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Self-avoiding walk (SAW)

I Invented by Flory in 1953

I Graph G = (V ,E), x ∈ V , n ∈ N

I Uniform measure on non-self-intersecting
paths starting from x in G of length n

I Basic questions:

I How many are there?
I
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SAW in Zd , d ≥ 3

I d ≥ 5: SAW converges to Brownian motion upon performing a diffusive scaling
(Hara and Slade, building on work of Brydges and Spencer)

I d = 4: same is conjectured to be true but with a log correction in the scaling

I d = 3: scaling limit and scaling factor unknown
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SAW in Z2

I Conjectured by Lawler-Schramm-Werner
that the scaling limit is SLE8/3

I Supported by extensive numerical evidence
(Tom Kennedy)

I Conjectured scaling factor: n−3/4

I SLE8/3 is singled out by:

I Restriction

and

I Conformal invariance

I This talk is about proving a version of this
conjecture, but where the underlying graph
is a random planar map.

(Tom Kennedy)

ϕ : U → V
conformal.

ϕ(limit of SAW on U) =
limit of SAW on V
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Random planar maps

I A planar map is a finite graph embedded in the
plane

I Its faces are the connected components of the
complement of edges

I A map is a quadrangulation (�) if each face has 4
adjacent edges

I A � corresponds to a surface where each face is a
Euclidean � with adjacent faces glued along their
boundaries

I In this talk, interested in uniformly random �’s —
random planar map (RPM).
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Random � with 25,000 faces

(Simulation due to J.F. Marckert)
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Gluing random planar maps to produce a SAW
I Independent, uniform �’s of the disk with

simple ∂ of length 2n and m faces.

I Glue along a 2` < 2n segment of their ∂
to get a random � of D with simple ∂ of
length 2(n − `) decorated by a simple
path.

I Conditional law of path given � is a SAW
of length 2` conditioned on having m
faces on its left and right sides.

I Infinite volume / ∂-length limit of a � of
the disk is a � of H (UIHPQS).

I Glue independent UIHPQS’s to get � of
H decorated by a simple path.
Conditional law of path given � is a SAW.

I Goal: prove scaling limit result for the
map/path and identify it with chordal

SLE8/3 on
√

8
3
-Liouville quantum gravity.
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Random planar map convergence review

General principle: Uniformly random planar �’s with n faces with distances rescaled by
n−1/4 converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology
(metric space + measure).

I � of the sphere → Brownian map (Le Gall, Miermont)

I � of the disk (general boundary) → Brownian disk (Bettinelli-Miermont)

I � of the half-plane → Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

Comment: For maps with ∂, also have convergence of the boundary path in the uniform

topology. The overall topology is the Gromov-Hausdorff-Prokhorov-uniform (GHPU)

topology (metric space + measure + path).
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Metric gluing

I Metric spaces M1 = (X1, d1), M2 = (X2, d2)

I W = X1 t X2, dt induced natural metric on W , ∼ an equivalence relation.

I Set

dglue(x , y) = inf

{
n∑

i=1

dt(ai , bi )

}
where the inf is over all sequences with a1 = x , bn = y , and bi ∼ ai+1 for each i .

Then (W , dglue) is the metric gluing of M1 and M2.

Main example: M1,M2 independent instances of the Brownian half-plane identified according to
boundary length along their positive boundary rays.

I Metric gluing can be subtle

I Not obvious: gluing of Brownian half-planes is homeomorphic to H or that the interface
between the two Brownian half-plane instances is a non-trivial curve

I Worry: the interface could even degenerate to a point
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Main scaling limit result

Theorem (Gwynne-M.)
Graph gluing of two independent instances of the
UIHPQS converges to the metric gluing of
independent Brownian half-plane instances in the
GHPU topology. Moreover, the limiting space is
homeomorphic to H and the limiting interface is a
non-trivial curve.

Comments:

I Strategy is universal given certain inputs

I Finite volume version (Gwynne, M.)

I First example of a statistical physics model on
a random planar map shown to converge in the
GHPU topology.

I Second example: percolation (Gwynne, M.).
Strategy is very different.

I Later: the limiting space/path pair is isometric

to chordal SLE8/3 on
√

8/3-Liouville quantum
gravity.

λzip

Q− Q+

Qzip
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Part II: Liouville quantum gravity
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Basic facts

I Suppose h is an instance of the Gaussian free field (GFF) on D ⊆ C and γ ∈ (0, 2)

I γ-LQG surface associated with h is the “random Riemann surface” with metric
tensor

eγh(z)(dx2 + dy 2) where z = x + iy

I Does not make literal sense as h is a distribution, so does not take values at points

I Associated volume form and length measure made sense of by Duplantier-Sheffield

I γ =
√

8/3, metric constructed (M.-Sheffield) using QLE(8/3, 0)

I
√

8/3-LQG surfaces (laws on h) are equivalent to Brownian surfaces:

I
√

8/3-sphere = Brownian map
I

√
8/3-quantum disk = Brownian disk

I
√

8/3-quantum wedge = Brownian half-plane

I For other γ ∈ (0, 2), γ-LQG arises as the scaling limit of a random planar map
decorated with a statistical physics model (peanosphere)
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Quantum wedge

I Surfaces with boundary parameterized by H. Two special
points: origin and ∞.

I Start with a free boundary GFF h on a Euclidean wedge
Wθ with angle θ

I Change coordinates to H with zθ/π . Yields free
boundary GFF on H plus Q( θ

π
−1) log |z|

I Defined modulo global additive constant; fix additive
constant in canonical way

I Parameterize space of wedges by multiple α of − log |z|
or by weight W = γ(γ + 2

γ
− α)

I γ =
√

8/3, α = γ (W = 2), then the quantum wedge is
equivalent to the Brownian half-plane.

h

Wθ
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Cutting and gluing operations

I Cut with an independent chordal SLE curve η or

I Weld together according to boundary length

I Abstract measurability result: W, η are determined by W1,W2.
I For γ =

√
8/3, not clear that the welding operation is “compatible” with the

metric notion of gluing
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Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to
the Brownian half-plane

Theorem (Gwynne-M.)
Suppose W1,W2 are independent quantum wedges with
weights W1,W2. The metric space obtained by
identifying the positive ray of W1 with the positive ray of
W2 has the law of a quantum wedge of weight W1 + W2.
The interface between W1 and W2 has the law of an
SLE8/3(W1 − 2;W2 − 2).

Consequence: if we metrically glue two instances of the
Brownian half-plane, the interface between them is exactly
a chordal SLE8/3.
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Recap

Q− Q+

UIHPQS UIHPQS

Consequence: SAW on random �’s converges to SLE8/3 on
√
8/3-LQG
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Part III: Proof ideas
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Overview

Will focus on the discrete to continuum conver-
gence statement

I Goal: show that the discrete graph gluing
of two independent UIHPQS ’s Q−,Q+

converges in the limit to the metric gluing
of independent Brownian half-planes

I Strategy: Take two points on the interface
at boundary length distance n1/2,

show that
the limit of the distance between them can
be approximated by a path which crosses
the interface only finitely many times (not
growing with n)

I Challenge: Understand the structure of the
metric along the interface in a precise way
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Peeling the UIHPQS

UIHPQS with marked edge in red.

Reveal the � adjacent to the marked edge. Exact

formulas for the probability of each possibility. Unexplored region is a UIHPQS .

Probability disconnect k1 edges on the left and k2 edges on the right is ∼= k
−5/2
1 k

−5/2
2 .

Metric ball exploration targeted at ∞ via peeling. Can control precisely the ∂-length.
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Glued peeling cluster

Q+

Q−

Qzip

Consider two UIHPQS ’s glued together.

Cannot explore the metric ball along the

interface using peeling in a tractable manner because it will cross back and forth.

Strategy: Dominate it from above by the “glued peeling cluster.” Usual metric

exploration but we add in the holes cut off from ∞ in Q±.
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Controlling the glued peeling cluster

I Recall: Glued peeling cluster ≥ metric ball

I ∂-length and area harder to control due to
to the upward jumps in boundary length

I Theorem: (Gwynne, M.) For each
p ∈ [1, 3/2), the pth moment of the
number of edges cut off from ∞ by the
n-layer glued peeling cluster is . n2p.

I Theorem: (Gwynne, M.) Same holds for
the ∂-length of the glued peeling cluster.

I Corollary: (Gwynne, M.) The interface is
non-degenerate in the subsequential limit.

I Proof idea: Recursive moment bounds for
∂-length and edges cut off from ∞.

Q+

Q−

Qzip

Caraceni-Curien also studied SAWs on random �’s and used the glued peeling cluster.

Controlled the p = 1 moment of the set of edges cut off from ∞.
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Finishing the proof

Recall: goal is to show that a geodesic connect-

ing ∂ points of ∂ distance n1/2 from each other

can be approximated by a path which crosses the

interface at most a finite number of times (not

growing with n).

Q+

Qzip

Q−
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Finishing the proof
I Consider glued peeling clusters at dyadic scales

I Call a scale K -good (K > 1) if the Qzip

distance between any point on the inner and
any point on the outer ∂ is at least 1/K times
the length of a path which crosses the interface
at most once.

I Theorem (Gwynne, M.) Choosing K > 1 large
enough, we can cover the interface by K -good
annuli with high probability.

I Consequence: The subsequentially limiting
metric of Qzip is bi-Lipschitz equivalent to the
metric gluing of Brownian half-planes.

I Theorem (Gwynne, M.) There exists α ∈ (0, 1)
such that the subsequentially limiting geodesics
a.s. spend at most α-fraction of their time in
the interface.

I Consequence: The subsequentially limiting
metric is equivalent to the metric gluing of
Brownian half-planes.

Q+

Qzip

Q−

Remark: arguments are delicate as the interface has n1/2 edges while the geodesic has n1/4.
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Thanks!
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