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Classical statistics was designed for datasets with a large (but not overwhelming) number of
observations of a few carefully chosen variables. In recent years, however, as statisticians we’ve
been challenged with an increasing number of datasets of very different shape and size, for which
we have needed to develop, and indeed still need to invent, radically different new tools to perform
data analysis. Sparsity has been at the centre of much of this statistical research. The word is
used to mean different ideas in different contexts, but perhaps the two most important forms of
sparsity are what one might term signal sparsity and data sparsity.

Signal sparsity

Consider a regression context with n observations (Yi, xi) ∈ R × Rp, i = 1, . . . , n with Yi the
response and xi a p-dimensional covariate vector. Signal sparsity refers to an assumption that
most of the p predictors are unrelated to the response. Specialising to a linear model for the data,

Yi = µ+ xTi β
0 + εi,

this translates to the coefficient vector β0 being sparse i.e. most of its components are 0.
Though such sparse models are unlikely to be exactly true, they are nevertheless useful for

a great number of modern datasets, particularly in the so-called high-dimensional setting where
the number of predictors p greatly exceeds the number of observations n. Microarray datasets,
where the number of variables (gene expression values) may number in the tens of thousands, and
the number of observations (tissue samples) could be a few hundred at best, are a prototypical
example.

When p > n (so X does not have full column rank), the estimate of β0 from ordinary least
squares (OLS) will not be unique and it will overfit to the extent that the fitted values will
equal those observed. The famous Lasso estimator (Tibshirani, 1996) addresses this problem by
adding an `1 penalty term to the least squares objective criterion, with the estimated regression
coefficients, β̂, and estimated intercept µ̂, satisfying

(µ̂, β̂) = arg min
µ,β

{ 1
2n ‖Y − µ1−Xβ‖

2
2 + λ‖β‖1}, (0.1)

where 1 denotes an n-vector of 1’s and ‖β‖1 :=
∑p
k=1 |βk|. The tuning parameter, λ > 0, trades

off the complexity of the fitted model with the fidelity of the fit to Y . Due to the form of the
penalty on β, a large number of components of β̂ will be exactly 0. This sparsity property of the
estimator helps it deliver sensible estimates even when p� n.

An enormous amount of research has been directed at extending the Lasso in various ways,
and studying its theoretical properties. See Bühlmann and van de Geer (2011) for some of these
developments, and references therein. In terms of theory, asymptotic arguments where n → ∞
whilst p remains fixed cannot usually be relied upon to be relevant in finite samples where p �
n. Instead finite sample results are often obtained. An important result concerning the Lasso
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establishes that with λ chosen appropriately and independent errors εi ∼ N(0, σ2), one has with
high probability

‖β̂ − β0‖1 ≤ constant× s σ
√

log(p)

n

under conditions on the design matrix that in particular disallow certain variables from being too
correlated with one another. More recently, inferential procedures based on the Lasso have been
produced which, for example, can give confidence intervals for coefficients β0

k.

Data sparsity

Many modern datasets fall within the high-dimensional “large p, small n” setting. However,
primarily from industry, we are also seeing datasets where both the numbers of observations and
predictors can number in the millions or (much) more. Where in high-dimensional data the main
challenge is a statistical one was more parameters must be estimated than there are observations
available, in this “big data” setting there are also serious computational issues. Here OLS may be
infeasible for computational, rather than statistical, reasons.

An important feature of many of these large-scale datasets, such as those arising from a bag-
of-words representation of a corpus of documents, is that the overwhelming majority of entries
in the design matrices are exactly zero: the data matrices are sparse. Successful methods in this
setting exploit this sparsity for computational and statistical gains.

Given the scale of the data, a sensible way to proceed is by first performing dimension reduction,
that is mapping the original design matrix X ∈ Rn×p to S ∈ Rn×L with L � p. This dimension
reduction step must be computationally fast and ideally should scale linearly with the number of
non-zeroes in the design matrix. Developing methods that perform well under this computational
constraint is a rather young area of statistical research. However, the computer science literature
does have a variety of what are known sometimes known as sketching or hashing algorithms for
performing this step.

One of the most prominent approaches is to form S via random projections of X. The simplest
version of this technique effectively forms S through S = XA where the entries in A are i.i.d.
standard normals. Another interesting approach that is particularly suited to the sparse setting
and is applicable when the design matrix is binary is b-bit min-wise hashing (Li and König, 2011),
which is based on an earlier technique called min-wise hashing (Broder et al., 1998). This technique
is studied from a statistical perspective in Shah and Meinshausen (2015), where an extension to
continuous data is also introduced.
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