
ANALYSIS II EXAMPLES 4

Michaelmas 2005 J. M. E. Hyland

These Basic Questions cover the last quarter of the course. There are a few changes from last year.
Since general topological phenomena are now treated in Metric and Topological Spaces, it seemed
right to put more stress on applications. There are too many Additional Questions: but they should
not do you any harm.
Comments and corrections are welcome and may be e-mailed to me at m.hyland@dpmms.cam.ac.uk.

Basic Questions

1. For each of the following sets X , determine whether the given function d defines a metric on X :
(i) X = Rn, d(x, y) = min{|x1 − y1|, . . . , |xn − yn|}.
(ii) X = Z, d(x, x) = 0 for all x, otherwise d(x, y) = 2n if x − y = 2na where a is odd.
(iii) X = Q, d(x, x) = 0 for all x, otherwise d(x, y) = 3−n if x − y = 3na/b where a, b are prime

to 3 (and n may be positive, negative or zero).
(iv) X = {functions N → N}, d(f, f) = 0, otherwise d(f, g) = 2−n for the least n such that

f(n) 6= g(n).
(v) X = C, d(z, w) = |z − w| if z and w are on the same straight line through 0, otherwise

d(z, w) = |z| + |w|.

2. Let (X, d) be a metric space. Show that

d1(x, y) = min(1, d(x, y)) and d2(x, y) =
d(x, y)

1 + d(x, y)

are metrics on X topologically equivalent to d. Are the metrics d, d1 and d2 uniformly equivalent?
Are they Lipschitz equivalent?

3. (i) Suppose that A ⊆ X is a subset in a metric space (X, d). Show that

d(x, A) = inf
a∈A

d(x, a)

defines a continuous real-valued function on X .
(ii) Suppose that A and B are disjoint closed sets in a metric space (X, d). Show that there exist

disjoint open sets U and V with A ⊆ U and B ⊆ V .
(iii) Give an example of disjoint closed sets A and B in R2 with points an ∈ A and bn ∈ B such

that d(an, bn) → 0 as n → ∞. (So disjoint closed sets need not be a finite distance apart.)

4. Suppose that (X, dX) is a metric space. For Y ⊆ X let (Y, dY ) be the induced metric subspace.
(i) Show that U is open in (Y, dY ) if and only if U = Y ∩ V for some V open in (X, dX).
(ii Show that A is closed in (Y, dY ) if and only if A = Y ∩ B for some B closed in (X, dX).

5. (i) Show that the space of real sequences a = (an)∞n=1 with all but finitely many of the an are
zero is not complete in the norm defined by ‖a‖1 =

∑∞

n=1
|an|. Is there an obvious ‘completion’?

(ii) Show that d(f, g) =
∫ b

a |f(x)− g(x)| dx is a metric on C[a, b] the space of continuous functions
on [a, b]. Is (C[a, b], d) complete?

6. Show that x = cosx has a unique solution. Use a reasonable pocket calculator to find the solution
to some decimal places. (This should take no time. Remember to work in radians!)

1



2 ANALYSIS II EXAMPLES 4

7. Consider the map T : R → R defined by T (x) = x3 − 3x2 + 3x. For which initial values x0 ∈ R

does the sequence of iterates xn = T n(x0) converge and to what value? (Clearly it will be helpful
to sketch a graph; but you should give proofs!)

8. Suppose that (X, d) is a (not necessarily complete) metric space and that T : X → X is a
contraction.

(i) Show that if T has a fixed point, then it is unique.
(ii) Show that for any choice of x0, if the sequence xn defined by setting xn+1 = Txn converges,

then it converges to a fixed point of T .
(iii) Show that if T has a fixed point, then for any choice of x0, the sequence xn defined by setting

xn+1 = Txn converges to the fixed point.
(iv) Give an example of a non-empty metric space (X, d) and contraction T with no fixed point.

9. [Tripos IB 96401(b), modified] (i) Suppose that (X, d) is a nonempty complete metric space, and
f : X → X a continuous map such that, for any x, y ∈ X , the sum

∑∞

n=1
d(fn(x), fn(y)) converges.

Show that f has a unique fixed point.
(ii) By considering the function x 7→ max{x − 1, 0} on the interval [0,∞) ⊆ R, show that a

function satisfying the hypotheses of (i) need not be a contraction mapping.
(iii) Let φ be a continuous real-valued function on R× [a, b] which satisfies the Lipschitz condition

|φ(x, t) − φ(y, t)| ≤ M |x − y| , for all x, y ∈ R and t ∈ [a, b],

and let g ∈ C[a, b]. Define F : C[a, b] → C[a, b] by F (h)(t) = g(t) +
∫ t

a φ(h(s), s) ds . Show by
induction that

|Fn(h)(t) − Fn(k)(t)| ≤
1

n!
Mn(t − a)n ‖h − k‖∞ ,

for all h, k ∈ C[a, b] and a ≤ t ≤ b, and deduce that F has a unique fixed point.
(iv) In the original 1996 Tripos question from which this question was adapted, the word ‘contin-

uous’ in the second line of part (i) was accidentally omitted. Give a counterexample to the result
which the 1996 IB students were asked to prove.

10. [Tripos IB 95401(b)] For which a and b, with a ≤ 0 ≤ b, is the mapping T : C[a, b] → C[a, b]
defined by

T (f)(x) = 1 +

∫ x

0

2t f(t) dt

a contraction? Deduce that the differential equation

dy

dx
= 2xy , with y = 1 when x = 0 ,

has a unique solution in some interval containing 0. In what interval can the differential equation
be solved?

11. For fixed B ∈ Mn(R) define fB : Mn → Mn by fB(X) = X − exp(X) + B.
Show directly that if ‖X‖ ≤ K and ‖Y ‖ ≤ K, then ‖fB(X) − fB(Y )‖ ≤ ‖X − Y ‖(eK − 1).
Show that if ‖I − B‖ ≤ 1/5 then fB maps the ball {X : ‖X‖ ≤ 1/3} into itself, and deduce that
the equation exp(X) = B has a solution for ‖X‖ ≤ 1/3.

12. Consider the map Φ : Mn(R) → Mn(R) defined by Φ(A) = A.At. Show that the image of Φ is
included in a subspace of dimension 1

2
n(n + 1). What is the derivative of Φ? What is the rank of

Φ′(I), the derivative of Φ at the identity matrix I?
Let On(R) be the group of orthogonal transformations in n dimensions. Show that there is

an open neighbourhood U of I ∈ On(R) and a differentiable map from a 1

2
n(n − 1)-dimensional

Euclidean open ball V to Mn which is bijective onto U . Deduce the same result for an arbitrary
P ∈ On(R).

Let son(R) be the space of skew symmetric real matrices. What is its dimension? Can you describe
an explicit differentiable map from a open neighbourhood of 0 in so(n) to an open neighbourhood
of I in On(R)?
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Additional Questions

13. A metric d on a set X is called an ultrametric if it satisfies the following stronger form of the
triangle inequality:

d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X .

Which of the metrics in question 1 are ultrametrics? Show that in an ultrametric space ‘every
triangle is isosceles’ (that is, at least two of d(x, y), d(y, z) and d(x, z) must be equal), and deduce
that every open ball in an ultrametric space is a closed set. Does it follow that every open set must
be closed?

14. There is a persistent ‘urban myth’ about the mathematics research student who spent three
years writing a thesis about properties of ‘antimetric spaces’, where an antimetric on a set X is a
function d : X × X → R satisfying the same axioms as a metric except that the triangle inequality
is reversed (i.e. d(x, z) ≥ d(x, y) + d(y, z) for all x, y, z). Why would such a thesis be unlikely to be
considered worth a Ph.D.?

15. Show that the map f : R2 → R defined by

f(x, y) =

{

x if y is irrational,
2x if y is rational,

takes open sets to open sets, but is not continuous.

16. Suppose (X, dX) and Y, dY ) are metric spaces and f : X → Y is a map between them.
(i) Let {Ui : i ∈ I} be a family of open subsets of X with X =

⋃

{Ui : i ∈ I}. Show that f is
continuous if and only if all the restrictions fi : Ui → Y of f to Ui are continuous.

(ii) Let A and B be closed subsets of X with A ∪ B = X . Show that f is continuous if and only
if all the restrictions fA : A → Y and fB : B → Y of f to A and B respectively are continuous.

17. (i) Show that GLn(R), the collection (group) of all invertible matrices, is an open subset of the
space Mn(R) of all matrices.
[Hint: Show that GLn(R) is the inverse image under a continuous map of some (simple) open set.]

(ii) Show that On(R), the collection (group) of all orthogonal matrices is a closed subset of the
space Mn(R) of all matrices.
[Hint: Show that On(R) is the inverse image under a continuous map of some (simple) closed set.]

18. Suppose that f : X → Y is a continuous map. Consider the graph Gf ⊆ X × Y of f defined by

Gf = {(x, y) : f(x) = y} .

(i) Show that Gf is closed in X × Y (equipped with a product metric).

(ii) Show that the subspace Gf of X × Y is homeomorphic to X .

19. [Tripos IB 93301(b)] Let (X, d) be a metric space without isolated points (i.e. such that {x} is
not open for any x ∈ X), and (xn)n≥0 a sequence of points of X . Show that it is possible to find a
sequence of points yn of X and positive real numbers rn such that rn → 0, d(xn, yn) > rn and

B(yn, rn) ⊆ B(yn−1, rn−1)

for each n > 0. Deduce that a nonempty complete metric space without isolated points has un-
countably many points. [This is a direct generalization of a proof of the uncountability of R.]

20. Suppose that (X, d) is a complete metric space. Let U ⊂ X be a proper open subset with
complement A = X − U . Show the following.

(i) d(x, A) = inf{d(x, a) : a ∈ A} is a continuous real-valued function on X .
(ii) f(x) = (d(x, A))−1 is a continuous real-valued function on U .
(iii) d̄(x, y) = d(x, y) + |f(x) − f(y)| is a metric on U .
(iv) d and d̄ are equivalent metrics on U , but are not in general uniformly equivalent.
(v) (U, d̄) is a complete metric space.
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21. Is T : C[0, 1] → C[0, 1] ; Tf(x) =
∫ x

0
f(t2)dt a contraction mapping? Show that T has a unique

fixed point.

22. Suppose (X, d) is a metric space and T : X → X satisfies d(Tx, T y) < d(x, y) for all x 6= y in
X .

(i) Show that if T has a fixed point, then it is unique.
(ii) Show that for any choice of x0, if the sequence xn defined by setting xn+1 = Txn converges,

then it converges to a fixed point of T .
(iii) Give an example of a metric space (X, d) and map T : X → X , satisfying d(Tx, T y) < d(x, y)

for all x 6= y in X , and with a fixed point, but where there are choices of x0 such that the sequence
xn defined by setting xn+1 = Txn does not converge.

23. Consider Mn(R), the space of n × n real matrices. Show that there are open neighbourhoods
U and V of the identity matrix I such that if B ∈ V then B4 ∈ U , and for every A ∈ U there is a
unique B ∈ V with B4 = A.

24. Let f : R2 → R be a continuous function satisfying a Lipschitz condition

|f(x, y1) − f(x, y2)| ≤ K|y1 − y2| .

Suppose that y = g(x) is a solution to the differential equation

dy

dx
= f(x, y)

with y = y0 at x = x0 on an interval (a, b) with x0 ∈ (a, b).
(i) Show that if g(x) is bounded on (a, b), then g is uniformly continuous on (a, b).
(ii) Show that if g is uniformly continuous on (a, b), then g extends to a continuous function on

[a, b].
(iii) Hence show that if g(x) is bounded on (a, b), then g extends to a solution h of the differential

equation on an interval (c, d) strictly including (a, b).
(iv) Deduce that if (a, b) is a maximal interval on which we have a solution y = g(x) of the

differential equation, then the solution g(x) is unbounded on (a, b).

25. Suppose h : [a, b] → R and K : [a, b]2 → R are continuous. Show that for λ sufficiently small,

the map T : C[a, b] → C[a, b] defined by Tf(x) = λ
∫ b

a
K(x, y)f(y)dy+h(x) is a contraction. Deduce

that, for λ sufficiently small, the (Fredholm) integral equation

f(x) = λ

∫ b

a

K(x, y)f(y)dy + h(x)

has a unique solution in C[a, b].

26. What are the solutions to the differential equations

(i)
dy

dx
= y2 , (ii)

dy

dx
= 3y2/3 , (iii)

dy

dx
= 2x(1 + y2) ?


