
Geometry-of-numbers over number fields and the density of ADE
families of curves having squarefree discriminant

Martí Oller

May 23, 2024

Abstract

For families of curves arising from a Dynkin diagram of type ADE, we show that the density of
such curves having squarefree discriminant is equal to the product of local densities. We do so using
the framework of Thorne and Laga’s PhD theses and geometry-of-numbers techniques developed by
Bhargava, here expanded over number fields.

Contents

1 Introduction 2

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 5

2.1 Vinberg representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Restricted roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Transverse slices over V // G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Integral structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Constructing orbits 10

4 Reduction theory 14

4.1 Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Measures on G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Fundamental sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Constructing S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2 Constructing S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Counting reducible orbits 21

1



5.1 Averaging and reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Congruence conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Case-by-case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 D2n+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2 D2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.3 E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.4 E7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4.5 E8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Proof of the main results 31

6.1 Elements with big stabiliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Tail estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 A squarefree sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Counting irreducible orbits 33

1 Introduction

In this paper, we aim to determine the density of curves in certain families that have squarefree discrim-
inant. Over Q, this was done in [Oll23], and in this article we will generalise the methods in said paper
to a general number field F . For completeness and convenience, this article will be self-contained, in the
sense that it will develop the results in [Oll23] from scratch.

Our methods will resemble the geometry-of-numbers developed by Bhargava and his collaborators. The
main idea is that many arithmetic objects of interest can be parametrised by the rational or integral orbits
of a certain representation (G, V ): in this situation, Bhargava’s geometry-of-numbers methods allow to
count these integral orbits of V , which consequently provides information on the desired arithmetic
objects that would be otherwise difficult to obtain. This idea has led to many impressive results in
number theory; see [Bha14a] or [Ho13] for an overview.

The present paper is inspired by the recent paper [BSW22a] by Bhargava, Shankar and Wang, in which
they compute the density of monic integral polynomials of a given degree that have squarefree discrim-
inant. The main technical difficulty is to bound the tail estimate of polynomials having discriminant
“weakly divisible” by the square a large prime (this notion will be defined later). They do so using the
representation of G = SOn on the space V of n × n symmetric matrices. By relating polynomials with
discriminant divisible by p2 for a large p to certain integral orbits of the representation (G, V ), they get
the desired result using the aforementioned geometry-of-numbers techniques. Similar methods were used
in [BSW22b] in the non-monic case with a different representation, and also in [BH22] for certain families
of elliptic curves (in particular, their F2 case essentially corresponds to our D4 case).

A key observation, which motivates our results, is that the representation studied in [BSW22a] arises as a
particular case of the more general families of representations studied in [Tho13]. Using the framework of
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Vinberg theory, Thorne found that given a simply laced Dynkin diagram, we can naturally associate to it
a family of curves and a coregular representation (G, V ), where the rational orbits of the representation
are related to the arithmetic of the curves in the family. These results have been used, implicitly and
explicitly, to study the size of 2-Selmer groups of the Jacobians of these curves, see [BG13; SW18; Sha18;
Tho15; RT18; Lag22b] for some particular cases. Later, Laga unified, reproved and extended all these
results in [Lag22a] in a uniform way.

Our aim is to compute the density of curves having squarefree discriminant in these families of ADE
curves. We will do so by reinterpreting the methods in [BSW22a] in the language of [Tho13] and [Lag22a].
Given that we prove our results over a general number field F , this presents an additional challenge, in the
sense that most of the literature on the required geometry-of-numbers works over Q, and the translation
to the number field case is not necessarily immediate. Taking [BSW15] and [BSW] as a point of reference,
we develop the techniques that we need in geometry-of-numbers over a number field.

Let D be a Dynkin diagram of type A, D, E, and let F be a number field. In Section 2.1, we will construct
a representation (G, V ) associated to D, and in Section 2.3 we will construct a family of curves C → B.
Here, B is isomorphic to the Geometric Invariant Theory (GIT) quotient V // G := Spec F [V ]G. We see
that B can be identified with an affine space, and we write B = Spec F [pd1 , . . . , pdr ]. The group Gm acts
on B by λ · pdi = λdipdi . We want to define a sensible notion of height for elements of b ∈ B(F ). In
Section 4.1, for b ∈ B(F ) we will define

ht(b) := (NIb)
∏

v∈M∞

sup
(
|pd1(b)|1/d1

v , . . . , |pdr (b)|1/dr
v

)
,

where M∞ denotes the set of archimedean places of F and Ib is the ideal Ib = {a ∈ F | adipdi(b) ∈ OF , ∀i}.
This height is Gm(F )-invariant by the product formula. Further, we can see that the number of elements
of Gm(F )\B(F ) having bounded height is finite; see [Den98, Theorem A] for a more precise count.
Throughout the paper, we will fix a subset Σ ⊂ B(OF ) which is a fundamental domain for the action of
Gm(F ) on B(F ): we will construct it in Section 4.1.

Denote by Cb the preimage of a given b ∈ B under the map C → B; it will be a curve of the form given
by Table 2. The main result of this paper concerns the density of squarefree values of the discriminant
∆(Cb) of the curve (or equivalently, the discriminant ∆(b) defined in Section 2.1). A definition for the
discriminant of a plane curve can be found in [Sut19, §2], for instance. We remark that in our definition of
discriminant, we assume that it is an polynomial in multiple variables and coefficients in OF , normalised
so that the coefficients have common divisors (for instance, the usual discriminant for elliptic curves
contains a factor of 16: we omit it in our case).

For a prime ideal p of OF , we will denote the completion of OF with respect to p by Op. We will further
set Fp to be the field of fractions of Op and kp to be the corresponding residue field. Now, consider the
set

B′(Op) = {b ∈ B(Op) | vp(pdi(b)) < di for some i}.

Every element of B(Fp) is Gm(Fp)-conjugate to an element of B′(Op), and this element is unique up
to the Gm(Op)-action. For a given b ∈ B(Fp), we say that ∆(b) is squarefree at p if, for any element
b′ ∈ B′(Op) which is Gm(Fp)-conjugate to b, the discriminant ∆(b′) is squarefree as an element of Op.
For b ∈ B(F ), we say that ∆(b) is squarefree if ∆(b) is squarefree at p for all finite primes p. Note that
the property of “being squarefree” does not change with the action of Gm(F ).

Our result is related to the p-adic density of these squarefree values: we will denote by ρ(Dp) the local
density at p of curves in the family C → B having discriminant indivisible by p2 in Fp; this is obtained
by taking all the (finitely many) elements in b ∈ B(Fp/p2Fp) and counting the proportion of them that
have non-zero discriminant in Fp/p2Fp. We note that under our assumptions on the discriminant none
of the local densities vanish; this can be checked with a case-by-case computation.
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Theorem 1.1. We have

lim
X→∞

#{b ∈ Gm(F )\B(F ) | ∆(b) is squarefree, ht(b) < X}
#{b ∈ Gm(F )\B(F ) | ht(b) < X}

=
∏
p

ρ(Dp).

To prove Theorem 1.1, we need to obtain a tail estimate to show that “not too many” b ∈ B(OF )
have discriminant divisible by I2 for squarefree ideals I of large norm. Let p be a prime ideal. A key
observation in [BSW22a] is to separate those b with p2 dividing ∆(b) in two separate cases:

1. If p2|∆(b + pc) for all p ∈ p and c ∈ B(OF ), we say p2 strongly divides ∆(b) (in other words, p2

divides ∆(b) for “mod p reasons”).

2. If there exists p ∈ p and c ∈ B(OF ) such that p2 ∤ ∆(b + pc), we say p2 weakly divides ∆(b) (in
other words, p2 divides ∆(b) for “mod p2 reasons”).

Analogously, for a squarefree ideal I ⊂ OF , we will say that I2 strongly (resp. weakly) divides ∆(b) if
every prime ideal p | I strongly (resp. weakly) divides ∆(b). We will let W(1)

I ,W(2)
I denote the set of

b ∈ B(OF ) whose discriminant is strongly (resp. weakly) divisible by I2. We want to prove tail estimates
for W(1)

I ,W(2)
I separately. Our argument for the weakly divisible case will require us to avoid finitely

many primes: more precisely, in Section 3 we will define an element Nbad ∈ OF which will be divisible
by all these “bad primes”.

Theorem 1.2. There exists a constant δ > 0 such that for any positive real number M we have:

∑
I squarefree

NI>M

#{b ∈ Gm(F )\W(1)
I | ht(b) < X} = Oε

(
Xdim V +ε

M

)
+ Oε

(
Xdim V −1+ε

)
,

∑
I squarefree

NI>M
(I,Nbad)=1

#{b ∈ Gm(F )\W(2)
I | ht(b) < X} = Oε

(
Xdim V +ε

M

)
+ O

(
Xdim V −δ

)
.

The implied constants are independent of X and M .

The strongly divisible case will follow from the use of the Ekedahl sieve: see Section 6.2 for a discussion.
Hence, we will spend most of the paper dealing with the weakly divisible case.

We start in Section 2, where we develop the necessary background and introducing our objects of interest,
most importantly the representation (G, V ) coming from Vinberg theory and the associated family of
curves C → B. The main step in the proof of Theorem 1.2 is done in Section 3, where given an element
b ∈ W(2)

I , we construct a special integral orbit in V , whose elements have invariant b. We additionally
consider a distinguished subspace W0 ⊂ V , and we define a Q-invariant for the elements of W0. Then,
we will see that the elements in the constructed orbit have large Q-invariant when they intersect W0
(which happens always except for a negligible amount of times by cutting-off-the-cusp arguments). This
construction is the analogue of [BSW22a, §2.2, §3.2]; we give a more detailed comparison at the end of
Section 3.

In Section 4, we set up the main tools that we will require in reduction theory. This includes an extended
discussion about heights, as well as a construction of a suitable “box-shaped” fundamental domain for
the action of an arithmetic subgroup Γ of G(F ) over G(F∞), where F∞ =

∏
v∈M∞

Fv. Then, in Section
5, we compute a precise asymptotic for the number of reducible orbits of bounded height. This is a
necessary step in the argument, since the proof of the main results requires a power-saving asymptotic on
the elements with big stabiliser (Proposition 6.1), which will require the results in Section 5. We remark
that part of the argument relies on extensive case-by-case computations: some of them are carried out in
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Section 5.4, while some others take place implicitly in the proof of Proposition 5.3. Finally, in Section 6
we conclude the proof of the main results. In Section 6.2 we prove Theorem 1.2, and in Section 6.3 we
deduce Theorem 1.1 using a squarefree sieve.
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1.1 Notation

We recap the most important bits of notation in this section. Most of it has already been introduced or
will be introduced in the future, but is included here for the convenience of the reader.

Throughout, we will work with a fixed number field F . We will denote its ring of integers by OF . For a
finite prime p of F , we will denote by Op the completion of OF with respect to p, Fp its field of fractions
and kp its residue field. We will denote the set of infinite places of F by M∞, and for any v ∈ M∞, we
will denote by Fv the completion of F with respect to v. For an ideal I ⊂ OF , we will denote by the
norm of the ideal by NI = #(OF /I).

We will also denote F∞ =
∏

v∈M∞
Fv, and for x = (xv)v ∈ F∞ we will denote

|x| :=
∏

v

|xv|v,

where |xv|v denotes the norm in Fv given by |xv|v = NC/Fv
(xv). For x ∈ F , we will denote by |x| the

norm of F as an element of F∞.

Given a split semisimple group H, we will consider a natural representation (G, V ), where G is a suitable
subgroup of H. Inside G, we will fix a split torus T , and a Borel subgroup P containing T , corresponding
to the negative roots of Φ(G, T ). We will also fix B := V // G = Spec F [pd1 , . . . , pdr ], where pdi are
polynomials of degree i, on which Gm(F ) acts upon by λ ·pdi = λdipdi . We will also fix a Kostant section
κ ·B → V , which will be a section of the invariant map π : V → B.

We will also fix the unipotent radical N of the Borel P , a maximal compact subgroup K of G(F∞) and
the subgroup A of T (F∞) consisting of t = (t1, . . . , tk) such that (ti)v ∈ R>0 for every i and every place
v ∈M∞.

2 Preliminaries

In this section, we introduce our representation (G, V ) of interest, together with some of its basic prop-
erties. We do so mostly following [Tho13, §2] and [Lag22a, §3].
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2.1 Vinberg representations

Let F be a number field, let HQ be a split adjoint simple group of type A, D, E over Q, and consider H
to be the base change of HQ to F . We assume H is equipped with a pinning (TH , PH , {Xα}), meaning:

• TH ⊂ H is a split maximal torus defined over Q (determining a root system ΦH).

• PH ⊂ H is a Borel subgroup containing TH (determining a root basis SH ⊂ ΦH).

• Xα is a generator for hα for each α ∈ SH .

Let W = NH(TH)/TH be the Weyl group of ΦH , and let D be the Dynkin diagram of H. Then, we have
the following exact sequences:

0 H Aut(H) Aut(D) 0 (1)

0 W Aut(ΦH) Aut(D) 0 (2)

The subgroup Aut(H, TH , PH , {Xα}) ⊂ Aut(H) of automorphisms of H preserving the pinning deter-
mines a splitting of (1). Then, we can define ϑ ∈ Aut(H) as the unique element in (TH , PH , {Xα}) such
that its image in Aut(D) under (1) coincides with the image of −1 ∈ Aut(ΦH) under (2). Writing ρ̌ for
the sum of fundamental coweights with respect to SH , we define

θ := ϑ ◦Ad(ρ̌(−1)) = Ad(ρ̌(−1)) ◦ ϑ.

The map θ defines an involution of H, and so dθ defines an involution of the Lie algebra h. By considering
±1 eigenspaces, we obtain a Z/2Z-grading

h = h(0)⊕ h(1),

where [h(i), h(j)] ⊂ h(i + j). We define G = (Hθ)◦ and V = h(1), which means that V is a representation
of G by restriction of the adjoint representation. Moreover, we have Lie(G) = h(0).

We have the following basic result [Pan05, Theorem 1.1] on the GIT quotient B := V // G = Spec F [V ]G.

Theorem 2.1. Let c ⊂ V be a Cartan subspace. Then, c is a Cartan subalgebra of h, and the map
NG(c) → Wc := NH(c)/ZH(c) is surjective. Therefore, the canonical inclusions c ⊂ V ⊂ h induce
isomorphisms

c // Wc
∼= V // G ∼= h // H.

In particular, all these quotients are isomorphic to a finite-dimensional affine space.

For any field k of characteristic zero, we can define the discriminant polynomial ∆ ∈ k[h]H as the image of∏
α∈ΦT

α under the isomorphism k[t]W ∼−→ k[h]H . The discriminant can also be regarded as a polynomial
in k[B] through the isomorphism k[h]H ∼= k[V ]G = k[B]. We can relate the discriminant to one-parameter
subgroups, which we now introduce. If λ : Gm → Gk is a homomorphism, there exists a decomposition
V =

∑
i∈Z Vi, where Vi := {v ∈ V (k) | λ(t)v = tiv, ∀t ∈ Gm(k)}. Every vector v ∈ V (k) can be written

as v =
∑

vi, where vi ∈ Vi; we call the integers i with vi ̸= 0 the weights of v. Finally, we recall that an
element v ∈ h is regular if its centraliser has minimal dimension.

Proposition 2.2. Let k/Q be a field, and let v ∈ V (k). The following are equivalent:

1. v is regular semisimple.

2. ∆(v) ̸= 0.
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3. For every non-trivial homomorphism λ : Gm → Gks , v has a positive weight with respect to λ.

Proof. The reasoning is the same as in [RT18, Corollary 2.4].

We remark that the Vinberg representation (G, V ) can be identified explictly. For the reader’s conve-
nience, we reproduce the explicit description written in [Lag22a, §3.2] in Table 1. We refer the reader to
loc. cit. for the precise meaning of some of these symbols.

Type G V

A2n SO2n+1 Sym2(2n + 1)0
A2n+1 PSO2n+2 Sym2(2n + 2)0
D2n (n ≥ 2) SO2n×SO2n /∆(µ2) 2n ⊠ 2n
D2n+1 (n ≥ 2) SO2n+1× SO2n+1 (2n + 1) ⊠ (2n + 1)
E6 PSp8 ∧4

08
E7 SL8 /µ4 ∧48
E8 Spin16/µ2 half spin

Table 1: Explicit description of each representation

2.2 Restricted roots

In the previous section we considered the root system ΦH of H, but we will also need to work with the
root system of G. By [Ric82, Lemma 5.1], we have that T := T θ

H is a split maximal torus of G. We will
compare the root systems ΦH and ΦG = Φ(G, T ) in a similar fashion to [Tho15, §2.3].

Write ΦH/ϑ for the orbits of ϑ on ΦH , where ϑ is the pinned automorphism defined in the previous
section.

Lemma 2.3. 1. The map X∗(TH)→ X∗(T ) is surjective, and the group G is adjoint. In particular,
X∗(T ) is spanned by ΦG.

2. Let α, β ∈ ΦH . Then, the image of α in X∗(T ) is non-zero, and α, β have the same image if and
only if either α = β or α = ϑ(β).

Proof. The fixed group T is connected and contains regular elements of TH by [Ree10, Lemma 3.1]. The
group G has trivial center by [Ree10, §3.8]. For the second part, see [Ree10, §3.3].

Hence, we can identify ΦH/ϑ with its image in X∗(T ). We note that ϑ = 1 if and only if −1 is an element
of the Weyl group W (H, TH); in this case ΦH/ϑ coincides with ΦH .

We can write the following decomposition:

h = t⊕
⊕

a∈ΦH /ϑ

ha,

with t = tθ ⊕ V0 and ha = ga ⊕ Va, according to the θ-grading. We have a decomposition

V = V0 ⊕
⊕

a∈ΦH /ϑ

Va.

For a given a ∈ ΦH/ϑ there are three cases to distinguish, according to the value of s = (−1)⟨α,ρ̌⟩:
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1. a = {α} and s = 1. Then, Va = 0 and gα is spanned by Xα.

2. a = {α} and s = −1. Then, Va is spanned by Xα and gα = 0.

3. a = {α, ϑ(α)}, with α ̸= ϑ(α). Then, Va is spanned by Xα − sXϑ(α) and gα is spanned by
Xα + sXϑ(α).

We note that ϑ preserves the height of a root α with respect to the basis SH . Therefore, it will make
sense to define the height of a root a ∈ Φ/ϑ as the height of any element in ϑ−1(a).

2.3 Transverse slices over V // G

In this section, we present some remarkable properties of the map π : V → B, where we recall that
B := V // G is the GIT quotient.
Definition 2.4. An sl2-triple of h is a triple (e, h, f) of non-zero elements of h satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Moreover, we say this sl2-triple is normal if e, f ∈ h(1) and h ∈ h(0).
Theorem 2.5 (Graded Jacobson-Morozov). Every non-zero nilpotent element e ∈ h(1) is contained in
a normal sl2-triple. If e is also regular, then it is contained in a unique normal sl2-triple.

Proof. The first part of the statement is [Tho13, Lemma 2.17], and the second part follows from [Tho13,
Lemma 2.14].

Definition 2.6. Let r be the rank of h. We say an element x ∈ h is subregular if dim zh(x) = r + 2.

Subregular elements in V exist by [Tho13, Proposition 2.27]. Let e ∈ V be such an element, and fix a
normal sl2-triple (e, h, f) using Theorem 2.5. Let C = e + zV (f), and consider the natural morphism
φ : C → B.
Theorem 2.7. 1. The geometric fibres of φ are reduced connected curves. For b ∈ B(F ), the corre-

sponding curve Cb is smooth if and only if ∆(b) ̸= 0.

2. The central fibre φ−1(0) has a unique singular point which is a simple singularity of type An, Dn, En,
coinciding with the type of H.

3. We can choose coordinates pd1 , . . . , pdr
in B, with pdi

being homogeneous of degree di, and coordi-
nates (x, y, pd1 , . . . , pdr

) on C such that C → B is given by Table 2.

Proof. See [Tho13, Theorem 3.8].

Our choice of pinning in Section 2.1 determines a natural choice of a regular nilpotent element, namely
e0 =

∑
α∈SH

Xα ∈ V (F ). Let (e0, h0, f0) be its associated normal sl2-triple by Theorem 2.5. We define
the affine linear subspace κe0 := (e0 + zh(f0)) ∩ V as the Kostant section associated to e0. Whenever e0
is understood, we will just denote the Kostant section by κ.
Theorem 2.8. The composition κ ↪→ V → B is an isomorphism, and every element of κ is regular.

Proof. See [Tho13, Lemma 3.5].

Definition 2.9. Let L/F be a field and let v ∈ V (L). We say v is L-reducible if ∆(v) = 0 or if v is
G(L)-conjugate to some Kostant section, and F -irreducible otherwise.

We will typically refer to F -(ir)reducible elements simply as (ir)reducible. We note that if L is alge-
braically closed, then all elements of V are reducible, by [Lag22a, Proposition 2.11].
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Type Curve # Marked points
A2n y2 = x2n+1 + p2x2n−1 + · · ·+ p2n+1 1
A2n+1 y2 = x2n+2 + p2x2n + · · ·+ p2n+2 2
D2n (n ≥ 2) y(xy + p2n) = x2n−1 + p2x2n−2 + · · ·+ p4n−2 3
D2n+1 (n ≥ 2) y(xy + p2n+1) = x2n + p2x2n−1 + · · ·+ p4n 2
E6 y3 = x4 + (p2x2 + p5x + p8)y + (p6x2 + p9x + p12) 1
E7 y3 = x3y + p10x2 + x(p2y2 + p8y + p14) + p6y2 + p12y + p18 2
E8 y3 = x5 + (p2x3 + p8x2 + p14x + p20)y + (p12x3 + p18x2 + p24x + p30) 1

Table 2: Families of curves

2.4 Integral structures

So far, we have considered our objects of interest over the fields Q and F , but for our purposes it will be
crucial to define integral structures for G and V .

We start by considering structures over Z. The structure of G over Z comes from the general classification
of split reductive groups over any non-empty scheme S: namely, every root datum is isomorphic to the
root datum of a split reductive S-group (see [Con14, Theorem 6.1.16]). By considering the root datum
Φ(G, T ) studied in Section 2.2 and the scheme S = SpecZ, we get a split reductive group GZ defined
over Z, such that its base change to Q coincides with G. By [Ric82, Lemma 5.1], we know that T is a
maximal split torus of G, and that P := P θ

H is a Borel subgroup of G containing T . We also get integral
structures for TZ and PZ inside of GZ. We get OF -structures by base-changing to OF : set G := GZ⊗OF

and analogously T := TZ ⊗OF , P := PZ ⊗OF .

For any linear algebraic group G defined over F , we recall that its class group is

cl(G) = (
∏

p/∈M∞

G(Op))\G(AF,f )/G(F ).

Proposition 2.10. Every linear algebraic group G has finite class group.

Proof. See [Bor63, Theorem 5.1].

To obtain a Z-structure for VQ, we consider hQ as a semisimple GQ-module over Q via the restriction of
the adjoint representation. This GQ-module splits into a sum of simple GQ-modules:

h = (⊕r
i=1Vi)⊕ (⊕s

i=1gi) ,

where ⊕Vi = VQ and ⊕gi = gQ, since both subspaces are GQ-invariant. For each of these irreducible
representations, we can choose highest weight vectors vi ∈ Vi and wi ∈ gi, and we then consider

V i := Dist(GZ)vi, g
i

:= Dist(GZ)wi,

where Dist(GZ) the algebra of distributions of GZ (see [Jan07, I.7.7]). Analogously to [Jan07, II.8.3], we
have that Vi = Q⊗Z V i, gi = Q⊗Z gi

and that V Z := ⊕V i is a GZ-stable lattice inside VQ. As before, set
V := V Z⊗OF , which is a GOF

-stable lattice inside V . By scaling the highest weight vectors if necessary,
we will assume that E ∈ V (OF ).

We can also consider an integral structure B on B. We can take the polynomials pd1 , . . . , pdr
∈ F [V ]G

determined in Section 2.3 and rescale them using the Gm-action t · pdi
= tdipdi

to make them lie in
OF [V ]G. We let B := SpecOF [pd1 , . . . , pdr ] and write π : V → B for the corresponding morphism.
We may additionally assume that the discriminant ∆ defined in Section 2.1 lies in OF [V ]G, where the
coefficients of ∆ in OF [pd1 , . . . , pdr

] may be assumed to not have a common divisor.
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The following lemma will be convenient to us in the future (cf. [Tho15, Lemma 2.8]):

Lemma 2.11. There exists a non-zero N0 ∈ OF such that for all primes p and for all b ∈ B(Op) we
have N0 · κb ∈ V (Op).

Our arguments in Section 3 will implicitly rely on integral geometric properties of the representa-
tion (G, V ). In there, we will need to avoid finitely many primes, or more precisely to work over
S = SpecOF [1/N ′] for a suitable N ′ ∈ OF . By combining the previous lemma and the spreading
out properties in [Lag22a, §7.2], we get:

Proposition 2.12. There exists a non-zero element N ′ ∈ OF such that:

1. For every b ∈ B(OF ), the corresponding Kostant section κb is G(F )-conjugate to an element in
1

N ′ V (OF ).

2. N ′ is admissible in the sense of [Lag22a, §7.2].

Fix an element N ′ ∈ OF satisfying the conclusions of Proposition 2.12. From now on, we will simplify
notation by dropping the underline notation for the objects defined over OF , and just refer to G, V , . . .
as G, V, . . . by abuse of notation.

To end this section, we consider some further integral properties of the Kostant section. In Section 2.3,
we considered κ defined over F , and now we will consider some of its properties over Op. Consider the
decomposition

h =
⊕
j∈Z

hj

according to the height of the roots. If P −
H is the negative Borel subgroup of H, N−

H is its unipotent
radical and p− and n− are their respective Lie algebras, we have p− =

⊕
j≤0 hj , n− =

⊕
j<0 hj and

[E, hj ] ⊂ hj+1.

Theorem 2.13. Let R be a ring in which N ′ is invertible. Then:

1. [E, n−
R] has a complement in p−

R of rank rkR p−
R − rkR n−

R; call it Ξ.

2. The action map N−
H × (E + Ξ)→ E + p− is an isomorphism over R.

3. Both maps in the composition E + Ξ→ (E + p−) // N−
H → h // H are isomorphisms over R.

Proof. See [AFV18, §2.3].

Remark 2.14. If R is a field of characteristic zero, then Ξ can be taken to be zh(f0) and E + Ξ is the
same as the Kostant section considered in Section 2.3. We will abuse notation by referring to both the
Kostant section defined in Section 2.3 and the section in Theorem 2.13 by κ.

3 Constructing orbits

Given an element b ∈ B(OF ) with discriminant weakly divisible by I2 for a squarefree ideal I avoiding
certain bad primes, we will show how to construct a special integral orbit in V in a way that “remembers
I”.

We will start with some techincal results. Assume we have a connected reductive group L over a field k,
together with an involution ξ. As in Section 2.1, the Lie algebra l decomposes as l = l(0)⊕ l(1), according
to the ±1 eigenspaces of dξ. We also write L0 for the connected component of the fixed group Lξ.
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Definition 3.1. Let k be algebraically closed. We say a vector v ∈ l(1) is stable if the L0-orbit of v is
closed and its stabiliser ZL0(v) is finite. We say (L0, l(1)) is stable if it contains stable vectors. If k is
not necessarily algebraically closed, we say (L0, l(1)) is stable if (L0,ks , l(1)ks) is.

By [Tho16, Proposition 1.9], the involution θ defined in Section 2.1 is a stable involution, i.e. (G, V ) is
stable.

We now prove the analogue of [RT21, Lemma 2.3]: the proof is very similar and is reproduced for
convenience.

Lemma 3.2. Let S be a OF [1/N ′]-scheme. Let (L, ξ), (L′, ξ′) be two pairs, each consisting of a reductive
group over S whose geometric fibres are adjoint semisimple of type A1, together with a stable involution.
Then for any s ∈ S there exists an étale morphism S′ → S with image containing s and an isomorphism
LS′ → L′

S′ intertwining ξS′ and ξ′
S′ .

Proof. We are working étale locally on S, so we can assume that L = L′ and that they are both split
reductive groups. Let T denote the scheme of elements l ∈ L such that Ad(l) ◦ ξ = ξ′: by [Con14,
Proposition 2.1.2], T is a closed subscheme of L that is smooth over S. Since a surjective smooth
morphism has sections étale locally, it is sufficient to show that T → S is surjective. Moreover, we can
assume that S = Spec k for an algebraically closed field k, since the formation of T commutes with base
change.

Let A, A′ ⊂ H be maximal tori on which ξ, ξ′ act as an automorphism of order 2. By the conjugacy
of maximal tori, we can assume that A = A′ and that ξ, ξ′ define the (unique) element of order 2 in
the Weyl group. Write ξ = aξ′ for some a ∈ A(k). Writing a = b2 for some b ∈ A(k), we have
ξ = b · b · ξ′ = b · ξ′ · b−1. The conclusion is that ξ and ξ′ are H(k)-conjugate (in fact, A(k)-conjugate),
which completes the proof.

The following lemma is the key technical input in our proof. We remark the the first part was already
implicitly proven in the proof of [Lag22a, Theorem 7.16].

Lemma 3.3. Let p be a prime ideal of OF not dividing N ′, where N ′ is as in Proposition 2.12.

1. Let b ∈ B(Op) be an element with ordp ∆(b) = 1, where ordp : F ∗
p → Z is the usual normalized

valuation. Let v ∈ V (Op) with π(v) = b. Then, the reduction mod p of v in V (kp) is regular.

2. Let b ∈ B(Op) be an element with discriminant weakly divisible by p2. Then, there exists gp ∈
G(Fp) \G(Op) such that gp · κb ∈ V (Op).

Proof. Let vkp
= xs + xn be the Jordan decomposition of the reduction of v in kp. Then, we have a

decomposition hkp
= h0,kp

⊕ h1,kp
, where h0,kp

= zh(xs) and h1,kp
= image(Ad(xs)). By Hensel’s lemma,

this decomposition lifts to hOp
= h0,Op

⊕ h1,Op
, with ad(v) acting topologically nilpotently in h0,Op

and
invertibly in h1,Op

. As explained in the proof of [Lag22b, Lemma 4.19], there is a unique closed subgroup
L ⊂ HOp

which is smooth over Op with connected fibres and with Lie algebra h0,Op
.

For the first part of the lemma, assume that Op has uniformiser t. We are free to replace Op for a
complete discrete valuation ring R with the same uniformiser t, containing Op and with algebraically
closed residue field k. In this case, the spreading out properties in [Lag22a, §7.2] guarantee that the
derived group of L is of type A1. Since the restriction of θ restricts to a stable involution in L by [Tho13,
Lemma 2.5], Lemma 3.2 guarantees that there exists an isomorphism hder

0,R
∼= sl2,R intertwining the action

of θ on hder
0,R with the action of ξ = Ad(diag(1,−1)) on sl2,R. To show that vk is regular is equivalent to

showing that the nilpotent part xn is regular in hder
0,k . The elements vk and xn have the same projection
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in hder
0,k , and given that v ∈ hder,dθ=−1

0,R , its image in sl2,R is of the form(
0 a
b 0

)
,

with ordR(ab) = 1 by the spreading out properties in [Lag22a, §7.2]. In particular, exactly one of a, b is
non-zero when reduced to k, and hence xn is regular in hder

0,k , as wanted.

For the second part, we return to the case R = Op. There exists b′ ∈ B(Op) such that ordp ∆(b+tb′) = 1,
where t is a uniformiser of Op. Because the Kostant section is algebraic, we see that κb−κb+tb′ ∈ tV (Op),
and given that κb+tb′ is regular in V (kp), we get that κb is regular in V (kp). In particular, this means
that the nilpotent part xn is a regular nilpotent in hder

0,kp
. We now claim that we have an isomorphism

hder
0,Op

∼= sl2,Op
intertwining θ and the previously defined ξ and sending the regular nilpotent xn to the

matrix
e =

(
0 1
0 0

)
of sl2,kp

. Indeed, consider the Op-scheme X = Isom((L/Z(L), θ), (PGL2, ξ)), consisting of isomorphisms
between L/Z(L) and PGL2 that intertwine the θ and ξ-actions. Using Lemma 3.2, we see that étale-
locally, X is isomorphic to Aut(PGL2, ξ); in particular, it is a smooth scheme over Op. By Hensel’s
lemma [Gro67, Théorème 18.5.17], to show that X has a Op-point it is sufficient to show that it has an
kp-point.

Now, consider the kp-scheme Y = Isom((L/Z(L)kp
, θ, xn), (PGL2, ξ, e)) of isomorphisms preserving the

θ and ξ-actions which send xn to e: it is a subscheme of Xkp
. Again by Lemma 3.2, Y is étale locally

of the form Aut(PGL2, ξ, e), since PGLξ
2 acts transitively on the regular nilpotents of sldξ=−1

2 for any
field of characteristic not dividing N ′. In particular, we see that Y is an Aut(PGL2, ξ, e)-torsor. In this
situation, to see that Y (kp) is non-empty and hence that X(Op) is non-empty, it will suffice to see that
Aut(PGL2, ξ, e) = Spec kp. This follows from the elementary computation of the stabiliser of e under
PGLξ

2, which can be seen to be trivial over any field.

In conclusion, X(Op) is non-empty, meaning that there is an isomorphism hder
0,Op

∼= sl2,Op
respecting θ

and ξ, and we can make it so that the projection of v in sl2,Op
is an element of the form(

0 a
bt2 0

)
,

with a, b ∈ Op and a ∈ 1 + tOp. Moreover, there exists a morphism φ : SL2 → Lder
Fp

inducing the
given isomorphism hder

0,Fp

∼= sl2,Fp
, since SL2 is simply connected. The morphism φ necessarily respects

the grading, and induces a map SL2(Fp) → Lder(Fp) on the Fp-points. Consider the matrix gp =
φ(diag(t, t−1)): it satisfies the conditions of the lemma, and so we are done.

If I2 divides ∆(b) weakly, we get for each prime p dividing I an element gp as above. Now, consider the
adelic element g′ ∈ G(AF,f ) defined by gp at every p dividing I and by 1 at every other prime. Recall
that by Proposition 2.10, we can fix elements β1, . . . , βk such that

G(AF,f ) =
k∐

i=1

(∏
p

G(Op)
)

βiG(F ).

Thus, we can write g′ = (hp)pβigI for some hp ∈ G(Op) and gI ∈ G(F ). The element gI · κb does not
necessarily lie in V (OF ), but rather in

Vβi
= V (F ) ∩ β−1

i

∏
p

V (Op).
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We see that Vβi is a lattice inside V (F ), commensurable with V (OF ). In particular, the elements of the
different Vβ1 , . . . , Vβk

are all contained in 1
Nbad

V (OF ) for some Nbad ∈ OF . In what follows, we will only
consider primes p that don’t divide this element Nbad, and in particular we can assume that N ′ | Nbad

The choice of gI is not uniquely determined, it is unique up to the action of

Gβi
= G(F ) ∩ β−1

i

(∏
p

G(Op)
)

βi.

This is a subgroup of G(F ) which is commensurable with G(OF ). We further define the distinguished
subspace W0 ⊂ V as

W0 :=
⊕

a∈ΦH /ϑ
ht(a)≤1

Va,

where the notation is as in Section 2.2. We write an element v ∈ W0(F ) as v =
∑

ht(α)=1 vαXα +∑
ht(β)≤0 vβXβ , where each Xα, Xβ generates each root space Vα, Vβ and vα, vβ ∈ F . Then, we can

define the Q-invariant of v ∈ W0 as Q(v) =
∏

ht(α)=1 vα. For a squarefree ideal I ⊂ OF , set GI =
G(F ) \ ∪p|I(G(Op) ∩G(F )), that is, the elements of G(F ) “having denominators in I”. Now, define:

Wi,M := {v ∈ Vβi | v = gIκb, I squarefree, I coprime to Nbad, NI > M, gI ∈ GI , b ∈ B(OK)} .

The main result of the section is the following:

Proposition 3.4. Let b ∈ B(OF ), and assume that StabG(F ) κb = {e}.

1. Let I be a squarefree ideal coprime to Nbad and satisfying NI > M . If I2 weakly divides ∆(b), then
Wi,M ∩ π−1(b) is non-empty.

2. If w ∈Wi,M ∩W0, then
∏

v∈M∞
|Q(w)|v > M .

Proof. We start by proving the first item. In the above discussion, we constructed an element gI ∈ G(F )
such that giκb ∈ Vβi

. Given that I is coprime to Nbad, the construction shows that gI ∈ GI , as otherwise
we would have (βi)p /∈ G(Op) for some prime p | I, a contradiction.

We now prove the second item. Assume w = gIκb for suitable I and b. It suffices to show that ordp Q(w) ≥
1: in particular, it suffices to assume that I = p. Given that H is an adjoint group, there exists a
t ∈ TH(F ) that makes all the height-one coefficients of tκb be equal to one, and in this case we see that
actually t ∈ T (F ). By Theorem 2.13, there exists a unique γ ∈ N−

H (F ) such that γtκb = w; by taking
θ-invariants in the isomorphisms of Theorem 2.13, we see that γ ∈ N−,θ

H (F ). Since the stabiliser is trivial,
we see that g = γt, or in other words that g ∈ P (F ) \ (P (Op) ∩ P (F )).

Assume, for the sake of contradiction, that Q(v) is invertible in Op, so that all the height-one coefficients
of w are invertible. Then, there exists a t′ ∈ T (Op) making all the height-one coefficients of t′w be equal
to one, and by Theorem 2.13, there exists at most one element γ′ in N−(Op) such that γ′t′κb = w. This
would imply that g ∈ P (Op), a contradiction.

Example 3.5. Our construction is inspired by the construction in [BSW22a, Sections 2.2 and 3.2] for
the case An, for F = Q. In that case, C → B corresponds to the family of hyperelliptic curves y2 = f(x),
where f(x) has degree n + 1 (there is a slight difference between this paper and [BSW22a], in that we
consider f(x) without an xn term while they consider polynomials with a possibly non-zero linear term;
we ignore this difference for now). The main goal of [BSW22a, Sections 2.2 and 3.2] is to construct an
embedding

σm : W(m)
2 → 1

4W0(Z) ⊂ 1
4V (Z),

where σm(f) has characteristic polynomial f and Q(σm(f)) = m. By taking the usual pinning in SLn+1,
we see that our space W0 corresponds to the space of symmetric matrices in sln+1 where the entries
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above the superdiagonal are zero, and the height-one entries are precisely those in the superdiagonal. An
explicit section of B can be taken to lie in 1

4 W0(Z): namely, if n is odd, the matrix

B(b1, . . . , bn+1) =



0 1

0 . . .

1
0 1

−b2
2 −b1 1

. .
.

−b3
−b2

2 0 1
−bn−2

2 . .
.

. .
. . . .

−bn

2 −bn−1
−bn−2

2 0 1
−bn+1

−bn

2 0


can be seen to have characteristic polynomial f(x) = xn+1 + b1xn + · · · + bnx + bn+1. (if n is even, a
similar matrix can be given). The main observation in this case is that if m2 weakly divides ∆(f), then
there exists an l ∈ Z such that f(x + l) = xn+1 + p1xn + · · ·+ mpnx + m2pn+1 (cf. [BSW22a, Proposition
2.2]). Then, if D = diag(m, 1, . . . , 1, m−1), we observe that the matrix

D(B(p1, . . . , pn−1, mpn, m2pn+1) + lIn+1)D−1

is integral, has characteristic polynomial f(x) and the entries in the superdiagonal are (m, 1, . . . , 1, m).
Thus, this matrix has Q-invariant m, as desired.

Remark 3.6. Our Q-invariant is slightly different to the Q-invariant defined in [BSW22a], which is
defined in a slightly more general subspace of V . When restricting to W0(F ), their Q-invariant turns out
to be a product of powers of the elements of the superdiagonal, whereas in our case we simply take the
product of these elements. This difference does not affect the proof of Theorem 1.2, and we can also see
that for both definitions the Q-invariant in the previous example is m.

4 Reduction theory

Before we are able to prove our main results, we need to stablish some results about reduction theory.
Mainly, we will be concerned about defining appropriate heights in the GIT quotient B, and constructing
a suitable “box-shaped” fundamental domain for the action of Γ on G(F∞), where Γ will be an arithmetic
subgroup of G(F ). In the future, we will use these constructions for Γ = Gβi

, where Gβi
was defined in

Section 3.

4.1 Heights

Recall that M∞ is the set of archimedean places of F . As stated in the introduction, for an element
b ∈ B(F ) we define its height to be

ht(b) := (NIb)
∏

v∈M∞

sup
(
|pd1(b)|1/d1

v , . . . , |pdr
(b)|1/dr

v

)
,

where Ib is the scaling ideal {a ∈ F | adipdi
(b) ∈ OF , ∀i}. We can check that this height is Gm(F )-

invariant using the product formula. A consequence of this is that when |M∞| > 1, the set of elements
of B(OF ) having height less than X is infinite. To remedy that, instead of counting elements in B(OF )
we will count the number of elements of Gm(F )\B(F ) having height less than X. We have the following
result by Deng (see [Den98, Theorem (A)]):

14



Theorem 4.1. We have

#{b ∈ Gm(F )\B(F ) | ht(b) ≤ X} = CBX
∑

i
di + O(X

∑
i

di−δB ),

where CB , δB are real positive constants.

The constants CB and δB are given explicitly in the statement of [Den98, Theorem (A)].

Remark 4.2. Theorem 4.1 is the main reason why we are choosing to work with this height. There are
other natural heights that might be considered, such as the Weil height:

htWeil(b) =
∏

v∈MF

sup
i
{|pdi

(bv)|1/di
v },

where now the product is taken over all places of F , finite and infinite. This product is also Gm(F )-
invariant by the product formula; however, we are not aware of any asymptotics for this height in the style
of Theorem 4.1. Having results like that will be very useful when performing the geometry-of-numbers
arguments in Section 5.

Moreover, there is a natural intepretation for our choice of height. In [ESZ23], a natural height on stacks
is defined, which in the particular case of weighted projective spaces turns out to agree with our choice
of height (cf. [ESZ23, §3.3]).

We note the following fact about the quantity
∑

i di (see [Lag22a, Lemma 8.1]):

Proposition 4.3. We have
∑

i di = dim V .

For our argument, it will be useful to construct a set Σ ⊂ B(OF ) which is a fundamental domain for the
action of Gm(F ) over B(F ), so that it suffices to count elements with invariants in Σ to prove Theorem
1.2. We will do so following [BSW, §3.4]. For a finite prime p, we set

B′(Op) = {b ∈ B(Op) | vp(pdi(b)) < di for some i}.

For every bp ∈ B(Fp), there exists gp ∈ Gm(Fp) such that gpbp ∈ B′(Op); and moreover this gp is unique
up to the action of Gm(Op). In a similar spirit to Section 3, for any γ ∈ cl(Gm) we can consider the sets

Bγ = B(F ) ∩ γ−1
∏
p

B′(Op);

Gm,γ = Gm(F ) ∩ γ−1
∏
p

Gm(Op)γ = O×
F .

Let γ1, . . . , γk be representatives of cl(Gm), which is finite by Proposition 2.10 (in fact, it coincides with
the class group of F ). Then, we have a bijection

k∐
i=1
O×

F \Bγi
←→ Gm(F )\B(F ),

given by inclusion. Indeed, if for some g ∈ Gm(F ) we have v1 ∈ Bγ and gv ∈ Bγ′ , then for all primes p
we have that γpv ∈ B′(Op) and γ′

pgv ∈ B′(Op). This implies that γ′
pgγ−1

p ∈ Gm(Op) which means that
γ = γ′, from which injectiveness follows. The map is surjective by construction.

We can modify our choices of representatives γi of cl(Gm) so that Bγi
⊂ B(OF ), simply by multiplying

by appropriate elements of Gm(F ). Moreover, for a given choice of γi, the ideal Ib is independent of
the choice of b ∈ Bγi : in fact, a computation shows that Ib is equal to the ideal corresponding to γi,
regardless of the choice of b (as long as b ̸= 0).
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To construct the fundamental domain Σ, it suffices to construct fundamental domains Σi in each Bγi

separately. Given that in the future we will want to impose congruence conditions in Σi, we will also
define Σi itself as a set defined by congruence conditions: that is, defined as the intersection of sets
Σi,p ⊂ B(Op) for all primes p (finite and infinite).

For finite primes p, the subset Σi,p is given by γ−1
p B′(Op). For infinite primes, we consider the set

F∞ =
∏

v∈F∞
Fv and the subset F 1

∞ of F∞ consisting of those elements (αv)v∈M∞ such that
∏

v |αv|v = 1.
We further consider Λ, a compact subset of F 1

∞ such that F 1
∞ = ΛO×

F . Let B(1) be the set of elements
b ∈ B(F∞) such that, for all v ∈M∞:

sup
i
{|pdi

(b)|1/di
v } = ht(b)1/|M∞|.

Let B(1) be a measurable set with boundary of measure 0 which is a fundamental domain for the action
of the roots of unity µF over B(1). Then, the set Λ · (B(1)) is a fundamental domain for the action on
O× over B(F∞), which we take as our Σi,∞. In conclusion, we obtain our fundamental domain Σi by
combining the congruence conditions Σi,p and Σi,∞.

The fact that Σ∩B(F )X is finite follows from the fact that Σ∞ consists of elements whose local heights
differ at most by an absolute constant. Thus, if an element has bounded height, then each of the local
heights has to be bounded, yielding a finite number of elements overall.

4.2 Measures on G

Recall that ΦG = Φ(G, T ) is the set of roots of G. The Borel subgroup P + of G determines a root basis
SG and a set of positive/negative roots Φ±

G, compatible with the choice of positive roots in H determined
by the pinning of Section 2.1. Let N be the unipotent radical of the negative Borel subgroup P . We will
make an appropriate choice of maximal compact subgroup of G(F∞):

Lemma 4.4. There exists a maximal compact subgroup K of G(F∞) such that T (F∞) ∩ K = {t =
(t1, . . . , tr) ∈ T (F∞) | |ti|v = 1, ∀v ∈M∞,∀i}.

Proof. We will choose a maximal compact Kv ⊂ G(Fv) for every infinite place v satisfying that T (Fv) ∩
Kv = {t = (t1, . . . , tr) ∈ T (Fv) | |ti|v = 1, ∀i}. Then, it will be enough to define K =

∏
v Kv.

Assume that Fv = R. By the Isomorphism Theorem (see e.g. [Con14, Theorem 6.1.17]), the involution
corresponding to −1 in the root system ΦG induces an involution ϑ : G(Fv) → G(Fv) that acts as
inversion in T (Fv). Moreover, this involution ϑ is a Cartan involution: to check this, we need to verify
that the form Bϑ(X, Y ) := −B(X, ϑ(Y )) is positive definite (here, B is the Killing form). If we fix basis
elements Xα ∈ gα for each α ̸= 0 in ΦG, we can additionally require that dϑ(Xα) = −X−α. Then, it is
straightforward to check that Bϑ is positive definite.

Now, assume that Fv = C. An involution ϑ : G → G is a Cartan involution if and only if {g ∈ G(C) |
ϑ(g) = g} is a maximal compact subgroup of G(C). Note that in the split torus T , the involution
ϑT : T → T sending t ∈ T (C) to t−1 is a Cartan involution: if t = (t1, . . . , tk) ∈ (C×)k, then ϑT (t) = t if
and only if |ti| = 1 for all i, so the set {t ∈ T (C) | ϑT (t) = t} is a maximal compact subgroup of T (C).
By [AT18, Theorem 3.13(1)(b)], the Cartan involution ϑT extends to a Cartan involution ϑ : G→ G. By
taking Kv = {g ∈ G(C) | ϑ(g) = g}, we see that T (Fv) ∩Kv corresponds exactly to those elements with
modulus 1, as wanted.

Consider the subgroup A ⊂ T (F∞) of elements a = (av)v∈M∞ such that av ∈ R>0 for all v ∈M∞. Then,
the map

N(F∞)×A×K → G(F∞)
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given by (n, t, k) 7→ ntk is a diffeomorphism. The following result is a well-known property of the Iwasawa
decomposition:
Lemma 4.5. Let dn, dt, dk be Haar measures on N(F∞), A, K, respectively. Then, the assignment

f 7→
∫

n∈N(F∞)

∫
t∈A

∫
k∈K

f(ntk)|δ(t)|−1dn dt dk

defines a Haar measure on G(F∞). Here, δ(t) =
∏

β∈Φ−
G

β(t) = det Ad(t)|Lie N(F∞) is an algebraic
character obtained from the action of T on N , and |δ(t)| =

∏
v∈M∞

|δ(tv)|v.

We get the Haar measure dt from the isomorphism with
∏

v∈M∞
(R>0)#SG , where R>0 is given the

standard Haar measure d×λ = dλ/λ.

4.3 Fundamental sets

In this section, given an arithmetic subgroup Γ ⊂ G(F ), we will construct an exact fundamental domain
F for the action of Γ on G(F∞).
Definition 4.6. A Siegel set is a set of the form S = ∪n

i=1αiωiAcK, where αi ∈ G(F ), the sets ωi ⊂
N(F∞) are compact and

Tc = {t ∈ T (F∞) | |α(t)| ≤ c, ∀α ∈ SG}, Ac = Tc ∩A.

Remark 4.7. In fact, we will consider subsets of the form S = ∪n
i=1αiωiA

′
cK1, where A′

c and K1 are
appropriate subsets of Ac and K, respectively. We will still call such a set a Siegel set, for simplicity.

We will require our fundamental domain F to be “box-shaped at infinity”, in the following sense:
Definition 4.8. We say a fundamental domain F for the action of Γ on G(F∞) is box-shaped at infinity
if there exist Siegel sets S1 ⊂ F ⊂ S2 such that

• S1 and S2 have the same cusps, i.e. both sets are defined as S1 = ∪n
i=1αiωiA

′
c1

K1 and S2 =
∪n

i=1αiωiA
′
c2

K1 for the same choice of elements αi ∈ G(F ) in each case, and the same choice of
subsets A′

c and K1.

• There exists an open subset U1 ⊂ S1 of full measure such that each Γ-orbit on G(F∞) intersects U1
at most once.

• Every Γ-orbit on G(F∞) intersects S2 at least once.

• For sufficiently small c, we have that S1 ∩ (∪n
i=1αiN(F∞)AcK) = S2 ∩ (∪n

i=1αiN(F∞)AcK).

In what follows, it will be sufficient to construct S1 and S2 to obtain F due to the following lemma (cf.
[Sha+22, Lemma 7]):
Lemma 4.9. Let B(G) be the Borel σ-algebra of G(F∞). Assume we have S1 and S2 in B(G) such that
the maps S1 → Γ\G(F∞) and S2 → Γ\G(F∞) are injective and surjective, respectively. Then, there is a
fundamental domain F in B(G) for the action of Γ in G(F∞) such that S1 ⊂ F ⊂ S2.

Proof. Since Γ is a discrete subgroup of G(F∞), we can find a non-empty open set U ⊂ G(F∞) such
that U−1U ∩ Γ = {id}. Given that G(F∞) is second countable, we can find countably many elements
{gn}n∈N ⊂ G(F∞) such that G(F∞) = ∪∞

n=1gnU . Let S3 = S2 \ ΓS1, and define:

F0 =
∞⋃

n=1

(
gnU ∩ S3 \

⋃
i<n

Γ(giU ∩ S3)
)

.

17



Finally, set F = S1 ∪ F0, a disjoint union. Then, F ∈ B(G) and the map F → Γ\G(F∞) can easily be
seen to be bijective, as wanted.

4.3.1 Constructing S1

To obtain the domain S1, we will use general properties of the Borel-Serre compactification following
[BS73].

First, consider the Weil restriction of scalars G′ = ResF/Q G, which is a semisimple group defined over
Q. We have an isomorphism ϕG : G′(Q) ∼= G(F ), inducing ϕG : G′(R) ∼= G(F∞). Even though the
group G is split with maximal torus T , the group G′ will never be split (unless F = Q). Let us denote
T ′ = ResF/Q T , a maximal torus of G′ and T ′

split ⊂ T ′ the maximal Q-split torus inside T ′.

Recall that the F -split torus T is obtained by base-changing a Q-split torus TQ to F . In particular, there
is an isomorphism over Q between the split tori T ′

split
∼= TQ, inducing an isomorphism of character groups

X∗(T ′
split) ∼= X∗(TQ). By [BT65, (6.21)] this isomorphism induces a bijection between the root systems

Φ(G, T ) and Φ(G′, T ′
split). Denote by SG′ a positive root basis of Φ(G′, T ′

split), chose compatibly with the
positive root basis of Φ(G, T ). Let us define

T ′
c = {t ∈ T ′

split(R) | |β(t)| ≤ c, ∀β ∈ SG′}.

Let P ′ = ResF/Q P be a minimal parabolic subgroup of G′ containing T ′, and define
0P ′(R) =

⋂
χ∈X∗(P ′)

ker χ2.

We then have that P ′(R) = 0P ′(R)⋊Asplit by [BS73, Proposition 1.2], where Asplit denotes the connected
component of T ′

split(R).

Proposition 4.10. Let c > 0. Then, ϕG(Tc) ⊂ 0P ′(R) ⋊ (T ′
c′ ∩ Asplit) for some positive constant c′.

Similarly, ϕ−1
G (T ′

c) ⊂ Tc′ for some c′.

Proof. Let us begin by recalling the isomorphism TQ ∼= T ′
split. When base-changing to R, we see that

ϕ−1
G (T ′

split(R)) corresponds to the t = (t1, . . . , tk) ∈ T (F∞) such that each ti = (ti,v)v∈M∞ ∈ F∞ satisfies
ti,v = ti,v′ ∈ R× for all infinite places v, v′.

Let t ∈ Tc. We can decompose t = t1t2 with t1 ∈ ϕ−1
G (T ′

split(R)), scaled in such a way that
∏

v |α(tv)|v =∏
v |α(t1,v)|v for all α ∈ X∗(T ). By [BT65, (6.20)], there is an isomorphism X∗(T )F

F−→ X∗(T ′)Q such
that for all χ ∈ X∗(T ) and g ∈ G(F∞), we have that

∏
v |χ(gv)|v = |(F ◦ χ)(ϕG(g))|. In particular,

we have that ϕ(t2) ∈ 0P ′(R). Finally, for any t2 ∈ ϕ−1
G (T ′

split(R)), we have that t2 ∈ Tc if and only if
ϕG(t2) ∈ T ′

c1/[F :Q] , so choosing c′ = c1/[F :Q] concludes the proof of the first inclusion. The second inclusion
is analogous.

We will denote by K ′ the restriction of the maximal compact K inside G′. Now, consider the symmetric
space X = G′(Q)/K ′. For each parabolic Q-subgroup Q of G′, let SQ := (RdQ/(RuQ · RdG′)), where
Ru denotes the unipotent radical and Rd denotes the Q-split part. Then, SQ is a Q-split torus, and we
let AQ := SQ(R)◦. There is a natural action of AQ on X; called the geodesic action (see [BS73, (3.2)]).
Set e(Q) = AQ\X, and consider

X =
∐

P ⊂G′ parabolic
e(Q),

which by [BS73, (7.1)] naturally has a structure of a manifold with corners. The topology of X is studied
in [BS73, §5, §6]; in particular, it is shown that for any parabolic group Q, the subset X(Q) =

∐
R⊃Q e(R)

is an open subset of X. Taking Q = G, we see that e(G) = X is an open submanifold of X.
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Now, let us return to considering the minimal parabolic P ′ = ResK/Q P , and consider

Ux,P ′,c = 0P ′(R)(AP ′,c · x),

where x ∈ X and AP ′,c = Asplit ∩ T ′
c, as defined in the beginning of the section. The closure Ux,P ′,c in

X is a neighbourhood of the closure of e(P ′) in X. The arithmetic subgroup Γ of G(F ) restricts to an
arithmetic subgroup Γ′ of G′(Q): when we consider the action of Γ′ in these sets Ux,P ′,c, it is useful to
consider the following result (see [BS73, Proposition 10.3]):
Proposition 4.11. There exists c > 0 satisfying that for any g1, g2 ∈ Ux,P ′,c, if there exists γ ∈ Γ′ such
that g1 = γg2, then γ ∈ P ′ ∩ Γ′.

For our construction of S1, we will have to worry about different cusps at once. Let {α1, . . . , αm} be
a set of representatives for the double cosets of Γ\G(F )/P (F ), which is equivalent to choosing a set of
representatives {α′

1, . . . , α′
m} for the double cosets of Γ′\G′(Q)/P ′(Q). The interaction of different cusps

can be controlled as follows (see [BS73, Proposition 10.4]):
Proposition 4.12. Let Q, R be parabolic subgroups of G′, let x, y ∈ X and let g ∈ G′(Q). Then,
g · Ux,Q,c ∩ Uy,R,c ̸= ∅ for all c > 0 if and only if gQg−1 ∩R is parabolic.

In particular, when Q is a minimal parabolic subgroup and Q = R, we have that gQg−1 ∩Q is parabolic
exactly when g ∈ Q.

We will take our set S1 in G(F∞) to be contained in a set of the form ∪m
i=1αiωAcK, where αi ∈ G(F )

are as above. We will choose c to be “big enough”:
Proposition 4.13. There exists a small enough c > 0 such that if g1 ∈ αiN(F∞)AcK and g2 ∈
αjN(F∞)AcK are Γ-equivalent, then αi = αj.

Proof. By Proposition 4.10, we have that ϕG(N(F∞)AcK) ⊂ 0P ′(R)T ′
c′K for some c′ > 0. We choose

c > 0 small enough so that c′ satisfies the conclusions of Proposition 4.11. Then, if there exists γ ∈ Γ
such that γg1 = g2, then we would have that α−1

j γαi ∈ P (F ), or in other words that αi ∈ ΓαjP (F ),
which can only happen if αi = αj .

Therefore, we can choose c small enough so that there are no intersections between the cusps. Now, we
need to choose appropriate subsets of N(F∞), Ac and K so that each cusp contains at most one Γ-orbit.
Lemma 4.14. There exist compact sets ωi inside N(F∞) such that every α−1

i Γαi∩N -orbit intersects ωi,
and also satisfying that inside a set of full measure, every α−1

i Γαi ∩N -orbit intersects ωi exactly once.

Proof. First, we recall that for any non-zero root β ∈ ΦG, there is an isomorphism uβ : Ga → Uβ , for
some subgroup Uβ ⊂ G. Let β1, . . . , βm be an ordering of the roots of Φ−

G, such that |ht(βi)| ≤ | ht(βi+1)|.
Then, by [Con14, Theorem 5.1.13], there is an isomorphism of algebraic varieties (not necessarily a group
morphism)

m∏
i=1

Uβi
→ N

defined over Z, which is just given by the product map. Given that Ni := α−1
i Γαi ∩N is an arithmetic

subgroup of N(F ), we can arrange everything so that the elements of Ni correspond precisely to those
elements uβ1(x1) . . . uβm

(xm) such that xm ∈ OF . Choose a compact subset Λ of F∞ such that OF +Λ =
F∞, such that the interior of Λ has full measure inside Λ, and such that no two elements in the interior
differ by an element of OF . Now, set

ωi = {uβ1(x1) · · ·uβm
(xm) | x1, . . . , xm ∈ Λ}.

Using the commutator relations in [Con14, Proposition 5.1.14], it is not difficult to see that ωi satisfies
the conclusions of the lemma.
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Now, we worry about the action of T on Ac and K. More specifically, we need to account for the action
of the group Ti := α−1

i Γαi ∩ T (F ), which is an arithmetic subgroup of T (F ). In particular, it has to be
commensurable to T (OF ), which means in particular that Ti ⊂ T (OF ).

Let wF ⊂ O∗
F be the subgroup of roots of unity of OF . Under the identification T (OF ) ∼= (O∗

F )#SG ,
consider the subgroup Tw,i ⊂ Ti corresponding to the appropriate subgroup of (wF )#SG lying in Ti.
Then, we know that Tw,i ⊂ K by Lemma 4.4. We consider a fundamental domain for the left action of
Tw,i on K, which we will denote K1.

Let |Ti| denote the subset of A(F∞) which is the image of Ti under the projection map that sends
t = (t1, . . . , tk) ∈ Ti to (a1, . . . , ak), where aj,v = |tj |v. We denote a fundamental domain for the action
of |Ti| on Ac by A′

c.

Finally, we let S1 = ∪m
i=1αiωiA

′
cK1.

Theorem 4.15. There exists an open subset U1 of S1 of full measure such that any Γ-orbit in G(F∞)
intersects U1 at most once.

Proof. Let ω′
i ⊂ ωi be the subset of full measure described in Lemma 4.14, and let

U1 = ∪m
i=1αiω

′
iA

′
cK1.

Now, let g1, g2 ∈ U1, and let γ ∈ Γ be an element such that γ · g1 = g2. By Proposition 4.12, we know
that g1 and g2 have to lie in the same cusp; that is, we have g1, g2 ∈ αiω

′
iA

′
cK1. Write g1 = αin1t1k1 and

g2 = αin2t2k2. We have that by Proposition 4.11 that α−1
i γαi ∈ P , or in other words that γ ∈ αiPα−1

i ∩Γ.
Let γ = αin0t0α−1

i , where n0 ∈ α−1
i Γαi ∩ N(F ) and t0 ∈ α−1

i Γαi ∩ T (F ). Then, the condition that
γ · g1 = g2 becomes

αin0(t0n1t−1
0 )t0t1k1 = αin2t2k2.

Let us write t0 = tatk, where ta ∈ A(F∞) and tk ∈ K. Then, the uniqueness in the Iwasawa decomposition
gives us n0t0n1t−1

0 = n2, tat1 = t2 and tkk1 = k2. By construction of A′
c, we must have that ta = 1, and

therefore that tk ∈ Tw, so by construction of K1 we also have that tk = 1. Then t0 = 1, so the equation
n0n1 = n2 also gives n0 = 1 by construction of ω′

i.

4.3.2 Constructing S2

Having chosen S1, we will now construct a compatible S2.

Proposition 4.16. There exists c > 0 such that G(F∞) = Γ · ∪m
i=1αiωiA

′
cK1, where αi, ωi, A′

c and K1
are as in Section 4.3.1.

Proof. Using Proposition 4.10 and restriction of scalars, the results in [Spr94] tell us that there exists a
c > 0 such that

G(F∞) = Γ ·
m⋃

i=1
αiω

′TcK

for some compact subset ω′ ∈ N(F∞). Now, assume that we have g ∈ G(F∞) written as g = αin0t0k0
for some n0 ∈ ω′, t0 ∈ Tc and k0 ∈ K. We want to see that g ∈ Γ · ∪m

i=1αiωiA
′
cK1.

By construction, we will have that t0k0 = tΓt1k1, where tΓ ∈ α−1
i Γαi ∩ T (F ), t1 ∈ A′

c and k1 ∈ K1. We
also have that there exists nΓ ∈ α−1

i Γαi ∩N(F ) and n1 ∈ ω′
i such that nΓtΓn0t−1

Γ = n1. Then, we have
that

(αinγtΓα−1
i ) · αin0t0k0 = αinγtΓn0t−1

Γ tΓt1k1 = αin1t1k1,

as wanted.
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We choose S2 to be the set constructed in Proposition 4.16. It is clear that S1 and S2 satisfy the
conditions stated in Definition 4.8. Therefore, by Lemma 4.9, we have constructed the desired box-
shaped fundamental domain F .

For the future, it will be useful to record the following property of S2 (known as the Siegel property):

Proposition 4.17. The size of the fibres of the map S2 → Γ\G(F∞) is uniformly bounded.

Proof. It suffices to show that the set {γ ∈ Γ | γS2 ∩ S2 ̸= ∅} is finite. For F = Q, this follows from
[Bor69, Corollaire 15.3], and in the general case we reduce to F = Q using restriction of scalars.

5 Counting reducible orbits

Before we are able to prove Theorem 1.2, we need to obtain an estimate on the number of reducible
Γ-orbits on some Γ-invariant lattice V0 of V (F∞) which is commensurable with V (OF ). Given that, as
observed in Section 4.1, there might be infinitely many orbits with bounded height, we will restrict to the
elements with invariants lying on the fundamental domain Σ ⊂ B(OK). Recall that Σ was the disjoint
union of finitely many sets Σi, where for each b ∈ Σi we had

hti(b) = Ci

∏
v∈M∞

sup{|pdi
(b)|1/di

v }, (3)

for some constant Ci only dependent on i (not on the choice of b inside Σi). We will count the number
of reducible Γ-orbits in V0 having invariants in Σi for each i separately. For simplicity, we will denote Σi

simply by Σ in this section.

For any element b ∈ B(F∞), we define its height to be given by the expression in (3), and for any
v ∈ V (F∞) we also define ht(v) := hti(π(v)).

Let Λ be the embedding of R>0 inside F∞ given by sending x ∈ R>0 to |M∞| copies of x inside every
infinite place of F . For an element λ ∈ Λ and v ∈ V (F∞), we have that ht(λv) = λ[F :Q] ht(v), or in other
words that the function ht is homogeneous of weight [F : Q].

We will prove the following:

Theorem 5.1. Let N(Γ, V0, X) denote the number of reducible Γ-orbits in V0 having height less than X
and invariants lying in ΛΣ. Then, we have

N(Γ, V0, X) = CXdim V + O(Xdim V −δ).

The constant C depends only on Γ and V0, and the constant δ can be chosen independently of Γ and V0.

5.1 Averaging and reductions

By analogous arguments to [Tho15, §2.9], there exist open subsets L1, . . . , Lk covering {b ∈ B(F∞) |
ht(b) = 1, ∆(b) ̸= 0} such that for a fixed i, the quantity ri := # StabG(v)(F∞) remains constant for
any choice of v ∈ π−1(Li). Let us denote by Λ the embedding of R>0 inside F∞ that sends x ∈ R>0
to (x, . . . , x) ∈ F∞, and denote Vi := V red

0 ∩ G(F∞)Λκ(Li). Fix a compact left and right K-invariant
set G0 ⊂ G(R) which is the closure of a non-empty open set, for which we assume that G0 = G−1

0 . An
averaging argument just as in [BS15, §2.3]) yields

N(Γ, Vi, X) = 1
ri vol(G0)

∫
g∈F

#{v ∈ V red
0 ∩ (gG0Λκ(Li ∩ Σ))<X}dg. (4)
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Here, the subscript < X means we are restricting to elements of height less than X. For simplicity, we
will denote BX = (G0Λκ(Li ∩ Σ))<X .

In what follows, we will use the following version of Davenport’s lemma [Dav51].

Proposition 5.2. Let R be a bounded, semialgebraic multiset in Rn having maximum multiplicity m
and that is defined by at most k polynomial inequalities, each having degree at most l. Let L be a rank n
lattice inside Rn. Then,

#(R∩ L) = volL(R) + O(max({vol(R), 1})),
Here, volL is a constant multiple of vol with volL(Rn/L) = 1, and vol(R) denotes the greatest d-
dimensional volume of any projection of R onto a coordinate subspace obtained by equating n − d co-
ordinates to zero, and where d takes any value between 1 and n− 1. The implied constant in the second
summand depends only on n, m, k and l.

We now want to prove a “cutting-off-the-cusp” result in the style of e.g. [Lag22a, Proposition 8.11], which
should say that most elements “in the cusp” fall into the subspace W0 of V defined in Section 3. However,
unlike previous instances of this result, in our case we have multiple cusps to worry about. Given that
S1 ⊂ F ⊂ S2, we can write F = ∪m

j=1αjSj , where the αj ∈ G(F ) are as in Section 4.3 and Sj are subsets
of ωjA′

cK1. We can further assume that αiSi ∩ αjSj = ∅ for all i ̸= j. Then, we can write

N(Γ, Vi, X) = 1
ri vol(G0)

m∑
j=1

∫
g∈αjSj

#{v ∈ V red
0 ∩ (gBX)}dg

For each cusp corresponding to αj , we can consider the weights of the action of αjTα−1
j on V (the weight

spaces will be of the form α · Vλ, where Vλ are the weight spaces for the action of T ).

Proposition 5.3. Let v0,j denote the highest weight of V under the action of αjTα−1
j . Then, there

exists a constant δ > 0 such that∫
g∈αjSj

#{v ∈ (V0 \ (αj ·W0)) ∩ gBX | v0,j = 0}dg = O(Xdim V −δ)

Proof. This proof will follow the argument in [BSW, §3.2] and [Tho15, §3.3 and §5]. Recall that S2 is a
finite cover of F of absolutely bounded degree by the Siegel property (i.e. Proposition 4.17). Hence, we
can assume that

Sj = ωjA′
cK1,

following the notation in Section 4.3. Without loss of generality, we may assume that αj = 1, since the
statement for the rest of the cusps is analogous. There exists a compact subset ω′ ⊂ N(F∞) that contains
the union of all t−1ωt as t varies in A′

c. Therefore, we have∫
g∈Sj

#{v ∈ (V0 \W0) ∩ gBX | v0 = 0}dg ≪
∫

t∈A′
c

#{v ∈ (V0 \W0) ∩ tω′BX | v0 = 0}|δ−1(t)|dt

Let ΦV denote the characters of V under the action of T . For two disjoint subsets M0, M1 ⊂ ΦV , we
define S(M0, M1) = {v ∈ V0 | va = 0, ∀a ∈ M0, vb ̸= 0, ∀b ∈ M1}. We define C to be the collection of
subsets M0 ⊂ ΦV such that if a ∈ M0 and b ≥ a, then b ∈ M0. Additionally, given M0 ∈ C, we define
λ(M0) = {a ∈ ΦV \M0 |M0 ∪ {a} ∈ C}. For M0 ∈ C, we refer to a pair (M0, λ(M0)) as a cusp datum.

Any element in (V0 \W0)∩gBX falls inside one of the subsets S(M0, M1) for some cusp datum (M0, M1).
Therefore, it suffices to prove that

N(Γ, S(M0, M1), X) = O(Xdim V −δ)

for every cusp datum such that S(M0, M1) ⊈ W0.
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Now, fix such a cusp datum (M0, M1). We note that if S(M0, M1) ∩ gBX is non-empty, then we must
have X|a(t)| ≫ 1 for every a ∈ M1. We also note that

∏
a∈ΦV

|a(t)| = 1 for all t ∈ T (F∞). Given that
V0 is commensurable with V (OK), there exists a constant C0 such that for every χ ∈ U0 and v ∈ V0, we
have that either vχ = 0 or |vχ| ≥ C0. We define

VM0,M1 := {v ∈ V (F∞) | va = 0,∀a ∈M0; |vb| ≥ C0, ∀b ∈M1}.

Then, we have the following estimate:

vol(gBX ∩ VM0,M1) = Xdim V −#M0
∏

a∈M0

|a(t)|−1.

We also define
A(M0, M1, X) := {t ∈ T θ(F∞) | t ∈ A′

c; |a(t)| ≫ X−1,∀a ∈M1}.

Finally, recall that δ−1(t) =
∏

a∈Φ+
G

a(t). Using Proposition 5.2 and the above observations, we get

N(Γ, S(M0, M1), X)≪ Xdim V −#M0

∫
t∈A(M0,M1,X)

∏
a∈Φ+

G

|a(t)|
∏

a∈M0

|a(t)|−1dt.

Therefore, we have reduced our statement to showing that∫
t∈A(M0,M1,X)

∏
a∈Φ+

G

|a(t)|
∏

a∈M0

|a(t)|−1dt = O(X#M0−δ).

Denote w(t) =
∏

a∈Φ+
G
|a(t)|

∏
a∈M0

|a(t)|−1. Using a trick, due to Bhargava (cf. [Bha10, Lemma 19]),
let us consider a function f : M1 → R≥0. We have that

∏
a∈M1

(X|a(t)|)f(a) ≫ 1, and therefore that∫
t∈A(M0,M1,X)

w(t)dt≪ X

∑
a∈M1

f(a)
∫

t∈A(M0,M1,X)
w(t)

∏
a∈M1

|a(t)|f(a)dt. (5)

Recall that any element a ∈ X∗(T )⊗Q can be written uniquely as a =
∑

αi∈SG
ni(a)αi for some rational

numbers ni(a). If we all the exponents of w(t)
∏

a∈M1
|a(t)|f(a) in terms of the basis αi are positive, then

the second integral in (5) is bounded independently of X, and therefore∫
t∈A(M0,M1,X)

w(t)dt≪ X

∑
a∈M1

f(a)
.

Therefore, the proposition is reduced to finding a function f : M1 → R≥0 satisfying:

• We have
∑

a∈M1
f(a) < #M0.

• For all i, we have
∑

β∈Φ+
G

ni(β)−
∑

a∈M0
ni(a) +

∑
a∈M1

f(a)ni(a) > 0.

Note that this last condition is independent of the base field F , so it is sufficient to prove the cutting-off-
the-cusp results over Q. This is the content of [Lag22a, Proposition 8.21].

Hence, if an element is in the cusp (i.e. the highest weight has coefficient zero), then it always falls in W0
(and is therefore reducible) expect for negligibly many cases. We will now see that, analogously, almost
all the elements in the main body are irreducible:

Proposition 5.4. There exists a constant δ > 0 such that∫
g∈F

#{v ∈ V red
0 ∩ gBX | v0 ̸= 0}dg = O(Xdim V −δ).
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Proof. To prove this, we will use the Selberg sieve, in an analogous way to [ST14]. The general argument
in [ST14], for F = Q, is the following: assume that for any translate L of mV (Z) we have that

N∗(L ∩ Vi, X) = cim
−AXB + O(m−CXB−D), (6)

where A, B, C, D and ci are positive constants, and N∗ is some orbit-counting function. Let S =
∩p primeSp ⊂ V (Z) be a set defined by infinitely many congruence conditions modulo p, with each set Sp

having density λp. Assume that λp tends to some constant λ ∈ (0, 1) as p tends to infinity. Then, it is
shown that

N∗(S ∩ Vi, X) = O(XB−δ),

for some constant δ > 0 which can be obtained explicitly depending on A, B, C, D. If instead of working
over Q we work over a number field F , we can apply the same argument substituting our sets Sp for Sp

for p a prime ideal of OF , and using the version of the Selberg sieve stated in [Rie58, Satz 1].

In our case, we set
N∗(S, X) =

∫
g∈F

#{v ∈ S ∩ gBX | v0 ̸= 0}dg.

First, we need a power saving estimate for N∗(L ∩ Vi, X), where L is a translate of IV0 for some ideal
I ⊂ OF . This is done in Corollary A.2. We now let

Sp = {v ∈ V (kp) | ∆(v) = 0 or v is kp-reducible}.

By [Lag22a, Theorem 7.16], any reducible element in V0 falls into the set Sp for all primes not dividing
Nbad, and [Lag22a, Proof of Lemma 8.20] shows that the density of the sets Sp tends to some constant
c ∈ (0, 1) as Np tends to infinity. In conclusion, we can apply the Selberg sieve to obtain the desired
power saving estimate.

Finally, we argue that instead of integrating over the fundamental domain F , it is enough to integrate
over the smaller and more convenient set S1:

Lemma 5.5. There is some constant δ > 0 such that∫
g∈F\S1

#{v ∈ V red
0 ∩ gBX}dg = O(Xdim V −δ).

Proof. It suffices to do so in each cusp separately, so fix a cusp corresponding to αj . The region of
integration in this case is a subset of

αjωj{t ∈ A′
c | |α(t)| ≥ c′for some α ∈ SG}K1,

for some choice of c, c′. The computations in the proof of Proposition 5.3 directly show that the integral
in this case is O(Xdim V −δ) for some δ > 0, as wanted.

5.2 Slicing

The results in Section 5.1 show that

N(Γ, Vi, X) = 1
ri vol(G0)

m∑
j=1

∫
g∈αjωjA′

cK1

#{v ∈ (αj ·W0) ∩ gBX}dg + O(Xdim V −δ) (7)

for some constant δ > 0. To estimate the number of lattice points in the given region, we would want to
use Proposition 5.2. However, we can’t use it directly, because some of the projections onto coordinate
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hyperplanes of W0 are of the order of the main term! To circumvent this, we will slice the region W0
according to the values of the height-one coefficients.

We will compute the integral in (7) separately for each cusp αjωjA′
cK1. To simplify notation, we will

work with the cusp with αj = 1, since the computations for the rest are analogous.

Let v ∈W0(F∞), and let v1, . . . , vk denote its height-one coefficients, where k = #SG. For any b ∈ (F∞)k

and any subset S ⊂W0(F∞), we write

Sb = {v ∈ S | (v1, . . . , vk) = b}.

For any v ∈ V0 ∩W0, we know that the values of its height-one coefficients fall into some lattice L ⊂ F k

which as an additive subgroup is commensurable to Ok
F . We can then write

#(gBX ∩W0 ∩ V0) =
∑
b∈L

#(gBX ∩W0 ∩ V0)b

In fact, we can avoid summing over some of the b:
Lemma 5.6. Let v ∈W0(F∞). If vi = 0 for some height-one coefficient i, then ∆(v) = 0.

Proof. It suffices to consider each completion Fw separately, for all infinite places w. Let {α1, . . . , αk}
be the height-one weights, and assume that the coefficient of αi of v is zero in Fv. Let λi : Gm → GC be
the one-parameter subgroup such that (αj ◦ λi)(t) = tδij . Then, v has no positive weights with respect
to λi, and so by Proposition 2.2 we get the result.

We can now use Davenport’s lemma, using the natural bijection between F∞ and R[F :Q], to estimate

#(gBX ∩W0 ∩ V0)b = vol((gBX)|b)(1 + O(X−1/[F :Q])).

The weight of any non-height-one coefficient in W0 is ≫ 1, so the range of values of any real coefficient
varying in BX is ≫ X1/[F :Q], so we get an error term of the order of O(X−1/[F :Q]).

Now, note that KG0 = G0 and that unipotent transformations preserve both the value of the height-one
coefficients and the volume, so we get that vol((ntkBX)|b) = vol((tBX)|b), where t ∈ A′

c. It will be
convenient for us to integrate not over A′

c, but rather over T ∩ S1, which is a set of the form A′
c ×KT ,

for some subset KT ⊂ K1. We note that by construction of K1, the set A′
c × KT corresponds to a

fundamental domain for the action of Γ∩ T on T (F∞) (cf. Section 4.3.1). There is a natural measure on
A′

c ×KT , inherited by restriction of the measures dt and dk: we will denote it dt by abuse of notation.
Then, given that ωj and K1 have finite measure, we get that

N(Γ, Vi, X) = C
∑
b∈L

bi ̸=0 ∀i

∫
t∈A′

c×KT

vol((tBX)|b)|δ(t)|−1dt, (8)

for some constant C. For each height-one coefficient vi, its weight under the action of T is αi(t). We will
let βi := bi/(X1/[F :Q]αi(t)), and β = (βi)i. Denote by ΦV the different weights of the action of T on V ,
and by Φ−

V the negative weights. Then, we have that

vol((tBX)|b) = vol(tX1/[F :Q] · (B1)|β) = Xdim W♭

∏
α∈Φ−

V

|α(t)| vol(B|β).

We will make the change of variables t 7→ β = (β1, . . . , βk), under which dt = dβ, where dβ =
∏k

i=1
dβi

|βi| .
In Section 5.4, we will explicitly compute the volume of the cuspidal region for each of the possible cases.
We will obtain a polynomial Z(β) =

∏
i βei

i with integer exponents ei ≥ 2, and we will see that

X#Φ−
V

∏
α∈Φ−

V

|α(t)||δ−1(t)| = Xdim V |Z(β)|
|Z(b)| . (9)
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The group ΓT := Γ∩T acts naturally on L by t ·(b1, . . . , bk) = (α1(t)b1, . . . , αk(t)bk) for t ∈ ΓT and b ∈ L
(we know that t · b ∈ L because V0 is invariant under Γ). Denote A′ = ∪c>0A′

c (i.e. the region defined
by A′

c without the condition that |α(t)| ≤ c). The change of variables from t to β sends the domain of
integration A′ ×KT to some region Yb ⊂ F

|M∞|
∞ , and say that the region A′

c ×KT gets sent to Yb \ Yc.
It follows that ∫

t∈A′
c×KT

vol((tBX)|b)|δ−1(t)|dt = Xdim V

|Z(b)|

∫
β∈Yb\Yc

|Z(β)| vol(B|β)dβ.

The set Yc corresponds to elements β with |β| ≫ X−1 – in particular, the integral over Yc is bounded
by O(X−1), so it can be added to the error term. Now, for any b0 ∈ L, we have that at most Oε(Xε)
choices of b ∈ Γtb0 give a non-zero volume of B|β . Therefore, we can write∑

b∈ΓT b0

∫
t∈A′

c×KT

vol((tBX)|b)|δ−1(t)|dt =
∑

b∈ΓT b0

Xdim V

|Z(b)|

∫
β∈Yb

|Z(β)| vol(B|β)dβ + Oε(X−1+ε).

Now, ∪b∈ΓT b0Yb = (F |M∞|
∞ )k, so we get:∑

b∈ΓT b0

∫
t∈A′

c×KT

vol((tBX)|b)|δ−1(t)|dt = Xdim V

|Z(b0)|

∫
β∈(F

|M∞|
∞ )k

|Z(β)| vol(B|β)dβ + Oε(X−1+ε)

= Xdim V

|Z(b0)|

∫
v∈W0

|Z×(v)|dv + Oε(X−1+ε).

Here, Z×(β) =
∏k

i=1 βei−1
i , where the ei are the exponents appearing in Z(β). Adding over all b0 ∈ L/ΓT

and combining with (8), we conclude the proof of Theorem 5.1.

5.3 Congruence conditions

In the sequel, it will be convenient for us to not only have an estimate for the number of reducible orbits,
but we will also need some knowledge about what happens when we impose finitely many congruence
conditions in our orbits. It will suffice to do our analysis in the cusp; to that effect, consider the counting
function

N cusp(Γ, V0, X) =
∫

g∈F
#{v ∈ V0 ∩W0 ∩ (gBX)}dg.

In the previous sections, we obtained that

N cusp(Γ, V0, X) = CXdim V + O(Xdim V − 1
[F :Q] ),

where C and the implied constant depend only on the choice of Γ and V0. We will now obtain the
following:

Theorem 5.7. Let L be a translate of IV0, for some ideal I of OF . If

N cusp(Γ, V0, X) = CXdim V + O(Xdim V − 1
[F :Q] ),

then
N cusp(Γ, L, X) = C(NI)− dim V Xdim V + O((NI)

1
[F :Q] −dim V Xdim V − 1

[F :Q] ).
The implied constant is independent of the choice of L.

Proof. The argument goes through in the same way as Section 5.2, and the only difference is in the
application of Davenport’s lemma, where the additional terms appear by taking care of the change of
lattices.
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5.4 Case-by-case analysis

In this section, we complete the proof of Theorem 5.1 by performing a case-by-case analysis. For the
Dn and En cases, we will explicitly compute the dimension and volume of W♭ (which was defined to
be the set of coefficients of W0 of non-positive height), and the modular function δ(t) =

∏
β∈Φ−

G
β(t) =

det Ad(t)|Lie N(F∞).

5.4.1 D2n+1

The exposition in the Dn cases is inspired by [Lag22a, Appendix A] and [Sha18, §7.2.1]. We start by
describing explicitly the representation (G, V ) of D2n+1 in the form given by Table 1.

Let n ≥ 2 be an integer. Let U1 be a Q-vector space with basis {e1, . . . , en, u1, e∗
n, . . . , e∗

1}, endowed
with the symmetric bilinear form b1 satisfying b1(ei, ej) = b1(ei, u1) = b1(e∗

i , e∗
j ) = b1(e∗

i , u1) = 0,
b1(ei, e∗

j ) = δij and b1(u1, u1) = 1 for all 1 ≤ i, j ≤ n. In this case, given a linear map A : U → U we
can define its adjoint as the unique map A∗ : U → U satisfying b1(Av, w) = b1(v, A∗w) for all v, w ∈ U .
In terms of matrices, A∗ corresponds to taking the reflection of A along its antidiagonal when working
with the fixed basis. We can define SO(U1, b1) := {g ∈ SL(U1) | gg∗ = id}, with a Lie algebra that can
be identified with {A ∈ End(U) | A = −A∗}.

Let U2 be a Q-vector space with basis {f1, . . . , fn, u2, f∗
n, . . . , f∗

1 }, with a similarly defined bilinear form
b2. Let (U, b) = (U1, b1)⊕ (U2, b2). Let H = SO(U, b), and consider h := Lie H. With respect to the basis

{e1, . . . , en, u1, e∗
n, . . . , e∗

1, f1, . . . , fn, u2, f∗
n, . . . , f∗

1 },

the adjoint of a block matrix according to the bilinear form b is given by(
A B
C D

)∗

=
(

A∗ C∗

B∗ D∗

)
,

where A∗, B∗, C∗, D∗ denote reflection by the antidiagonal. An element of h is given by{(
B A
−A∗ C

) ∣∣∣∣ B = −B∗, C = −C∗
}

.

The stable involution θ is given by conjugation by diag(1, . . . , 1,−1, . . . ,−1), where the first 2n+1 entries
are 1 and the last 2n + 1 entries are given by −1. Under this description, we see that

V =
{(

0 A
−A∗ 0

) ∣∣∣∣ A ∈ Mat(2n+1)×(2n+1)

}
.

Moreover, G = (Hθ)◦ is isomorphic to SO(U1)× SO(U2). We will use the map(
0 A
−A∗ 0

)
7→ A

to establish a bijection between V and Hom(U2, U1), where (g, h) ∈ SO(U1)× SO(U2) acts on A ∈ V as
(g, h) ·A = gAh−1.

Let T be the maximal torus diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 , s1, . . . , sn, 1, s−1
n , . . . , s−1

1 ) of G. A basis of
simple roots for G is

SG = {t1 − t2, . . . , tn−1 − tn} ∪ {s1 − s2, . . . , sn−1 − sn}.

A positive root basis for V can be taken to be

SV = {t1 − s1, s1 − t2, . . . , tn − sn, sn}.
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For convenience, we now switch to multiplicative notation for the roots. We make the change of variables
αi = ti/ti+1 for i = 1, . . . , n − 1 and αn = tn; similarly γi = si/si+1 for i = 1, . . . , n − 1 and γn = sn.
The estimate for the volume becomes∏

λ∈Φ−
V

X|λ(t)| = X2n2+2n+1
n∏

i=1
|αi|−2in+i2−2i|γi|−2in+i2

.

The modular function in our case is

|δ−1(t)| =
n∏

i=1
|αi|2in−i2

|γi|2in−i2
.

Changing variables to βi = bi/(Xλi(vi)), where λi are the height-one weights, we obtain∏
λ∈Φ−

V

X|λ(t)|δ−1(t) = X4n2+4n+1 |Z(β)|
|Z(b)| ,

where Z(β) :=
∏n

i=1(β2i−1β2i)2i.

5.4.2 D2n

The analysis in this case is very similar to the D2n+1 case. Now, we consider the Q-vector space U1
with basis {e1, . . . , en, e∗

n, . . . , e∗
1}, endowed with a symmetric bilinear form b1(ei, ej) = b1(e∗

i , e∗
j ) =

0, b1(ei, e∗
j ) = δij . We also consider a Q-vector space U2 with basis {f1, . . . , fn, f∗

n, . . . , f∗
1 }, with an

analogous symmetric bilinear form b2.

Let (U, b) = (U1, b1)⊕ (U2, b2), let H ′ = SO(U, b) and define H to be the quotient of H ′ by its centre of
order 2. Under the basis

{e1, . . . , en, e∗
n, . . . , e∗

1, f1, . . . , fn, f∗
n, . . . , f∗

1 },
the stable involution is given by conjugation with diag(1, . . . , 1,−1, . . . ,−1). Similarly to the D2n+1 case,
we have

V =
{(

0 A
−A∗ 0

) ∣∣∣∣ A ∈ Mat2n×2n

}
,

where A∗ denotes reflection by the antidiagonal. In this case, the group G = (Hθ)◦ is isomorphic to
SO(U1) × SO(U2)/∆(µ2), where ∆(µ2) denotes the diagonal inclusion of µ2 into the centre µ2 × µ2 of
SO(U1)× SO(U2). As before, we can identify V with the space of 2n× 2n matrices using the map(

0 A
−A∗ 0

)
7→ A,

where (g, h) ∈ G acts by (g, h) ·A = gAh−1.

We consider the maximal torus T of H given by diag(t1, . . . , tn, t−1
n , . . . , t−1

1 , s1, . . . , sn, s−1
n , . . . , s−1

1 ). A
basis of simple roots for H and G are given by

SH = {t1 − s1, s1 − t2, . . . , sn−1 − tn, tn − sn, sn + tn},
SG = {t1 − t2, . . . , tn−1 − tn, tn−1 + tn} ∪ {s1 − s2, . . . , sn−1 − sn, sn−1 + sn}.

Let αi = ti/ti+1 and γi = si/si+1 for i = 1, . . . , n, and let αn = tn−1tn and γn = sn−1sn. Under this
change of variables, the estimate for the volume is:

∏
λ∈Φ−

V

X|λ(t)| = X2n2

(
n−2∏
i=1
|αi|−2in+i2−i|αn−1|(−n2−n+4)/2|αn|(−n2−n)/2

n−2∏
i=1
|γi|−2in+i2+i|γn−1γn|(−n2+n)/2

)
.
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The modular function is

|δ−1(t)| =
n−2∏
i=1
|αiγi|i

2−2in+i|αn−1γn−1αnγn|−(n−1)n/2.

As before, we can compute: ∏
λ∈Φ−

V

X|λ(t)||δ−1(t)| = X4n2 |Z(β)|
|Z(b)| ,

where Z(β) =
∏n−1

i=1 (β2i−1β2i)2i · (β2n−1β2n)n.

5.4.3 E6

For the E6 case, we use the conventions and computations in [Tho15, §2.3, §5].

Let SH = {α1, . . . , α6}, where the Dynkin diagram of H is:

α1 α3 α4 α5 α6

α2

The pinned automorphism ϑ consists of a reflection around the vertical axis. We can define a root basis
SG = {γ1, γ2, γ3, γ4} of G as γ1 = α3 + α4, γ2 = α1, γ3 = α3 and γ4 = α2 + α4. Under this basis, we have∏

λ∈Φ−
V

X|λ(t)| = X22|γ1|−12|γ2|−18|γ3|−22|γ4|−12

The modular function is
|δ−1(t)| = |γ1|8|γ2|14|γ3|18|γ4|10.

The weights of the height-one coefficients are {γ2,−γ1 + γ3 + γ4, γ3, γ1 − γ3}. In light of this, we obtain∏
λ∈Φ−

V

X|λ(t)||δ−1(t)| = X42 |Z(β)|
|Z(b)| .

where Z(β) = β4
1β2

2β8
3β6

4 .

5.4.4 E7

For the E7 and E8 cases, we follow the conventions in [RT18]. Let SH = {α1, . . . , α7}, where the Dynkin
diagram of H is:

α1 α3 α4 α5 α6 α7

α2
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The root basis SG = {γ1, . . . , γ7} can be described as

γ1 = α3 + α4

γ2 = α5 + α6

γ3 = α2 + α4

γ4 = α1 + α3

γ5 = α4 + α5

γ6 = α6 + α7

γ7 = α2 + α3 + α4 + α5

The volume of W♭ can be computed to be∏
λ∈Φ−

V

X|λ(t)| = X35|γ1|−15/2|γ2|−13|γ3|−33/2|γ4|−18|γ5|−35/2|γ6|−15|γ7|−21/2.

The modular function for G can be computed to be

δ−1(t) = |γ1|7|γ2|12|γ3|15|γ4|16|γ5|15|γ6|12|γ7|7.

We can compute the weights βi corresponding to the height-one coefficients, with the end result being∏
λ∈Φ−

V

X|λ(t)||δ−1(t)| = X70 |Z(β)|
|Z(b)| ,

for Z(β) = β2
1β5

2β6
3β8

4β7
5β4

6β3
7 .

5.4.5 E8

Let SH = {α1, . . . , α8}, where the Dynkin diagram of H is:

α1 α3 α4 α5 α6 α7 α8

α2

The root basis SG = {γ1, . . . , γ8} can be described as

γ1 = α2 + α3 + α4 + α5

γ2 = α6 + α7

γ3 = α4 + α5

γ4 = α1 + α3

γ5 = α2 + α4

γ6 = α5 + α6

γ7 = α7 + α8

γ8 = α3 + α4
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The volume of W♭ can be computed to be∏
λ∈Φ−

V

X|λ(t)| = X64|γ1|−18|γ2|−30|γ3|−40|γ4|−48|γ5|−54|γ6|−58|γ7|−30|γ8|−30.

The modular function for G can be computed to be

|δ−1(t)| = |γ1|14|γ2|26|γ3|36|γ4|44|γ5|50|γ6|54|γ7|28|γ8|28.

We get ∏
λ∈Φ−

V

X|λ(t)||δ−1(t)| = X128 |Z(β)|
|Z(b)| ,

with Z(β) = β4
1β8

2β10
3 β14

4 β12
5 β8

6β6
7β2

8 .

6 Proof of the main results

We are now in a position to prove the main results.

6.1 Elements with big stabiliser

We first proof a necessary result about elements with a big stabiliser. As in Section 5, let V0 be a lattice
inside V (F∞) which is commensurable with V (OK), and let Γ be an arithmetic subgroup of G(F ) which
preserves V0. We denote by V bs

0 the set of elements v ∈ V0 which satisfy # StabG(F ) v > 1.

Proposition 6.1. There exists a constant δbs > 0 with

N(Γ, V bs,red
0 , X) = O(Xdim V −δbs).

Proof. We can see that the density of elements in V (Op) having big stabiliser tends to some constant in
(0, 1) by the same argument as in [Lag22a, Proof of Lemma 8.20]. Then, we can use the Selberg sieve as
in Proposition 5.4, now using the estimate in Theorem 5.1.

Remark 6.2. We remark that we could not have proven Proposition 6.1 at the same time as Proposition
5.4, as we need the estimate in Theorem 5.1 to apply the Selberg sieve in this case.

6.2 Tail estimates

To prove Theorem 1.2, we need to obtain tail estimates for the setsW(1)
I andW(2)

I . The required estimate
for W(1)

I can be obtained using [BSW15, Theorem 18] (which is essentially by following the argument in
[Bha14b, Theorem 3.3]). For W(2)

I , recall that we only deal with ideals I which are coprime to a certain
element Nbad, as explained in Section 3. We can prove the following:

Theorem 6.3. There exists a constant δ > 0 such that∑
I squarefree

NI>M
(I,Nbad)=1

#{b ∈ Gm(F )\W(2)
I | ht(b) < X} = O

(
Xdim V

M

)
+ O(Xdim V −δ).
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Proof. In Section 3, for every βi ∈ cl(G) we constructed

Wi,M := {v ∈ Vβi
| v = gIκb, I squarefree, I coprime to Nbad, NI > M, gI ∈ GI , b ∈ B(OK)} .

By the results in Section 3, it is sufficient to obtain an appropriate bound on the number of Gβi
-orbits

of Wi,M with invariants in Σ. By following the same averaging argument as in Section 5, we get that

N(Gβi , Wi,M , X) =
∫

g∈F
#{v ∈Wi,M ∩ gBX}dg.

We can carry out the same argument, now assuming that we can restrict to those elements in Wi,M

with trivial stabiliser by Proposition 6.1. If v ∈ Wi,M ∩W0 has trivial stabiliser, then Q(v) ≫ M by
Proposition 3.4, or alternatively Z(v)≫M2. We have that:

N(Gβi
, Wi,M , X)≪

∑
b0∈L/ΓT

Z(b0)≫M2

1
|Z(b0)| + O(Xdim V −δ),

and the written sum is O(1/M), which concludes the proof.

Thus, we have concluded the proof of Theorem 1.2. We can combine both estimates for the strongly
divisible case and the weakly divisible case. For I a squarefree ideal, denote by WI the set of elements
b ∈ B(OF ) such that I2 divides ∆(b). Then, in the style of [BSW22a, Theorem 4.4], we obtain:

Theorem 6.4. There is a constant δ > 0 such that∑
I squarefree

NI>M
(I,Nbad)=1

#{b ∈ Gm(F )\WI | ht(b) < X} = Oε

(
Xdim V +ε

√
M

)
+ O(Xdim V −δ).

6.3 A squarefree sieve

Theorem 1.1 follows from Theorem 1.2 by using a squarefree sieve. In fact, we will prove a slightly more
general result about families in Σ ⊂ B(OF ) defined by infinitely many congruence conditions.

Let κ be a positive integer. We will say that S ⊂ Σ is κ-acceptable if S = ∩p finiteSp, where Sp ⊂ Σp ⊂
B(Op) satisfy the following:

• Sp is defined by congruence conditions modulo pκ.

• For all sufficiently large primes p, the set Sp contains all elements with p2 not dividing ∆(b).

For any subset A ⊂ Σ, we denote by N(A, X) the number of elements of A having height less than X.
For any prime p and any subset Ap ⊂ Σp, we denote by ρ(Ap) the density of Ap inside Σp.

Theorem 6.5. Let S = ∩pSp be a κ-acceptable subset of Σ. Then, there exists a constant δ > 0 such
that

N(S, X) =
∏
p

ρ(Sp)N(Σ, X) + O(Xdim V −δ).

Proof. Recall that B = SpecOF [pd1 , . . . , pdk
]. For an element b ∈ Σ, we have that |pdi

(b)| ≪ Xdi , where
by Table 1 we see that di ≥ 2 for all i. For I a squarefree ideal coprime to Nbad, we define a family
SI = ∩pSI

p as follows:
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• If p | Nbad, then SI
p = Sp.

• If p | I, then SI
p = Σp \ Sp.

• Otherwise, set SI
p = Σp.

By the inclusion-exclusion principle, we have

N(S, X) =
∑

I squarefree
(I,Nbad)=1

µ(I)N(SI , X),

where µ is the Möbius function for the ideals of OF . By the Chinese Remainder Theorem, we can estimate

N(SI , X) =
∏

p|Nbad

ρ(Sp)
∏
p|I

(1− ρ(Sp))N(Σ, X) + O((NI)κXdim V −2)

From Theorem 6.4, we also know that∑
I squarefree
(I,Nbad)=1

NI>M

µ(I)N(SI , X) = Oε

(
Xdim V +ε

M

)
+ O(Xdim V −δ).

Thus, we get that

N(SI , X) =
∏

p|Nbad

ρ(Sp)N(Σ, X)
∑

I squarefree
(I,Nbad)=1

NI≤M

µ(I)
∏
p|I

(1− ρ(Sp)) + Oε

(
Xdim V +ε

√
M

+ Xdim V −δ + Mκ+1Xdim V −2
)

=
∏
p

ρ(Sp)N(Σ, X) + Oε

(
Xdim V

M
+ Xdim V +ε

√
M

+ Xdim V −δ + Mκ+1Xdim V −2
)

.

Optimizing, we choose M = X4/(2κ+3) and we conclude the proof.

A Counting irreducible orbits

In the proof of Proposition 5.4, we need a power-saving asymptotic for the number of orbits in the main
body. As in Section 5, we let Γ be an arithmetic subgroup of G(F ), and we let V0 be a lattice of V (F )
which is commensurable with V (OF ) and Γ-stable. We denote by N∗(Γ, V0, X) the number of Γ-orbits
in V0 with invariants in ΛΣ having height at most X (recall that Λ is the image of the natural embedding
of R>0 inside F∞). Then, we prove the following result:

Theorem A.1. There exist positive constants C, δ such that

N∗(Γ, V0, X) = CXdim V + O(Xdim V −δ).

The constant C depends only on Γ and V0, while δ > 0 can be chosen independently of Γ and V0.

Proof. Following the notations in Section 5.1, we get that

N∗(Γ, V0, X) = 1
ri vol(G0)

m∑
j=1

∫
g∈αjSj

#{v ∈ V0 ∩ gBX | v0,j ̸= 0}dg + O(Xdim V −δ).
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It suffices to estimate the integral for each j separately: for simplicity, set αj = 1 and denote the highest
weight as v0. We then have that |v0| ≥ C0 for some constant C0. Let us denote E = {v ∈ gBX | |v0| ≥ C0}.
There is a constant J ≥ 0 such that any element in B1 satisfies |v0| ≤ J , so if E is non empty for some
choice of g = ntk, we must have that X|a0(t)| ≥ C0/J , where a0 denotes the corresponding weight of v0.

By Davenport’s lemma (i.e. Proposition 5.2), we can approximate the number of lattice points in E by
some constant times vol(E), with an error term corresponding to the volume of the lower-dimensional
projections. The biggest volume of a lower-dimensional projection will correspond to setting one of the
real coordinates of v0 to be zero, and this volume can always be computed to be Xdim V −δ for a suitable
δ > 0.

Then, given that E = gBX \ (gBX \ E) it remains to deal with∫
g=ntk∈ωjA′

cK1
X|a0(t)|≥C0/J

(vol(gBX)− vol(gBX \ E))dg

In the first summand, we note that vol(gBX) is independent of g, and that vol(BX) = Xdim V vol(B1),
thus obtaining the main term. For the second summand, denote E ′ = gBX \E . Any element in v ∈ gBX \E
must have |v0| ≤ C0. Because of how the integration domain is set up, the values of v0 fall in a compact
region Ω of F∞. For a given value of v0 ∈ Ω, let E ′(v0) denote the set of elements in E ′ with the given
value of v0. Then,

vol(E ′) =
∫

v0∈Ω
vol(E ′(v0)),

and each of the volumes of vol(E ′(v0)) can be computed to be O(Xdim V −δ), for some δ > 0.

The proof of Theorem A.1 immediately implies the following:

Corollary A.2. Let L be a translate of IV0 for some ideal I ⊂ OF . Then,

N∗(Γ, L, X) = (NI)− dim V CXdim V + O((NI)− dim V +δXdim V −δ).

Here, C and δ are as in Theorem A.1, and the implied constant is independent of the ideal I.

This result is what we need to apply the Selberg sieve in the proof of Proposition 5.4.
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