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» Basic questions:

» How many are there?
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I
SAW in Z9 d >3

» d > 5: SAW converges to Brownian motion upon performing a diffusive scaling
(Hara and Slade, building on work of Brydges and Spencer)
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I
SAW in Z9 d >3

» d > 5: SAW converges to Brownian motion upon performing a diffusive scaling
(Hara and Slade, building on work of Brydges and Spencer)

» d = 4: same is conjectured to be true but with a log correction in the scaling

» d = 3: scaling limit and scaling factor unknown

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 5/26



SAW in Z2

SAW in plane - 1,000,000 steps

» Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

S,

(Tom Kennedy)

Jason Miller (Cambridge) Convergence of the SAW on L1's to SLE(8,/3) January 24, 2017



SAW in Z2

SAW in plane - 1,000,000 steps

» Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

> Supported by extensive numerical evidence 2
(Tom Kennedy)

S,

(Tom Kennedy)

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017



SAW in Z2

SAW in plane - 1,000,000 steps

» Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

> Supported by extensive numerical evidence 2
(Tom Kennedy)

> Conjectured scaling factor: n=3/*

S,

(Tom Kennedy)

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 6 /26



SAW in Z2

SAW in plane - 1,000,000 steps

» Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

v

Supported by extensive numerical evidence 2
(Tom Kennedy)

Conjectured scaling factor: n=3/*

v

v

SLEg/3 is singled out by:
> Restriction %

S,

(Tom Kennedy)

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 6 /26



I
SAW in Z?

v

Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

v

Supported by extensive numerical evidence
(Tom Kennedy)

Conjectured scaling factor: n

—3/4

v

v

SLEg/3 is singled out by:

> Restriction

Graph G = (V, E).
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SAW in Z2

v

Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLEg/3

v

Supported by extensive numerical evidence
(Tom Kennedy)
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Conjectured scaling factor: n™ ©

v

v

SLEg/3 is singled out by:

» Restriction and
» Conformal invariance

p: U=V
conformal.
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SAW in Z2

» Conjectured by Lawler-Schramm-Werner ﬁ
that the scaling limit is SLEg/3

» Supported by extensive numerical evidence
(Tom Kennedy) U

> Conjectured scaling factor: n=3/*

> SLEg/s is singled out by:
» Restriction and ﬁ
» Conformal invariance

» This talk is about proving a version of this
conjecture, but where the underlying graph
is a random planar map. Vv

p: U=V
conformal.p(limit of SAW on U) =
limit of SAW on V
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Random planar maps

> A planar map is a finite graph embedded in the
plane
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Random planar maps

> A planar map is a finite graph embedded in the
plane

> |ts faces are the connected components of the
complement of edges

> A map is a quadrangulation (0J) if each face has 4
adjacent edges

» A [ corresponds to a surface where each face is a
Euclidean O with adjacent faces glued along their
boundaries

» In this talk, interested in uniformly random [0's —
random planar map (RPM).
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.
Random O with 25,000 faces

son Miller (Cambrid,



Gluing random planar maps to produce a SAW

» Independent, uniform [0's of the disk with
simple O of length 2n and m faces.
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Gluing random planar maps to produce a SAW
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-—
to get a random O of D with simple 0 of
length 2(n — £) decorated by a simple “«
path.
-—>
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length 2(n — £) decorated by a simple “«
path.
> Conditional law of path given O is a SAW
of length 2¢ conditioned on having m -~
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> Infinite volume / O-length limit of a O of
the disk is a O of H (UIHPQs).
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Gluing random planar maps to produce a SAW

>

Independent, uniform ['s of the disk with
simple O of length 2n and m faces.

Glue along a 2¢ < 2n segment of their 0
to get a random O of D with simple 0 of
length 2(n — £) decorated by a simple
path.

Conditional law of path given [J is a SAW
of length 2¢ conditioned on having m
faces on its left and right sides.

Infinite volume / O-length limit of a O of
the disk is a O of H (UIHPQs).

Glue independent UIHPQg's to get [ of
H decorated by a simple path.
Conditional law of path given [0 is a SAW.

+—> Q4

Azip

Quip
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Gluing random planar maps to produce a SAW

» Independent, uniform [0's of the disk with
simple O of length 2n and m faces.

> Glue along a 2¢ < 2n segment of their 9
to get a random O of D with simple 0 of
length 2(n — £) decorated by a simple -—>

path.
+—> Q4

> Conditional law of path given O is a SAW

of length 2¢ conditioned on having m
faces on its left and right sides.
> Infinite volume / O-length limit of a O of
the disk is a O of H (UIHPQs). .
2ip
» Glue independent UIHPQg's to get O of
H decorated by a simple path.
Conditional law of path given [0 is a SAW.
» Goal: prove scaling limit result for the = Quip =

map/path and identify it with chordal

SLEg/3 on \/g—LiouviIIe quantum gravity.
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Random planar map convergence review

General principle: Uniformly random planar O's with n faces with distances rescaled by
n~/* converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology
(metric space + measure).
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Random planar map convergence review

General principle: Uniformly random planar O's with n faces with distances rescaled by
n~/* converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology
(metric space + measure).

» O of the sphere — Brownian map (Le Gall, Miermont)
» [ of the disk (general boundary) — Brownian disk (Bettinelli-Miermont)
» [ of the half-plane — Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

Comment: For maps with 0, also have convergence of the boundary path in the uniform
topology. The overall topology is the Gromov-Hausdorff-Prokhorov-uniform (GHPU)
topology (metric space + measure + path).
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Metric gluing

> Metric spaces M1 = (X1,d1), M2 = (X2, db)

> W = Xj; U Xp, dy induced natural metric on W, ~ an equivalence relation.
> Set
n
dglue(xvy) =inf {Z d\—l(aiv bl)}
i=1
where the inf is over all sequences with a; = x, b, = y, and b; ~ aj;1 for each i.
Then (W, dgiye) is the metric gluing of My and Ma.

Main example: M;, M, independent instances of the Brownian half-plane identified according to
boundary length along their positive boundary rays.

» Metric gluing can be subtle

» Not obvious: gluing of Brownian half-planes is homeomorphic to H or that the interface
between the two Brownian half-plane instances is a non-trivial curve

» Worry: the interface could even degenerate to a point

January 24, 2017

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3)



Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the
UIHPQs converges to the metric gluing of
independent Brownian half-plane instances in the

GHPU topology. Moreover, the limiting space is +-—>
homeomorphic to H and the limiting interface is a
m -—> Q
non-trivial curve. Q- +
-—>
N
Quip
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Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the
UIHPQs converges to the metric gluing of
independent Brownian half-plane instances in the

GHPU topology. Moreover, the limiting space is +-—>
homeomorphic to H and the limiting interface is a
m -—> Q
non-trivial curve. Q- +
-—>
Comments:

> Strategy is universal given certain inputs
» Finite volume version (Gwynne, M.)

Azip

Qzip
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Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the
UIHPQs converges to the metric gluing of
independent Brownian half-plane instances in the

GHPU topology. Moreover, the limiting space is +-—>
homeomorphic to H and the limiting interface is a
m -—> Q
non-trivial curve. Q- +
-—>
Comments:

> Strategy is universal given certain inputs
» Finite volume version (Gwynne, M.)

> First example of a statistical physics model on Nip
a random planar map shown to converge in the
GHPU topology.

Quip
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Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the
UIHPQs converges to the metric gluing of
independent Brownian half-plane instances in the

GHPU topology. Moreover, the limiting space is +-—>
homeomorphic to H and the limiting interface is a
m -—> Q
non-trivial curve. Q- +
-—>
Comments:

> Strategy is universal given certain inputs
» Finite volume version (Gwynne, M.)

> First example of a statistical physics model on Aip
a random planar map shown to converge in the
GHPU topology.

> Second example: percolation (Gwynne, M.).

Strategy is very different. < -
Quip

> Later: the limiting space/path pair is isometric
to chordal SLEg,3 on /8/3-Liouville quantum
gravity.
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Part |l: Liouville quantum gravity
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Basic facts

> Suppose h is an instance of the Gaussian free field (GFF) on D C C and v € (0, 2)
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Basic facts

> Suppose h is an instance of the Gaussian free field (GFF) on D C C and v € (0, 2)

» ~-LQG surface associated with h is the “random Riemann surface” with metric

tensor
e""@(dx® + dy?) where z=x+iy

» Does not make literal sense as h is a distribution, so does not take values at points
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Basic facts
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v

v-LQG surface associated with h is the “random Riemann surface” with metric
tensor
e""@(dx® + dy?) where z=x+iy

v

Does not make literal sense as h is a distribution, so does not take values at points
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Associated volume form and length measure made sense of by Duplantier-Sheffield
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Basic facts

> Suppose h is an instance of the Gaussian free field (GFF) on D C C and v € (0, 2)
» ~-LQG surface associated with h is the “random Riemann surface” with metric
tensor
e""@(dx® + dy?) where z=x+iy
» Does not make literal sense as h is a distribution, so does not take values at points
> Associated volume form and length measure made sense of by Duplantier-Sheffield

> v = 4/8/3, metric constructed (M.-Sheffield) using QLE(8/3,0)
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Basic facts

v

Suppose h is an instance of the Gaussian free field (GFF) on D C C and « € (0, 2)
v-LQG surface associated with h is the “random Riemann surface” with metric
tensor
e""@(dx® + dy?) where z=x+iy

Does not make literal sense as h is a distribution, so does not take values at points
Associated volume form and length measure made sense of by Duplantier-Sheffield
v = 4/8/3, metric constructed (M.-Sheffield) using QLE(8/3,0)
1/8/3-LQG surfaces (laws on h) are equivalent to Brownian surfaces:

» /8/3-sphere = Brownian map

» /8/3-quantum disk = Brownian disk

» /8/3-quantum wedge = Brownian half-plane
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Basic facts

> Suppose h is an instance of the Gaussian free field (GFF) on D C C and v € (0, 2)
» ~-LQG surface associated with h is the “random Riemann surface” with metric
tensor
e""@(dx® + dy?) where z=x+iy

» Does not make literal sense as h is a distribution, so does not take values at points
> Associated volume form and length measure made sense of by Duplantier-Sheffield
> v = 4/8/3, metric constructed (M.-Sheffield) using QLE(8/3,0)
> /8/3-LQG surfaces (laws on h) are equivalent to Brownian surfaces:

» /8/3-sphere = Brownian map

» /8/3-quantum disk = Brownian disk

» /8/3-quantum wedge = Brownian half-plane

> For other v € (0,2), 7v-LQG arises as the scaling limit of a random planar map
decorated with a statistical physics model (peanosphere)

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 14 / 26



Quantum wedge

Wy

» Surfaces with boundary parameterized by H. Two special
points: origin and co.
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Quantum wedge

Wy

» Surfaces with boundary parameterized by H. Two special
points: origin and co.

» Start with a free boundary GFF h on a Euclidean wedge h
Wy with angle 6

W)=

ho1+ Qlog|¢|
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Quantum wedge

» Surfaces with boundary parameterized by H. Two special Wo

points: origin and co.
» Start with a free boundary GFF h on a Euclidean wedge h

Wy with angle 6
> Change coordinates to H with z%/7. Yields free

boundary GFF on H plus Q(%fl) log | z|

W)=
H

ho1+ Qlog|¢|
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Quantum wedge

» Surfaces with boundary parameterized by H. Two special Wo
points: origin and co.
» Start with a free boundary GFF h on a Euclidean wedge h
Wy with angle 6
> Change coordinates to H with z%/7. Yields free
boundary GFF on H plus Q(%fl) log | z|
» Defined modulo global additive constant; fix additive
. . p _ 0/m
constant in canonical way P(z)=2
H

ho1+ Qlog|¢|

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 15 /26



Quantum wedge

» Surfaces with boundary parameterized by H. Two special W
points: origin and co.
» Start with a free boundary GFF h on a Euclidean wedge h
Wy with angle 6
> Change coordinates to H with z%/7. Yields free
boundary GFF on H plus Q(%fl) log | z|
» Defined modulo global additive constant; fix additive
. . p _ 0/m
constant in canonical way P(z)=2
> Parameterize space of wedges by multiple o of — log |z| o

or by weight W = ~v(y + % —a)

ho1+ Qlog|¢|
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Quantum wedge

» Surfaces with boundary parameterized by H. Two special Wo
points: origin and co.
» Start with a free boundary GFF h on a Euclidean wedge h
Wy with angle 6
> Change coordinates to H with z%/7. Yields free
boundary GFF on H plus Q(%fl) log | z|
» Defined modulo global additive constant; fix additive
. . p _ 0/m
constant in canonical way P(z)=2
> Parameterize space of wedges by multiple o of — log |z| o
or by weight W = ~v(y + % —a)
> ~=./8/3, a =~ (W = 2), then the quantum wedge is
equivalent to the Brownian half-plane. hot+ Qlog ||
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Cutting and gluing operations

» Cut with an independent chordal SLE curve 7 or
» Weld together according to boundary length

> Abstract measurability result: YW, 7 are determined by Wi, Wh.
» For v = 1/8/3, not clear that the welding operation is “compatible” with the
metric notion of gluing
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Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to
the Brownian half-plane
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Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to
the Brownian half-plane

Theorem (Gwynne-M.)

Suppose Wi, W, are independent quantum wedges with
weights Wi, W». The metric space obtained by
identifying the positive ray of Wi with the positive ray of
W has the law of a quantum wedge of weight Wi + W.
The interface between Wi and W has the law of an
SLE8/3(W1 - 2; W2 — 2)
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Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to
the Brownian half-plane

Theorem (Gwynne-M.)

Suppose Wi, W, are independent quantum wedges with
weights Wi, W». The metric space obtained by
identifying the positive ray of Wi with the positive ray of
W has the law of a quantum wedge of weight Wi + W.
The interface between Wi and W has the law of an
SLE8/3(W1 - 2; W2 — 2)

Consequence: if we metrically glue two instances of the
Brownian half-plane, the interface between them is exactly
a chordal SLEg/3.
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N

Quip
SAW decorated O of H

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 18 / 26



Scaling limit

Brownian

UTHPQq Brownian half-plane

half-plane

Q+

N

Quip
SAW decorated [ of H Gluing of Brownian half-planes
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Scaling limit

Brownian

UTHPQq Brownian half-plane

half-plane

= quantum
wedge

= quantum

Q
i wedge

N

Quip
SAW decorated [ of H Gluing of Brownian half-planes
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Scaling limit

Brownian

THP Brownian -
v Qs half-plane half-plane
= quantum \<*—/ = quantum

wedge wedge

N

< > < >

Quip
SAW decorated [ of H Gluing of Brownian half-planes
= chordal SLEg/3 on /8/3-LQG

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 18 / 26



Scaling limit

Brownian

THP Brownian -
v Qs half-plane half-plane
= quantum \<*—/ = quantum

wedge wedge

N

< > < >

Quip
SAW decorated [ of H Gluing of Brownian half-planes
= chordal SLEg/3 on /8/3-LQG

Consequence: SAW on random [I's converges to SLEg,3 on /8/3-LQG
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Part |ll: Proof ideas
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Overview

Will focus on the discrete to continuum conver-
gence statement
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Overview

Will focus on the discrete to continuum conver- inp
gence statement

» Goal: show that the discrete graph gluing
of two independent UIHPQs's Q—, Q+
converges in the limit to the metric gluing Q+
of independent Brownian half-planes

A
v
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Overview

Will focus on the discrete to continuum conver- inp
gence statement

» Goal: show that the discrete graph gluing
of two independent UIHPQs's Q—, Q+
converges in the limit to the metric gluing Q+
of independent Brownian half-planes

> Strategy: Take two points on the interface
. G —0—o—o—o—o—o—0—o— >
at boundary length distance n'/?,

Jason Miller (Cambridge) Convergence of the SAW on [J's to SLE(8/3) January 24, 2017 20 / 26



Overview

Will focus on the discrete to continuum conver-
gence statement

).
¥ zip

» Goal: show that the discrete graph gluing
of two independent UIHPQs's Q—, Q+
converges in the limit to the metric gluing Q+
of independent Brownian half-planes

> Strategy: Take two points on the interface
at boundary length distance n'/?, show that
the limit of the distance between them can
be approximated by a path which crosses
the interface only finitely many times (not
growing with n)
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Overview

Will focus on the discrete to continuum conver-
gence statement

).
¥ zip

» Goal: show that the discrete graph gluing
of two independent UIHPQs's Q—, Q+
converges in the limit to the metric gluing Q+
of independent Brownian half-planes

> Strategy: Take two points on the interface
at boundary length distance n'/?, show that
the limit of the distance between them can
be approximated by a path which crosses
the interface only finitely many times (not
growing with n)

» Challenge: Understand the structure of the
metric along the interface in a precise way
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Peeling the UIHPQs

“——0—0— 00— — 00— — 00— 00— 00— 00— 00—

UIHPQs with marked edge in red.
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Peeling the UIHPQs

< Py Py Py Py Py Py Py Py Py Py ey
@ 4 @ @ 4 4 @ L 4 4 @

UIHPQs with marked edge in red. Reveal the (0 adjacent to the marked edge.
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.
Peeling the UIHPQs

UIHPQs with marked edge in red. Reveal the (J adjacent to the marked edge. Exact
formulas for the probability of each possibility.
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UIHPQs with marked edge in red. Reveal the (J adjacent to the marked edge. Exact
formulas for the probability of each possibility. Unexplored region is a UIHPQs.
Probability disconnect ki edges on the left and ko edges on the right is = kf5/2k2_5/2.
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formulas for the probability of each possibility. Unexplored region is a UIHPQs.
Probability disconnect k; edges on the left and k> edges on the right is = kf5/2k2_5/2.
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Peeling the UIHPQs

< Py Py Py Py
@ 4 4 @

UIHPQs with marked edge in red. Reveal the (J adjacent to the marked edge. Exact
formulas for the probability of each possibility. Unexplored region is a UIHPQs.

Probability disconnect k; edges on the left and k> edges on the right is = kf5/2k2_5/2.
Metric ball exploration targeted at co via peeling. Can control precisely the 0-length.
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Glued peeling cluster

zip

Qs

A
v

Consider two UIHPQs's glued together.
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Glued peeling cluster

zip

Qs

Consider two UIHPQs's glued together. Cannot explore the metric ball along the
interface using peeling in a tractable manner because it will cross back and forth.
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Glued peeling cluster

zip

Qs

Consider two UIHPQs's glued together. Cannot explore the metric ball along the
interface using peeling in a tractable manner because it will cross back and forth.
Strategy: Dominate it from above by the “glued peeling cluster.”
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Controlling the glued peeling cluster

» Recall: Glued peeling cluster > metric ball

Quip

Q+
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Controlling the glued peeling cluster

» Recall: Glued peeling cluster > metric ball

» O-length and area harder to control due to Quin
to the upward jumps in boundary length

» Theorem: (Gwynne, M.) For each Q4
p € [1,3/2), the pth moment of the
number of edges cut off from oo by the
n-layer glued peeling cluster is < n*?.
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the O-length of the glued peeling cluster.

> (Gwynne, M.) The interface is
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» Proof idea: Recursive moment bounds for
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Controlling the glued peeling cluster

» Recall: Glued peeling cluster > metric ball

» O-length and area harder to control due to Quin
to the upward jumps in boundary length

» Theorem: (Gwynne, M.) For each Q4
p € [1,3/2), the pth moment of the
number of edges cut off from oo by the
n-layer glued peeling cluster is < n*?.

» Theorem: (Gwynne, M.) Same holds for
the O-length of the glued peeling cluster.

> (Gwynne, M.) The interface is
non-degenerate in the subsequential limit.

» Proof idea: Recursive moment bounds for
O-length and edges cut off from oo.

Caraceni-Curien also studied SAWSs on random ['s and used the glued peeling cluster.
Controlled the p = 1 moment of the set of edges cut off from co.
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Finishing the proof

) .
Wzip

. . Q+
Recall: goal is to show that a geodesic connect-

ing @ points of 9 distance n/? from each other

can be approximated by a path which crosses the & )
interface at most a finite number of times (not

growing with n).
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Finishing the proof

» Consider glued peeling clusters at dyadic scales

> Call a scale K- (K > 1) if the Qyip A
distance between any point on the inner and wap
any point on the outer 0 is at least 1/K times )
the length of a path which crosses the interface *
at most once.
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metric of Qi is bi-Lipschitz equivalent to the
metric gluing of Brownian half-planes.
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Remark: arguments are delicate as the interface has n

Consider glued peeling clusters at dyadic scales
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1/2 edges while the geodesic has nl/4.
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Thanks!
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