ON THE TATE-SHAFAREVICH GROUPS OF CERTAIN
ELLIPTIC CURVES
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ABSTRACT. The Tate-Shafarevich groups of certain elliptic curves
over F, () are related, via étale cohomology, to the group of points
of an elliptic curve with complex multiplication. The Cassels-Tate
pairing is computed under this identification.
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1. INTRODUCTION

Let k be a global field. One of the fundamental arithmetic invariants
associated to an elliptic curve E over k is the Tate-Shafarevich group
II(k, E'), which measures (in some sense) the failure of the Hasse prin-
ciple for the curve E. Knowledge of its finiteness is the main barrier
to the existence of an effective algorithm for computing the group of
rational points of E [17].

When £ is a number field, the Tate-Shafarevich group is very mys-
terious. It has been computed only in a handful of examples, although
there are many curves for which the [*°-torsion is known for some prime
[. On the other hand, if k£ is a global field of positive characteristic p,
a little more is known. For example, a curve over such a field can be
interpreted as the generic member of a family of elliptic curves over an-
other curve over a finite field, and one knows that the Tate-Shafarevich
group is finite if the total space of this family is a rational surface or
a K3 surface [8], [2]. Furthermore, if the {*-torsion of III is finite for
some prime [, then the whole group must itself be finite [16].

The aim of this note is to exhibit a member of a family of examples of

elliptic curves defined over global fields of positive characteristic, where
1
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the Tate-Shafarevich group takes on a particularly pleasant form. We
can also give an explicit formula for the Cassels-Tate pairing.

Let p be a prime congruent to 1 modulo 4, and let ¢ be a power of
p. Consider the elliptic curve

Ett—1)y* =2z —1)(z —1)
over the field F,(¢). The above equation can be thought of as defining

a family of elliptic curves over IP’}]F . In fact, the total space of the

minimal regular model of this familqy is a K3 surface, cf. 6], chapter
8. Thus we know a priori that II(FF,(¢), E) is finite. We will follow
[16] in relating the Tate-Shafarevich group to the Brauer group of this
surface and then applying the methods of étale cohomology.

We state our results as follows. Factor p = 77 in the field of Gaussian
integers, where 7 is chosen to be congruent to 1 modulo (1 + 7)3.

Theorem 1. Let [ # p be an odd prime. There is an isomorphism
II(F,(t), E)[1] = (Z[i] ® Qi/Zy)[(n/7)" - 1],
where q = p.
Here we view (7/7)7 — 1 as an element of the ring Z[i| ® Z;. The
group on the right above is the kernel of multiplication by this element.

Thus the order of the [-part of the Tate-Shafarevich group depends only
on the valuations of (7/7)/ — 1 at the places of Q(i) lying above .

Remark. One can show by a computation with L-functions that the
p>°-torsion of III is trivial. In fact, since III is finite, the conjecture of
Birch and Swinnerton-Dyer is known to hold in this case [16], and this
allows one to compute the order of III.

The Cassels-Tate pairing is a non-degenerate skew-symmetric pairing
(,): II(F,(¢), £) x HI(F,(t), E) — Q/Z = &,Q,/Z,.
We shall recall its definition below.

Theorem 2. Let | # p be an odd prime, and let x,y be elements of
HI(F,(t), E) killed by I". Choose representatives x = o/I",y = [/I",
where a and (B are Gaussian integers, under the above isomorphism.
Then we can compute the Cassels-Tate pairing of x and y, viewed as
an element of Q;/Z;, as

(x,y) = —RaR ((%)f Pﬁn — lzﬁn) - SaS ((%)f pﬁn — l%) mod 7.

Here R and & denote real and imaginary part, respectively.
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Notations: We fix algebraic closures Q of Q and RJ of F,. If X is a
variety over a subfield of Q or Fp then we write X to denote the base
change of this variety to the corresponding algebraic closure.

I would like to thank Benedict Gross for encouraging me to think
about this example.

2. THE COMPUTATION

Consider the elliptic pencil defined by the equation
tit — 1)y = 2(x — 1)(z — 1),

considered as having coefficients in K (¢), where K = Q(i). Passing
to the minimal regular model gives an elliptic K3 surface X, which is
birational over K to the quotient of the product

A = F, x Ey, where I is the curve yf = xf’ — x;,

by the cyclic group generated by the order 4 automorphism
o ((z1, 1), (x2,92)) = (=21, i91), (=32, —iy2)).

For an explicit description of this map, see [14]. This quotient has
rational double points for singularities; there are 4 of type As, and 6
of type A;, corresponding to the fixed points of ¢ and 2. Thus X can
also be obtained by blowing up (infinitely near) points on the quotient
to resolve the singularities |7].

Write Z for the union of the exceptional divisors, and U for its
complement in X. Let A be the constant sheaf p;» for a fixed odd
prime [. We have an exact sequence in étale cohomology [4]

0 — H2(U,A) — H2(X,A) —= H2(Z,A) — 0.

This sequence has a natural splitting: Z is a union of P!'’s, and the
images of these under the cycle map give free generators for H%(Z, A).

Let U’ denote the complement of the fixed points of ¢ and o2 in A.
Since o acts in an étale manner on U’, we have isomorphisms

HZ(U,N) = HZ (U, A = H*(A,0)©).
It follows that we have a canonical decomposition
H*(X,A\) = H*(A, N @ H*(Z,\).

In what follows, if S is a smooth surface we will write Hg = H?(S, Z;(1))
and Cg for the Z; span in Hg of the image of the cycle map. Combining
the above formula with the Kiinneth theorem gives an isomorphism

Hyx/Cx = (H'(Ey, 7)) ® H'(E2, 7)) (1) /M,
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where M is the intersection of the Z;-span of the image of the cycle
map with the (1,1) Kiinneth summand.

At this point it is helpful to note that, since X is an elliptic K3
surface, numerical, homological and algebraic equivalence of divisors
are all equivalent. Moreover, the cycle map (viewed as a map Pic(X) —
H?) is injective even after tensoring with Z;, and has primitive image.
Finally, M can also be computed as the space of elements fixed by some
open subgroup of the Galois group, since Tate’s conjecture T holds for
K3 surfaces [15]. (Tate’s conjecture can also be verified explicitly in
this case using, for example, the theorem of Shioda quoted below).

The prime p splits in K; write p = 77, where 7 = 1 mod (1 + 7).
We choose an extension of the place m to Q. We can reduce the above
picture modulo 7; use a subscript S, to denote such reduction.

We begin by computing the [*°-torsion of the cohomological Brauer
group Br(X,;) = H*(X,,G,,). Since this group is I-divisible it suffices
to consider instead the l-adic Tate module 7} Br X,. The Kummer
exact sequence gives, after passing to the limit, an exact sequence of
G-modules

0— NS(X;) ® Z — H*(X,,Z(1)) — T, Br X, — 0.
Thus we have isomorphisms of modules for Frob,
TiBr X, =2 Hx/Sx = Ha/Sa = (H' (B, Z) @ H (Es, 7)) (1)/ M,

with M as above. Making use of the identification of H'(E};, Z;) as the
dual of T} F, we have

T, Br X, = (T,E, ® T,E)") (~1)/M.

Now, the main theorem of complex multiplication [13| shows that
T\E, = T)Fy = Z[i] ® Z; as modules for Frob,, where Frob, now acts
as multiplication by 7 ® 1. On the other hand, ¢ acts on T;F; as mul-
tiplication by ¢ ® 1 and on T;F, as multiplication by —: ® 1. We thus
have an isomorphism

T,Br X, 2 7Z[i| ® 7,

with Frob, acting as multiplication by 7/7 ® 1.

Now, let F, be a finite subfield of our fixed algebraic closure Fp, and
set G = Gal(F,/F,). One knows that III(F,(t), E) can be identified
with the Brauer group Br(X,®F,) of X, ®F, [5]. We will now compute
Br(X, @ F,)[l>].
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First, the Hochschild-Serre spectral sequence gives a short exact se-
quence

0— H'(G, PiC(X_w)> —Br(X; @ F)) — BT(X_W)G —0.
At this point, we apply a theorem of Shioda.

Theorem 3 ([12]). Let X be an elliptic surface with a section over
an algebraically closed field. Let V be the sublattice of NS(X) spanned
by the zero section, a smooth fibre, and the components of the singular
fibres not meeting the zero section. Then V is freely spanned by these
cycles, and we have an isomorphism

MW (X) — NS(X)/V.

We call V' the trivial lattice. Using the above theorem it is not hard
to see that H'(G,V) always vanishes; in our case V even has trivial
Galois action. It is easily computed (using, for example, a 2-descent)

that MW (X,) is a 2-torsion group of order 4, and so we find that
HY(G, Pic(X,))[I°] = 0 and hence Br(X,)[I*] = Br(X,)[I*]¢.
Theorem 4. Let [ # p be an odd prime. There is an isomorphism
II(F, (t), )] = (Z]i] ® Qu/Z0)|(w/m) — 1],
where ¢ = p.
We now compute the Cassels-Tate pairing (, ) on Br(X;)[(*], follow-
ing the description of [16]. To simplify notation, we now write X, to

mean X, ® F,. After the Kummer exact sequence, we have for every
n > 1 a surjection

H?( X, pun) — Br(Xz)[I"].

Given z,y € Br(X,)[l"], we choose pre-images Z,y under this map.
Associated to the exact sequence of sheaves

n

O Hin l,LIQn X /,Lln O

is a boundary map

H2( X, ) —= H3( X0, piyn).

We then form the cup product ¥ U 07 € H*(X,, u$?). The image of
this element under the canonical inclusion

HY (X, p2) —> HY (X, Qu/Z4(2)) = Q/Z,

defines (x,y). It is known that this pairing is skew-symmetric.
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To compute this pairing, we again refer to the Hochschild-Serre spec-
tral sequence for the covering X, — X, in order to compute the co-
homology of the sheaf j;». This sequence degenerates at the E, page,
and we have isomorphisms

HQ(XTHMl") = H2(X_7r7 Ml")Ga H3(X7T7,ul”) = H2(Y7r7 Ml")G,

compatible with the relevant cup products. The map ¢ above becomes
the first boundary map in group cohomology associated to the exact
sequence

0 H2(7ﬂ7#l”)HH2(Z7H’ZQ”)*>H2(X_’MMZ”)*>O-

We can always choose pre-images 7,y lying in the summand we have
identified above with (H'(E1, ) ® H'(Es, j2))'*). The relevant cup
product is the tensor product of the cup products

H1<Ei, ,U/l”) X HI(EZ‘, ,ul") E—— HQ(EZ', /1“1622)

With the identifications made above this is none other than the Weil
pairing [3], and following [9] this is induced by the negative of the
canonical polarization:

Zi| X Z[i]| ——Z
(z,y) ——— =3(27).
Putting all this together, we obtain the following theorem.
Theorem 5. Let | # p be an odd prime, and let x,y be elements of
LI(F, (1), B)I™] = (Z[]] ® Qi/Z) (r/7) —1]

killed by I™. Choose representatives x = a /1™,y = B/1I™, where o and [3
are Gaussian integers. Then we can compute the Cassels-Tate pairing
as

(z,y) = —RNaR ((%)fpﬂn — Pﬁn) — GSaS ((%)fpﬁn — Pﬁn) mod 7.

3. OTHER EXAMPLES

One can repeat the same argument with the curve
By 4+ (1= 3tHay —t* (1 — 1)y = 23,
also studied in [14]. This time one replaces the curves E; with the curve
given by the equation y* = x3 + 1, and the field K with Q(v/—3). One
must further assume that p is an odd prime congruent to 1 modulo 3.

What the curves £ and E’ have in common is that, working in charac-
teristic zero, the associated minimal regular models over the projective
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line are singular K3 surfaces; that is, their Picard numbers are equal to
20, the maximum possible. The conditions on the prime p mean that
one avoids those primes at which the K3 surfaces are supersingular, in
the sense of Artin [1]. This means that the rank of the Picard group
does not grow when one reduces modulo p.

The singular K3 surfaces have been classified up to isomorphism over
C by Shioda and Inose [10]; in fact, they are all essentially the Kummer
surfaces of products of pairs of isogenous CM elliptic curves. (The
Kummer surface of an abelian surface is the minimal desingularisation
of the quotient by +1; it is always a K3 surface). In particular, they
can all be defined over number fields, and they all admit pencils of
elliptic curves. Taking any such pencil and enlarging the base field to
trivialise the Galois action on the Néron-Severi group, one can apply
similar reasoning to the above to compute the Tate-Shafarevich group
(and, indeed, the L-function) of the associated mod p elliptic curves,
whenever the reduction is ordinary (as opposed to supersingular).

One can ask what happens when one instead takes a prime p such
that the reduction is supersingular. In fact, a cohomological computa-
tion of the Brauer group in this situation, over a sufficiently large field,
already appears in [1]. Combining this with results of [11], one sees
that it is a p-torsion group of order ¢/p? over the field with ¢ elements,
a computation valid whenever the action of the Galois group on the
Néron-Severi group is trivial.
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