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How would you try to solve a linear system of equations with more unknowns than equations?
Of course, there are infinitely many solutions, and yet this is the sort of the problem statisticians
face with many modern datasets, arising in genetics, imaging, finance and many other fields.
What’s worse, our equations are often corrupted by noisy measurements! In this article we will
introduce a statistical method that has been at the centre of the huge amount of research that has
gone into solving these problems. We’ll begin by reviewing the classical version of the problems,
before moving on to the more modern setting hinted at above.

Regression analysis

Imagine data are available in the form of observations (Yi, xi) ∈ R×Rp, i = 1, . . . , n, and the aim
is to infer a simple regression function relating the average value of a response, Yi, and a collection
of predictors or variables, xi. This is an example of regression analysis, one of the most important
tasks in Statistics.

Often, we may assume that the unknown regression function is linear in the predictors, giving
the following mathematical formulation of the problem:

Y = Xβ + ε, (0.1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix with ith row xTi ;
ε ∈ Rn represents random error; and β ∈ Rp is the unknown vector of coefficients that determines
the regression function and is to be estimated using the data.

A traditional application of the model (0.1) may have the responses as blood pressure mea-
surements for n = 100 patients and the predictors could include height, weight, age and daily
calorie intake, for example. In this case, one might estimate β by ordinary least squares (OLS), a

technique dating back to Gauss (1795). This yields an estimator β̂OLS with

β̂OLS := arg min
b∈Rp

‖Y −Xb‖22 = (XTX)−1XTY, (0.2)

provided X has full column rank. Here ‖·‖2 denotes the Euclidean norm. We can analyse the
quality of the estimate of the regression function by calculating its mean-squared prediction error
(MSPE). Under the assumptions that (i) E(εi) = 0 and (ii) Cov(εi, εj) = σ2

1{i=j}, it holds that

MSPE(β̂OLS) := E{ 1n‖X(β − β̂OLS)‖22} =
p

n
σ2. (0.3)

We see that provided p/n is small, the MSPE is small. When this is true, and under the as-
sumptions given above, OLS is a very reasonable choice of estimator. Indeed, the Gauss–Markov
theorem shows that it has the minimum MSPE among all linear unbiased estimators of the re-
gression function, i.e. among all estimators f̂ := AY of Xβ, for some n × n matrix A such that
E(AY ) = Xβ.
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High-dimensional data

One might think that OLS essentially solves the problem of linear regression, at least under
assumptions (i) and (ii). However, the field of Statistics must constantly adapt and innovate
to develop methods that accommodate the data it is tasked with to study, and today, much of
that data is high-dimensional : p is very large and often greatly exceeds n. Where in the past
only a few carefully chosen variables were measured for each observation, nowadays any variable
that might conceivably have an effect on the response tends to be recorded, leading to ratios of
p/n > 1000 being common in some areas. Out of these many variables, it may be only a few that
are really important for predicting the response, but of course which these are would not be known
in advance. In the context of our model (0.1), this would translate β being sparse, i.e. many of its
components being exactly 0.

How are we to proceed with analysis given such datasets? Clearly OLS is unhelpful when
p ≥ n if X has full column rank, as then predictions are simply the original responses themselves.
Ideally, we would like a sparse estimator that first attempted to detect the relevant variables,
and then estimated just their coefficients. Even when β is not truly sparse, it can make sense
to produce a sparse estimate for it. A final estimate with only a few non-zero coefficients may
be much easier to interpret, and given a new observation x ∈ Rp, computing the estimate of the
regression function at x would be much faster.

In view of this, one might consider trying to estimate β by β̂BS (Best Subsets) defined as the
minimiser of a penalised least squares objective:

β̂BS := arg min
b∈Rp

{ 1n‖Y −Xb‖
2
2 + λ‖b‖0}, (0.4)

where ‖b‖0 :=
∑p
k=1 1{bk 6=0}. Large values of the regularisation parameter, λ, will cause β̂ to have

very few non-zero components, and lower values will produce less sparse models. Several methods
are available for choosing λ; we will not go into the details here.

A major problem with the estimator β̂BS is that the optimisation in (0.4) is in general com-
putationally infeasible as one would essentially need to evaluate the objective at all 2p possible
subsets of variables in order to guarantee finding the optimiser. As p runs into the hundreds, the
number of computations required to perform the optimisation quickly surpasses the number of
atoms in the observable universe!

The Lasso

The key property of the objective in (0.4) which makes the optimisation intractable is that it is
non-convex. Convex problems are much easier to solve, one reason for this being that any local
optimum is also a global optimum. It is thus sensible to consider convex approximations to the
objective in (0.4). One such approximation results from replacing ‖b‖0 with ‖b‖1 :=

∑p
k=1 |bk|, so

our estimator β̂ is given by

β̂ := arg min
b∈Rp

{ 1n‖Y −Xb‖
2
2 + λ‖b‖1}. (0.5)

This is the Lasso (Least Absolute Shrinkage and Selection Operator) estimator (Tibshirani, 1996):
one of the most popular methods in high-dimensional data analysis. Applications of the Lasso and
related methods range from identifying which of our thousands of genes are related to particular
diseases, to the click-through rate prediction task that helps optimise web advertising for search
engines.

The optimisation in (0.5) can be solved even for very large problems where p is hundreds of
thousands. Yet importantly, sparsity of the estimator is retained. This is essentially because the
set {b : ‖b‖1 ≤ r} for r > 0 has corners; see Bühlmann and van de Geer (2011) for details.

Sparsity and computational feasibility are attractive properties, but what really makes the
Lasso appealing is its remarkable performance as both a selector of important variables, and as a
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prediction engine. This is perhaps surprising given that the Lasso optimisation only approximates
(0.4). A vast amount of work has gone into trying to understand why the Lasso works so well,
and also into developing improvements and adapting the method to suit many other problems.
We will finish with a theorem that forms part of that work: we show that provided ‖β‖1 is small,
as would be the case when β is sparse, p can be almost exponential in n, and the Lasso can still
estimate the regression function well. This is a really rather striking result, considering that OLS
requires p to be much smaller than n. In fact much more is true; the interested reader is directed
to Bühlmann and van de Geer (2011).

Prediction error of the Lasso

Let β̂ be the Lasso estimator (0.5) with λ = σ
√

2(log p+ t2)/n. Assume that the errors εi are

independent and normally distributed. Then with probability at least 1− e−t2 , we have

1
n‖X(β − β̂)‖22 ≤ 2σ‖β‖1

√
2(log p+ t2)

n
.

Proof. By the definition of β̂ we have

1
n‖Y −Xβ̂‖

2
2 + λ‖β̂‖1 ≤ 1

n‖Y −Xβ‖
2
2 + λ‖β‖1.

Recalling that Y = Xβ + ε and rearranging, we get

1
n‖X(β − β̂)‖22 ≤ 1

n2εTX(β̂ − β) + λ‖β‖1 − λ‖β̂‖1. (0.6)

Denote the kth column of X by Xk ∈ Rn. Now

1
nε

TX(β̂ − β) ≤ 1
n‖β − β̂‖1 max

1≤k≤p
|XT

k ε|,

and as ε ∼ Nn(0, σ2I) and ‖Xk‖22 = n, we have XT
k ε/n ∼ N(0, σ2/n). Now let Z ∼ N(0, 1) so

σZ/
√
n has the same distribution as XT

k ε/n for each k. We argue

P
(

max
1≤k≤p

|XT
k ε|/n ≥ λ

)
= P

( p⋃
k=1

{|XT
k ε|/n ≥ λ}

)
≤

p∑
k=1

P(|XT
k ε|/n ≥ λ) = 2pP{Z ≥ λ

√
n/σ}.

A standard tail bound for normal random variables (proved below) gives us that for ζ ≥ 0,

1− Φ(ζ) ≤ e−ζ
2/2/2. Applying this to the above, we see that the final term in the last display is

bounded above by p exp{−nλ2/(2σ2)} = e−t
2

. Now working on the event {max1≤k≤p |XT
k ε|/n <

λ}, which we have shown has probability at least 1− e−t2 , we have from (0.6) that.

1
n‖X(β − β̂)‖22 ≤ λ‖β − β̂‖1 + λ‖β‖1 − λ‖β̂‖1.

Noting that ‖β − β̂‖1 − ‖β̂‖1 ≤ ‖β‖1 by the triangle inequality completes the proof.

Standard normal tail bound

Let Z ∼ N(0, 1). Then 1− Φ(ζ) := P(Z ≥ ζ) ≤ 1
2e
−ζ2/2 when ζ ≥ 0.

Proof. Let f(ζ) := 1− Φ(ζ)− 1
2e
−ζ2/2. Now

P(Z ≥ ζ) =
1√

2πσ2

∫ ∞
ζ

e−z
2/2dz ≤ 1√

2πσ2

∫ ∞
ζ

z

ζ
e−z

2/2dz =
1

ζ
√

2πσ2
e−ζ

2/2.

Thus if ζ ≥
√

2/(πσ2), then f(ζ) ≤ 0. Also, f(0) = 0. Finally observe that

f ′(ζ) = − 1√
2πσ2

e−ζ
2/2 +

ζ

2
e−ζ

2/2,

so f ′(ζ) ≤ 0 for ζ ≤
√

2/(πσ2). Conclude that f(ζ) ≤ 0 when ζ ≥ 0.
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