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Overview

Part I: Picking surfaces at random

1. Discrete: random planar maps

2. Continuum: Liouville quantum gravity (LQG)

3. Relationship

Part II: The QLE(8/3, 0) metric on
√

8/3-LQG

1. First passage percolation on random planar maps

2. First passage percolation on
√

8/3-LQG: QLE(8/3, 0)
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Part I: Picking surfaces at random
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Random planar maps
I A planar map is a finite graph together with an

embedding in the plane so that no edges cross

I Its faces are the connected components of the
complement of its edges

I A map is a quadrangulation if each face has 4
adjacent edges

I A quadrangulation corresponds to a metric space
when equipped with the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas
I Physics: statistical physics models:

percolation, Ising, UST ...
I Probability: “uniformly random surface,”

Brownian surface
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)
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Picking a surface at random in the continuum
Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D
can be conformally mapped to the disk.

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)dz for some smooth
function ρ where dz is the Euclidean metric.
⇒ Can parameterize the surfaces homeomorphic to D with smooth functions on D.

I If ρ = 0, get D

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

I Measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Introduced by Polyakov in the 1980s

I Does not make literal sense since h
takes values in the space of
distributions

I Has been made sense of as a random
area measure using a regularization
procedure

I Can compute areas of regions
and lengths of curves

I Does not come with an obvious
notion of “distance”

γ = 0.5

(Number of subdivisions)
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LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2)

I So far, only made sense of as an area measure using a regularization procedure

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing

they are equivalent.

Jason Miller (Cambridge) LQG and TBM July 15, 2015 10 / 24



Canonical embedding of TBM into S2

I TBM is an abstract metric measure space homeomorphic to S2, but it does not
obviously come with a canonical embedding into S2

I It is believed that there should be a “natural embedding” of TBM into S2 and that
the embedded surface is described by a form of Liouville quantum gravity (LQG)
with γ =

√
8/3

ψ

I Discrete approach: take a uniformly random planar map and embed it conformally
into S2 (circle packing, uniformization, etc...), then in the n→∞ limit it converges
to a form of

√
8/3-LQG. Not the approach we will describe today ...
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Main result

Theorem (M., Sheffield)
Suppose that (M, d , µ) is an instance of TBM. Then there exists a Hölder
homeomorphism ϕ : (M, d)→ S2 such that the pushforward of µ by ϕ has the law of a√

8/3-LQG sphere (S2, h).

Moreover,

I ϕ is determined by (M, d , µ) (TBM determines its conformal structure)

I (M, d , µ) and ϕ are determined by (S2, h) (LQG determines its metric structure)

That is, (M, d , µ) and (S2, h) are equivalent.

Comments

1. Construction is purely in the continuum

2. Proof by endowing a metric space structure directly on
√

8/3-LQG using the growth
process QLE(8/3, 0)

3. Resulting metric space structure is shown to satisfy axioms which characterize TBM

4. Separate argument shows the embedding of TBM into
√

8/3-LQG is determined by TBM

5. Metric construction is for the
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8/3-LQG sphere. By absolute continuity, can construct a

metric on any
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Part II:

Construction of the metric on
√

8/3-LQG
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Detour: first passage percolation (FPP)
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process
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FPP on random planar maps I
I RPM, random vertex x . Perform FPP from x (Angel’s peeling process).

Important observations:

I Conditional law of map given growth at time n only depends on the boundary
lengths of the outside components.

Exploration respects the Markovian structure of
the map.

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric

(now proved by Curien and Le Gall)
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First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

I We do not know how to take a continuum limit of FPP on a random planar map
and couple it directly with LQG

I Explain a discrete variant of FPP that involves two operations that we do know how
to perform in the continuum:

I Sample random points according to boundary length
I Draw (scaling limits of) critical percolation interfaces (SLE6)

Jason Miller (Cambridge) LQG and TBM July 15, 2015 16 / 24



FPP on random planar maps II

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I Expect that at large scales this growth process looks the same as FPP, hence the
same as the graph metric ball
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Continuum limit ansatz

I Sample a random planar map

and two edges uniformly at random

I Color vertices blue/yellow with probability 1/2

and draw percolation interface

I Conformally map to the sphere

Ansatz Image of random map converges to a
√

8/3-LQG surface and the image of the

interface converges to an independent SLE6.
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization.
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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Emergence of TBM in
√

8/3-LQG

I So far, have described a growth process QLE(8/3, 0) which is a candidate for
growth of a metric ball on

√
8/3-LQG.

I Not obvious that QLE(8/3, 0) corresponds to the metric balls in a metric space

I Requires an additional argument — make use of a trick developed by Sheffield,
Watson, Wu in the context of CLE4. Reduces (in a non-trivial way) to the
reversibility of whole-plane SLE6.

I Still a lot of work to show that resulting metric space structure has the law of TBM
and that

√
8/3-LQG and TBM are measurable with respect to each other. But can

start to see the Brownian map structure emerge: boundary lengths of metric balls
in both spaces evolve in the same way.
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Quantum Loewner evolution
QLE(8/3, 0) is a member of a family of processes which are candidates for the scaling
limits of DLA and the dielectric breakdown model on LQG surfaces.

More in Scott Sheffield’s talk on Friday.
Jason Miller (Cambridge) LQG and TBM July 15, 2015 22 / 24



Further questions

I What is the law of the geodesics for
√

8/3-LQG?

I What is their dimension?

I What about γ 6=
√

8/3?

I Is there an explicit description of the metric space structure (like for TBM)?
I What is the dimension of the metric space?
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Thanks!
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