequent steps could not be performed. This is why the results
are identical to using the main effects alone.

6. Theoretical Properties

Our goal in this section is to understand under what circumstances Backtracking with the
Lasso can arrive at a set of candidates, C∗, that contains all of the true interactions, and
only a few false interactions. On the event on which this occurs, we can then apply many
of the existing results on the Lasso, to show that the solution path β̂(λ,C∗) has certain
properties. As an example, in Section 6.2 we give sufficient conditions for the existence of
a λ∗ such that {v : β̂v(λ

∗, C∗) 6= 0} equals the true set of variables.

We work with the normal linear model with interactions,

Y = µ∗1 + XS∗β
∗
S∗ + ε, (7)

where εi
i.i.d.∼ N(0, σ2), and to ensure identifiability, XS∗ has full column rank. We will

assume that S∗ = S∗1 ∪ S∗2 , where S∗1 and S∗2 are main effects and two-way interactions
respectively. Let the interacting main effects be I∗; formally, I∗ is the smallest set of main
effects such that I(I∗) ⊇ S∗2 . Assume I∗ ⊆ S∗1 so interactions only involve important main
effects. Let sl = |S∗l |, l = 1, 2 and set s = s1 + s2. Define C∗ = C1 ∪ I(S∗1). Note that C∗

contains S∗ but not additional interactions from any variables from C1 \ S∗1 .

Although the Backtracking algorithm was presented for a base path algorithm that
computed solutions at only discrete values, for the following results, we need to imagine
an idealised algorithm which computes the entire path of solutions. In addition, we will
assume that we only allow first-order interactions in the Backtracking algorithm, and that
T ≥ s1.

We first consider the special case where the design matrix is derived from a random
matrix with i.i.d. multivariate normal rows, before describing a result for fixed design.
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6.1 Random Normal Design

Let the random matrix Z have independent rows distributed asNp(0,Σ). Suppose that XC1 ,
the matrix of main effects, is formed by scaling and centring Z. We consider an asymptotic
regime where X, f∗, S∗, σ2 and p can all change as n → ∞, though we will suppress
their dependence on n in the notation. Furthermore, for sets of indices S,M ⊆ {1, . . . , p},
let ΣS,M ∈ R|S|×|M | denote the submatrix of Σ formed from those rows and columns of
Σ indexed by S and M respectively. For any positive semi-definite matrix A, we will
let cmin(A) denote its minimal eigenvalue. For sequences an, bn, by an � bn we mean
bn = o(an).

We make the following assumptions.

A1. cmin(ΣS∗1 ,S
∗
1
) ≥ c∗ > 0.

A2. supτ∈Rs1 :‖τ‖∞≤1 ‖ΣN,S∗1
Σ−1
S∗1 ,S

∗
1
τ‖∞ ≤ δ < 1.

A3. s4
1 log(p)/n→ 0 and s8

1 log(s1)2/n→ 0.

A4. For j ∈ I∗,

min
j∈I∗
|β∗j | �

s1(σ
√

log p+
√
s1 + log p)√

n
+

√
s3

1 log(s1)

n1/3
.

A5. ‖β∗S∗2‖2 is bounded as n→∞.

A1 is a standard assumption in high-dimensional regression and is, for example, implied by
the compatibility constant of Bühlmann and van de Geer (2011a) being bounded away from
zero. A2 is closely related to irrepresentable conditions (see Meinshausen and Bühlmann
(2006), Zhao and Yu (2006), Zou (2006), Bühlmann and van de Geer (2011a), Wainwright
(2009)), which are used for proving variable selection consistency of the Lasso. Note that
although here the signal may contain interactions our irrepresentable-type condition only
involves main effects.

A3 places restrictions on the rates at which s1 and p can increase with n. The first con-
dition involving log(p) is somewhat natural as s2

1 log(p)/n→ 0 would typically be required
in order to show `1 estimation consistency of β where only s1 main effects are present; here
our effective number of variables is s1 ≤ s ≤ s2

1. The second condition restricts the size of
s1 more stringently but is nevertheless weaker than equivalent conditions in Hao and Zhang
(2014).

A4 is a minimal signal strength condition. The term involving σ is the usual bound
on the signal strength required in results on variable selection consistency with the Lasso
when there are s2

1 non-zero variables. Due to the presences of interactions, the terms not
involving σ place additional restrictions on the sizes of non-zero components of β∗ even
when σ = 0. A5 ensures that the model is not too heavily misspecified in the initial stages
of the algorithm, where we are regressing on only main effects.

The following theorem states that given the assumptions above, with probability tending
to 1 we are guaranteed a candidate set will be produced by our algorithm which contains
all true interactions and no interactions involving a noise variable.

Theorem 1 Assuming A1–A5, the probability that there exists a k∗ such that C∗ ⊇ Ck∗ ⊇
S∗ tends to 1 as n→∞.
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6.2 Fixed Design

The result for a random normal design above is based on a corresponding result for fixed
design which we present here. In order for Backtracking not to add any interactions involving
noise variables, to begin with, one pair of interacting signal variables must enter the solution
path before any noise variables. Other interacting signal variables need only become active
after the interaction between this first pair has become active. Thus we need that there
is some ordering of the interacting variables where each variable only requires interactions
between those variables earlier in the order to be present before it can become active.
Variables early on in the order must have the ability to be selected when there is serious
model misspecification as few interaction terms will be available for selection. Variables later
in the order only need to have the ability to be selected when the model is approximately
correct.

Note that a signal variable having a coefficient large in absolute value does not necessarily
ensure that it becomes active before any noise variable. Indeed, in our example in Section 2,
variable 5 did not enter the solution path at all when only main effects were present, but
had the largest coefficient. Write f∗ for XS∗βS∗ , and for a set S such that XS has full
column rank, define

βS := (XT
SXS)−1XT

S f∗.

Intuitively what should matter are the sizes of the appropriate coefficients of βS for suitable
choices of S. In the next section, we give a sufficient condition based on βS for a variable
v ∈ S to enter the solution path before any variable outside S.

6.2.1 The Entry Condition

Let PS = XS(XT
SXS)−1XT

S denote orthogonal projection on to the space spanned by
the columns of XS . Further, for any two candidate sets S,M that are sets of subsets
of {1, . . . , p}, define

Σ̂S,M = 1
nXT

SXM .

Now given a set of candidates, C, let v ∈ S ⊂ C and write M = C \ S. For η > 0, we shall
say that the Ent(v, S, C; η) condition holds if, XS has full column rank, and the following
holds,

sup
τS∈R|S|:‖τS‖∞≤1

‖Σ̂M,SΣ̂
−1
S,SτS‖∞ < 1, (8)

|βSv | > max
u∈M

{
1
n

∣∣XT
u (I−PS)f∗

∣∣+ 2η

1− ‖Σ̂−1
S,SΣ̂S,{u}‖1

+ η

}
‖(Σ̂−1

S,S)v‖1. (9)

In Lemma 4 given in the appendix, we show that this condition is sufficient for variable
v to enter the active set before any variable in M , when the set of candidates is C and
‖XT

Cε‖∞ ≤ η. In addition, we show that v will remain in the active set at least until some
variable from M enters the active set.

The second part of the entry condition (9) asserts that coefficient v of the regression
of f∗ on XS must exceed a certain quantity that we now examine in more detail. The
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1
nXT

u (I−PS)f∗ term is the sample covariance between Xu, which is one of the columns of
XM , and the residual from regressing f∗ on XS . Note that the more of S∗ that S contains,
the closer this will be to 0.

To understand the ‖(Σ̂−1
S,S)v‖1 term, without loss of generality take v as {1} and write

b = Σ̂S\{v},{v} and D = Σ̂S\{v},S\{v}. For any square matrix Σ̂, let cmin(Σ̂) denote its
minimal eigenvalue. Using the formula for the inverse of a block matrix and writing s for
|S|, we have

‖(Σ̂−1
S,S)v‖1 =

∥∥∥∥(1 + bT (D− bbT )−1b
−(D− bbT )−1b

)∥∥∥∥
1

≤ 1 +
‖b‖22 +

√
s− 1‖b‖2

cmin(Σ̂S,S)
.

In the final line we have used the Cauchy–Schwarz inequality and the fact that if w∗ is a
unit eigenvector of D− bbT with minimal eigenvalue, then

cmin(D− bbT ) =

∥∥∥∥Σ̂S,S

(
−bTw∗

w∗

)∥∥∥∥
2

≥ cmin(Σ̂S,S)
√

1 + |bTw∗|2 ≥ cmin(Σ̂S,S).

Thus when variable v is not too correlated with the other variables in S, and so ‖b‖2 is

small, ‖(Σ̂−1
S,S)v‖1 will not be too large. Even when this is not the case, we still have the

bound

‖(Σ̂−1
S,S)v‖1 ≤

√
|S|

cmin(Σ̂S,S)
.

Turning now to the denominator, ‖Σ̂−1
S,SΣ̂S,{u}‖1 is the `1-norm of the coefficient of

regression of Xu on XS , and the maximum of this quantity over u ∈M gives the left-hand

side of (8). Thus when u is highly correlated with many of the variables in S, ‖Σ̂−1
S,SΣ̂S,{u}‖1

will be large. On the other hand, in this case one would expect ‖(I−PS)Xu‖2 to be small,
and so to some extent the numerator and denominator compensate for each other.

6.2.2 Statement of Results

Without loss of generality assume I∗ = {1, . . . , |I∗|}. Also let J = {I(A) : A ⊆ S∗1}.
Our formal assumption corresponding to the discussion at the beginning of Section 6 is the
following.

The entry order condition. There is some ordering of the variables in I∗,
which without loss of generality we take to simply be 1, . . . , |I∗|, such that for
each j ∈ I∗, we have,

For all A ∈ J with I(1, . . . , j − 1) ⊆ A ⊆ I(S∗1)

Ent(j, S∗1 ∪B,C1 ∪A; η) holds for some A ∩ S∗2 ⊆ B ⊆ A.

Here

η = η(t;n, p, s1, σ) = σ

√
t2 + 2 log(p+ s2

1)

n
.
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First we discuss the implications for variable 1. The condition ensures that whenever the
candidate set is enlarged from C1 to also include any set of interactions built from S∗1 ,
variable 1 enters the active set before any variable outside I(S∗1), and moreover, it remains
in the active set at least until a variable outside I(S∗1) enters.

For j > 2, we see that the enlarged candidate sets for which we require the entry
conditions to hold, are fewer in number. Variable |I∗| only requires the entry condition to
hold for candidate sets that at least include I(1, . . . , |I∗| − 1) and thus include almost all of
S∗. What this means is that we require some ‘strong’ interacting variables, for which when
f∗ is regressed onto a variety of sets of variables containing them (some of which contain only
a few of the true interaction variables), always have large coefficients. Given the existence of
such strong variables, other interacting variables need only have large coefficients when f∗ is
regressed onto sets containing them that also include many true interaction terms. Note that
the equivalent result for the success of the strategy that simply adds interactions between
selected main effects would essentially require all main effect involved in interactions to
satisfy the conditions imposed on the variables 1 and 2 here. Going back to the example
in Section 2, variable 5 has |βS5 | ≈ 0 for all S ⊆ {1, . . . , 6}, but |βS5 | > 0 once {1, 2} ∈ S or
{3, 4} ∈ S.

Theorem 2 Assume the entry order condition holds. With probability at least 1−exp(−t2/2),
there exists a k∗ such that C∗ ⊇ Ck∗ ⊇ S∗.

The following corollary establishes variable selection consistency under some additional
conditions.

Corollary 3 Assume the entry order condition holds. Writing N = C∗\S∗, further assume

‖Σ̂N,S∗Σ̂
−1
S∗,S∗sgn(β∗S∗)‖∞ < 1;

and that for all v ∈ S∗,

|β∗v | >
η
∣∣∣sgn(β∗S∗)

T (Σ̂
−1
S∗,S∗)v

∣∣∣
1− ‖Σ̂N,S∗Σ̂

−1
S∗,S∗sgn(β∗S∗)‖∞

+ ξ,

where

ξ = ξ(t;n, s, σ, cmin(Σ̂S∗,S∗)) = σ

√
t2 + 2 log(s)

ncmin(Σ̂S∗,S∗)
.

Then with probability at least 1− 3 exp(−t2/2), there exist k∗ and λ∗ such that

A(β̃(λ∗, Ck∗)) = S∗.

Note that if we were to simply apply the Lasso to the set of candidates Call := C1 ∪
I(C1) (i.e. all possible main effects and their first-order interactions), we would require an
irrepresentable condition of the form

‖Σ̂Nall,S∗Σ̂
−1
S∗,S∗sgn(β∗S∗)‖∞ < 1,

where Nall = Call \ S∗. Thus we would need O(p2) inequalities to hold, rather than our
O(p). Of course, we had to introduce many additional assumptions to reach this stage
and no set of assumptions is uniformly stronger or weaker than the other. However, our
proposed method is computationally feasible.
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7. Discussion

While several methods now exist for fitting interactions in moderate-dimensional situations
where p is in the order of hundreds, the problem of fitting interactions when the data is of
truly high dimension has received less attention.

Typically, the search for interactions must be restricted by first fitting a model using only
main effects, and then including interactions between those selected main effects, as well
as the original main effects, as candidates in a final fit. This approach has the drawbacks
that important main effects may not be selected in the initial stage as they require certain
interactions to be present in order for them to be useful for prediction. In addition, the
initial model may contain too many main effects when, without the relevant interactions,
the model selection procedure cannot find a good sparse approximation to the true model.

The Backtracking method proposed in this paper allows interactions to be added in a
more natural gradual fashion, so there is a better chance of having a model which contains
the right interactions. The method is computationally efficient, and our numerical results
demonstrate its effectiveness for both variable selection and prediction.

From a theoretical point of view we have shown that when used with the Lasso, rather
than requiring all main effects involved in interactions to be highly correlated with the
signal, Backtracking only needs there to exist some ordering of these variables where those
early on in the order are important for predicting the response by themselves. Variables
later in the order only need to be helpful for predicting the response when interactions
between variables early on in the order are present.

Though in this paper, we have largely focussed on Backtracking used with the Lasso,
the method is very general and can be used with many procedures that involve sparsity-
inducing penalty functions. These methods tend to be some of the most useful for dealing
with high-dimensional data, as they can produce stable, interpretable models. Combined
with Backtracking, the methods become much more flexible, and it would be very inter-
esting to explore to what extent using non-linear base procedures could yield interpretable
models with predictive power comparable to black-box procedures such as Random Forests
(Breiman, 2001). In addition, we believe integrating Backtracking with some of the penalty-
based methods for fitting interactions to moderate-dimensional data, will prove to be a
fruitful direction for future research.
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Appendix A. Construction of X in Section 2

First, consider (Zi1, Zi2, Zi3) generated from a mean zero multivariate normal distribution
with Var(Zij) = 1, j = 1, 2, 3, Cov(Zi1, Zi2) = 0 and Cov(Zi1, Zi3) = Cov(Zi2, Zi3) = 1/2.
Independently generate Ri1 and Ri2 each of which takes only the values {−1, 1}, each with
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probability 1/2. We form the ith row of the design matrix as follows:

Xi1 =Ri1 sgn(Zi1)|Zi1|1/4,
Xi2 =Ri1|Zi1|3/4,
Xi3 =Ri2 sgn(Zi2)|Zi2|1/4,
Xi4 =Ri2|Zi2|3/4,
Xi5 =Zi3.

The remaining Xij , j = 6, . . . , p are independently generated from a standard normal dis-
tribution. Note that the random signs Ri1 and Ri2 ensure that Xi5 is uncorrelated with
each of Xi1, . . . , Xi4. Furthermore, the fact that Xi1Xi2 = Zi1 and Xi3Xi4 = Zi2, means
that when β5 = −1

2(β7 + β8), Xi5 is uncorrelated with the response.

Appendix B. Proofs of Theorem 2 and Corollory 3

In this subsection we use many ideas from Section B of Wainwright (2009) and Section 6 of
Bühlmann and van de Geer (2011a).

Lemma 4 Let S ⊆ C be such that XS has full column rank and let M = C \ S. On the
event

ΩC,η := { 1
n‖X

T
Cε‖∞ ≤ η},

the following hold:

(i) If

λ > max
u∈M

{
1
n |X

T
u (I−PS)f∗|+ 2η

1− ‖Σ̂−1
S,SΣ̂S,{u}‖1

}
, (10)

then the Lasso solution is unique and β̂M (λ,C) = 0.

(ii) If λ is such that for some Lasso solution β̂M (λ,C) = 0, and for v ∈ S,

|βSv | > ‖(Σ̂
−1
S,S)v‖1(λ+ η),

then for all Lasso solutions, β̂v(λ,C) 6= 0.

(iii) Let

λent = sup{λ : λ ≥ 0 and for some Lasso solution β̂M (λ,C) 6= 0},

where we take sup ∅ = 0. If for v ∈ S,

|βSv | > max
u∈M

{
1
n |X

T
u (I−PS)f∗|+ 2η

1− ‖Σ̂−1
S,SΣ̂S,{u}‖1

+ η

}
‖(Σ̂−1

S,S)v‖1,

there exists a λ > λent such that the solution β̂(λ,C) is unique, and for all λ′ ∈ (λent, λ]
and all Lasso solutions β̂(λ′, C), we have β̂v(λ

′, C) 6= 0.
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Proof We begin by proving (i). Suppressing the dependence of β̂ on λ and C, we can
write the KKT conditions ((3), (4)) as

1

n
XT
C(Y −XCβ̂) = λτ̂ ,

where τ̂ is an element of the subdifferential ∂‖β̂‖1 and thus satisfies

‖τ̂‖∞ ≤ 1, (11)

β̂v 6= 0⇒ τ̂v = sgn(β̂v). (12)

By decomposing Y as PSf∗+(I−PS)f∗+ε, XC as (XS XM ), and noting that XT
S (I−PS) =

0, we can rewrite the KKT conditions in the following way:

1
nXT

S (PSf∗ −XSβ̂S) + 1
nXT

Sε− Σ̂S,M β̂J∗ = λτ̂S , (13)

1
nXT

M (PSf∗ −XSβ̂S) + 1
nXT

M{(I−PS)f∗ + ε} − Σ̂M,M β̂M = λτ̂M . (14)

Now let β̆S be a solution to the restricted Lasso problem,

(µ̂, β̆S) = arg min
µ,βS

{
1

2n‖Y − µ1−XSβS‖2 + λ‖βS‖1
}
.

The KKT conditions give that β̆S satisfies

1

n
XT
S (Y −XSβ̆S) = λτ̆S , (15)

where τ̆S ∈ ∂‖β̆S‖1. We now claim that

(β̂S , β̂M ) = (β̆S ,0) (16)

(τ̂S , τ̂M ) =
(
τ̆S , Σ̂M,SΣ̂

−1
S,S(τ̆S − 1

nλ
−1XT

Sε) + 1
nλ
−1XT

M{(I−PS)f∗ + ε}
)

(17)

is the unique solution to (13), (14), (11) and (12). Indeed, as β̆S solves the reduced Lasso

problem, we must have that (13) and (12) are satisfied. Multiplying (13) by XSΣ̂
−1
S,S , setting

β̂M = 0 and rearranging gives us that

PSf∗ −XSβ̂S = XSΣ̂
−1
S,S(λτ̂S − 1

nXT
Sε), (18)

and substituting this into (14) shows that our choice of τ̂M satisfies (14). It remains to
check that we have ‖τ̂M‖∞ ≤ 1. In fact, we shall show that ‖τ̂M‖∞ < 1. Since we are on
ΩC,η and ‖τ̆S‖∞ ≤ 1, for u ∈M we have

λ|τ̂u| ≤ ‖Σ̂
−1
S,SΣ̂S,{u}‖1

(
λ‖τ̆S‖∞ + ‖ 1

nXT
Sε‖∞

)
+ 1

n

∣∣XT
u (I−PS)f∗

∣∣+ 1
n

∣∣XT
uε
∣∣

< λ‖Σ̂−1
S,SΣ̂S,{u}‖1 + 1

n

∣∣XT
u (I−PS)f∗

∣∣+ 2η

< λ,
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where the final inequality follows from (10). We have shown that there exists a solution, β̂,
to the Lasso optimisation problem with β̂M = 0. The uniqueness of this solution follows
from noting that ‖τ̂M‖∞ < 1, XS has full column rank and appealing to Lemma 1 of
Wainwright (2009).

For (ii), note that from (13), provided β̂M = 0, we have that

β̂S = βS − Σ̂
−1
S,S(λτ̂S − 1

nXT
Sε).

But by assumption

|βSv | > ‖(Σ̂
−1
S,S)v‖1(λ+ η) ≥

∣∣∣∣(Σ̂−1
S,S)

T

v
(λτ̂S − 1

nXT
Sε)

∣∣∣∣ ,
whence β̂v 6= 0.

(iii) follows easily from (i) and (ii).

Proof of Theorem 2. In all that follows, we work on the event ΩC∗,η defined in Lemma 4.
Using standard bounds for the tails of Gaussian random variables and the union bound, it
is easy to show that P(Ω1 ∩ ΩC∗,η) ≥ 1− exp(−t2/2). Let N = {1, . . . , p} \ S∗1 .

Let T̃ be the number of steps taken by the algorithm: this would typically be T , but
may be smaller if a perfect fit is reached or if p < T for example. Let Ck be the largest
member of {C1, . . . , CT̃ } satisfying Ck ⊆ C∗. Such a Ck exists since C1 ⊆ C∗.

Now suppose for a contradiction that Ck + S∗. Let j be such that

I(1, . . . , j − 1) ⊆ Ck,

with j maximal. Since I(1) = ∅, such a j exists. Let A = Ck \ C1. Note that A ∈ J and

I(1, . . . , j − 1) ⊆ A ⊆ C∗ \ C1 = I(S∗1).

By the entry order condition, we know that j will enter the active set before any variable
in N , and before a perfect fit is reached. Thus k+ 1 ≤ T̃ and Ck+1 contains only additional
interactions not involving any variables from N , so Ck+1 ⊆ C∗.

Proof of Corollary 3. Let ΩC∗,η be defined as in Lemma 4. Also define the events

Ω1 = { 1
n‖X

T
N (I−PS∗)ε‖∞ ≤ η},

Ω2 = { 1
n‖Σ̂

−1
S∗,S∗X

T
S∗ε‖∞ ≤ ξ}

In all that follows, we work on the event Ω1 ∩ Ω2 ∩ ΩC∗,η. As I−PS∗ is a projection,

P( 1
n |Xv

T (I−PS∗)ε| ≤ η) ≥ P( 1
n |Xv

Tε| ≤ η).

Further, 1
nΣ̂
−1
S∗,S∗X

T
S∗ε ∼ N|S∗|(0,

1
nσ

2Σ̂
−1
S∗,S∗). Thus

P(Ω3) ≥ |S∗|P(|Z| ≤ ξ)
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where Z ∼ N(0, σ2/(ncmin(Σ̂S∗,S∗))). Note that

P(Ω1 ∩ Ω2 ∩ ΩC∗,η) ≥ 1− P(Ωc
C∗,η)− P(Ωc

1)− P(Ωc
2).

Using this, it is straightforward to show that P(Ω1 ∩ Ω2 ∩ ΩC∗,η) ≥ 1− 3 exp(−t2/2).
Since we are on ΩC∗,η, we can assume the existence of a k∗ from Theorem 2. We now

follow the proof of Lemma 4 taking S = S∗ and M = Ck∗ \ S∗ ⊆ N . The KKT conditions
become

Σ̂S∗,S∗(β
∗
S∗ − β̂S∗) + 1

nXT
S∗ε− Σ̂S∗,M β̂M = λτ̂S∗ , (19)

Σ̂M,S∗(β
∗
S∗ − β̂S∗) + 1

nXT
Mε− Σ̂M,M β̂M = λτ̂M , (20)

with τ̂ also satisfying (11) and (12) as before. Now let λ be such that

η

1− ‖Σ̂M,S∗Σ̂
−1
S∗,S∗sgn(β∗S∗)‖∞

< λ < min
v∈S∗

{∣∣∣sgn(β∗S∗)
T (Σ̂

−1
S∗,S∗)v

∣∣∣−1
(|β∗v | − ξ)

}
.

It is straightforward to check that

(β̂S∗ , β̂M ) = (β∗S∗ − λΣ̂
−1
S∗,S∗sgn(β∗S∗) + 1

nΣ̂
−1
S∗,S∗X

T
S∗ε, 0)

(τ̂S∗ , τ̂M ) =
(

sgn(β∗S∗), Σ̂M,S∗Σ̂
−1
S∗,S∗sgn(β∗S∗) + 1

nλ
−1XT

M (I−PS∗)ε
)

is the unique solution to (19), (20), (11) and (12).

Appendix C. Proof of Theorem 1

In the following, we make use of notation defined in Section 6.2. In addition, for convenience
we write S = S∗1 , M = S ∪ J∗. Also, we will write main effects variables {j} as simply j.
For any matrix M, ‖M‖∞ will denote maxjk |Mjk|. First we collect together various results

concerning Σ̂C∗,C∗ .

Lemma 5 Consider the setup of Theorem 1. Let En and Varn denote empirical expectation
and variance with respect to Z so that, for example Enzj =

∑n
i=1 Zij/n.

(i) Let D be the diagonal matrix indexed by C∗ used to scale transformations of Z in
order to create XC∗ i.e. with entries such that D2

jj = Varn(zj) and D2
vv = Varn(zj −

Enzj)(zk − Enzk) when v = {j, k}. Then

max
j∈C1

|D2
jj − 1| = OP (

√
log(p)/n) (21)

max
{j,k}∈M

|D2
{j,k},{j,k} − 1− Σ2

jk| = OP (
√

log(s1)n−1/4) (22)

(ii)

1
n‖X

T
J∗XS‖∞ = OP (

√
log(s1)n−1/3) (23)

cmin(Σ̂S,S) ≥ c∗ − s1OP (
√

log(s1)/n) (24)

cmin(Σ̂M,M ) ≥ c2
∗ + s2

1OP (
√

log(s1)n−1/4) (25)

cmax(Σ̂J∗,J∗) ≤ 2c∗2 + s2
1OP (

√
log(s1)n−1/4). (26)
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Proof We use bounds on the tails of products of normal random variables from Hao and
Zhang (2014) (equation B.9). We have

max
j,k
|Covn(zj , zk)− Σjk| = max

j,k
|En(zjzk)− EnzjEnzk − Σjk|

= OP (
√

log(p)/n).

Also,

max
j,k,l,m∈S

|Covn
(
(zj − Enzj)(zk − Enzk), (zl − Enzl)(zm − Enzm)

)
− ΣjlΣkm − ΣjmΣkl|

= max
j,k,l,m∈S

|En(zjzkzlzm)− En(zjzk)En(zlzk)− ΣjlΣkm − ΣjmΣkl|+OP (
√

log(s1)/n)

= OP (
√

log(s1)n−1/4).

Now we consider (ii). We have

1
n‖X

T
J∗XS‖∞ ≤ max

v∈J∗
D−1
vv max

k∈S
D−1
kk max

j,k,l∈S
|Covn

(
(zj − Enzj)(zk − Enzk), zl

)
|

≤ OP (
√

log(s1)n−1/3),

the rate being driven by the size of En(zjzkzl). Also

cmin(Σ̂S,S) = min
τ∈Rs1 :‖τ‖2=1

τ{ΣS,S − (ΣS,S − Σ̂S,S)}τ

≥ cmin(ΣS,S)− max
τ∈Rs1 :‖τ‖2=1

‖τ‖21‖ΣS,S − Σ̂S,S‖∞

= c∗ − s1OP (
√

log(s1)/n).

Now let Σ̃ be a matrix with entries indexed by M with

Σ̃uv = ΣjlΣkm + ΣjmΣkl

when u = {j, k} and v = {l,m}. Lemma A.4 of Hao and Zhang (2014) shows that cmin(Σ̃) ≥
2cmin(ΣS,S)2 and cmax(Σ̃) ≤ 2cmax(ΣS,S)2. Thus we have

cmin(Σ̂M,M ) = min
τ∈R|M|:‖DM,Mτ‖2=1

τDM,MΣ̂M,MDM,Mτ

≥ ‖DM,M‖−1
∞ cmin(DM,MΣ̂M,MDM,M )

≥ {1 +OP (
√

log(s1)n−1/4)}[c2
∗ − s2

1{‖Σ̃−DM,MΣ̂M,MDM,M )‖∞ +OP (
√

log(s1)n−1/3)}]

≥ c2
∗ + s2

1OP (
√

log(s1)n−1/4).

Similarly

cmax(Σ̂J∗,J∗) = max
τ∈R|J∗|:‖DJ∗,J∗τ‖2=1

τDJ∗,J∗Σ̂J∗,J∗DJ∗,J∗τ

≤ {1−OP (
√

log(s1)n−1/4)}cmax(DJ∗,J∗Σ̂J∗,J∗DJ∗,J∗)

≤ {1−OP (
√

log(s1)n−1/4)}{2c∗2 + s2
1‖Σ̃−DJ∗,J∗Σ̂J∗,J∗DJ∗,J∗)‖∞}

≤ 2c∗2 + s2
1OP (

√
log(s1)n−1/4).
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Lemma 6 Working with the assumptions of Theorem 1, we have

max
A∈J
‖βS∪AS − β∗S‖∞ ≤ OP (

√
s3

1 log(s1)n−1/3).

Proof For A ∈ J let ∆A ∈ R|S∪A| with ∆A
S = βS∪AS − β∗S and ∆A

A = βS∪AA . Define
g∗ = XS∗2

β∗S∗2 . Note that

f∗ = XSβ
∗
S + g∗,

so
∆A = (XT

S∪AXS∪A)−1XS∪Ag∗.

First we bound ‖∆A
A‖22 in terms of ‖g∗‖22. We have that

‖XS∪A∆A‖22 = ‖XS∆A
S ‖22 + 2∆A

S
T
XT
SXA∆A

A + ‖XA∆A
A‖22 ≤ ‖g∗‖22.

Thus

cmin( 1
nXT

SXS)‖∆A
S ‖22−2

√
|A||S|‖ 1

nXT
SXA‖∞‖∆A

A‖2‖∆A
S ‖2+cmin( 1

nXT
AXA)‖∆A

A‖22− 1
n‖g

∗‖22 ≤ 0.

Thinking of this as a quadratic in ‖∆A
S ‖2 and considering the discriminant yields

‖∆A
A‖22 ≤

1
ncmin( 1

nXT
SXS)‖g∗‖22

cmin( 1
nXT

SXS)cmin( 1
nXT

AXA)− ‖ 1
nXT

SXA‖2∞|A||S|
.

Thus by Lemma 5 (ii) and condition A2, maxA∈J ‖∆A
A‖2 = 1√

n
‖g∗‖2OP (1).

But
1√
n
‖g∗‖2 ≤

√
cmax(Σ̂J∗,J∗)‖β∗S∗2‖2 = OP (1)

by Lemma 5 (ii) and A5, so maxA∈J ‖∆A
A‖2 = OP (1).

Next observe that
‖XS∪A∆A − g∗‖22 ≤ ‖XA∆A

A − g∗‖22,

so

‖∆A
S ‖22cmin( 1

nXT
SXS) ≤ 1

n‖XS∆A
S ‖22

≤ 2| 1n∆A
S
T
XT
S (XA∆A

A − g∗)|

≤ 2
√
|A||S|‖∆A

S ‖2‖ 1
nXT

SXA‖∞‖∆A
A‖2 + 2‖∆A

S ‖2‖ 1
nXT

Sg∗‖2.

Therefore

‖∆A
S ‖∞ ≤ 2{cmin( 1

nXT
SXS)}−1(

√
|A||S|‖ 1

nXT
SXA‖∞‖∆A

A‖2 + ‖ 1
nXT

Sg∗‖2),

so

max
A∈J
‖∆A

S ‖∞ ≤ 2{cmin( 1
nXT

SXS)}−1(
√
|S||J∗|‖ 1

nXT
SXJ∗‖∞OP (1) + ‖ 1

nXT
Sg∗‖2).
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Now

‖ 1
nXT

Sg∗‖2 ≤
√
s1‖ 1

nXT
SXS∗2

‖∞‖β∗S∗2‖1
≤ OP (s1

√
log(s1)n−1/3).

Thus

max
A∈J
‖∆A

S ‖∞ ≤ OP (
√
s3

1 log(s1)n−1/3).

Proof of Theorem 1. In view of Theorem 2 and its proof, it is enough to show that with
probability tending to 1, we have

max
A∈J

sup
τ∈Rs1

‖Σ̂N,S∪AΣ̂
−1
S∪A,S∪Aτ‖∞ < 1, (27)

min
j∈I∗

min
A∈J
|βS∪Aj | > max

A∈J
max
j∈N

{ 1
n |X

T
j (I−PS∪A)f∗|+ 2 1

n‖X
T
C∗ε‖∞

1− ‖Σ̂−1
S∪A,S∪AΣ̂S∪A,j‖1

+ 1
n‖X

T
C∗ε‖∞

} √
|M |

cmin(Σ̂M,M )
.

(28)

First note that for j ∈ N , Zj = ZSΣ−1
S,SΣS,j + Ej where Ej is independent of ZS and

Ej ∼ Nn(0, (1−Σj,SΣ−1
S,SΣS,j)I). Thus

XjDjj = XSDS,SΣ−1
S,SΣS,j + Ej − 1Ēj ,

and

max
A∈J
‖(XT

S∪AXS∪A)−1XT
S∪AXj‖1 ≤ D−1

kk ‖DS,SΣ−1
S,SΣS,j‖1 + max

A∈J
‖Σ̂−1

S∪A,S∪A
1
nXT

S∪AEj‖1.

Now the second term above is at most

max
A∈J

max
τ∈R|S∪A|:‖τ‖2≤1

‖Σ̂−1
S∪A,S∪Aτ‖1‖ 1

nXT
MEj‖2.

But

max
A∈J

max
τ∈R|S∪A|:‖τ‖∞≤1

‖Σ̂−1
S∪A,S∪Aτ‖1 ≤

√
|M |

cmin(Σ̂M,M )

≤
√
|M |

c2
∗ + s2

1OP (
√

log(s1)n−1/4)
.

Also since for v ∈M and j ∈ N , XT
v Ej/n ∼ N(0, 1) we have

max
j∈N
‖ 1
nXT

MEj‖22 ≤ |M |OP (log(p)/n).

Therefore

max
A∈J

sup
τ∈Rs1

‖Σ̂N,S∪AΣ̂
−1
S∪A,S∪Aτ‖∞ ≤ (1 + oP (1))δ +

s2
1oP (1)

c2
∗ + oP (1)

.
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This shows that (27) is satisfied with probability tending to 1.
Next

max
j∈N

max
A∈J

1

n
|XT

j (I−PS∪A)f∗| = max
j∈N

max
A∈J

D−1
jj

n
|ET

j (I−PS∪A)XAβ
∗
A|.

Since ET
j (I−PS∪A)XAβ

∗
A/n ∼ N(0, ‖(I−PS∪A)XAβ

∗
A‖22/n2) we have

max
j∈N

max
A∈J

1

n
|XT

j (I−PS∪A)f∗| ≤
√

log(2s1p)

n

1√
n
‖XS∗2

β∗S∗2‖2OP (1).

By (26) we have

1√
n
‖XS∗2

β∗S∗2‖2 ≤ {2c
∗2 + s2

1

√
log(s1)n−1/4OP (1)}‖βS∗2‖2.

Now using Lemma 6 we see that the difference between the LHS and RHS of (28) is at least

min
j∈I∗
|β∗j | −OP (

√
s3

1 log(s1)n−1/3)−

(
(
√
s1 + log p+ σ

√
log p)/

√
n

1− δ + oP (1)
+ σ

√
log(p)

n

)
s1OP (1).

Thus A4 ensures that (28) holds with probability tending to 1.
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