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1 Introduction

The purpose of this paper is to shed new light on functoriality for regular, algebraic automorphic repre-
sentations over CM fields which satisfy a self-duality condition. We formulate three conjectures. The first,
conjecture below, asserts that one can find congruences between algebraic modular forms on unitary
groups of a certain type. This is a natural generalization of several results going back to a theorem of Ribet
(see [Rib84]) concerning elliptic modular forms, and is closely related to the conjectural ‘Thara’s lemma’ of
[CHTOS).

The other two conjectures are specific instances of Langlands’ functoriality, essentially the tensor
product GLy x GL,, — GLs, and the symmetric power GLs — GL,, 11 for the automorphic repesentations
under consideration here; see conjectureand conjecture respectively. Our main theorem (see Theorem
below) gives a specific relation between this family of conjectures. As a particular application, we can
prove:

Theorem 1.1. Let w be a regular algebraic automorphic representation of GLa(Ag), which is not automor-
phically induced from a quadratic extension. Then (cf. below):
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1. Assume conjecture below. Then for each odd integer 1 < n < 25, the n'* symmetric power lifting
of ™ exists, as an automorphic representation of GL,11(Ag).

2. Assume conjectures and below. Then for each integer n > 1, the n'" symmetric power lifting
of ™ exists, as an automorphic representation of GL,11(Ag).

We refer the reader to §3|for a detailed description of our results. We begin in §2| by recalling some
background material on automorphic representations and their attached Galois representations. The proof

of Theorem [3.4] occupies §§4] -
In a sequel to this paper [CT], we will prove some cases of level-raising, closely related to conjecture
below, and apply this to the automorphy of symmetric powers, following the program outlined here.

2 Automorphic forms

2.1 GL,

Let p be a prime, and let K be a finite extension of Q,. Let 2 denote an algebraically closed field of
characteristic zero. There is a bijection

reck : Adme GL, (K) <> WDEWk,

characterized by a certain equality of epsilon- and L-factors on either side, cf. [HTO01], [Hen02]. Here we
write Admg GL,,(K) for the set of isomorphism classes of irreducible admissible representations of this
group over 2, and WDGWy for the set of Frobenius-semisimple Weil-Deligne representations (r, N) of
Wi valued in GL,(2). We define reck (m) = recx(r| - |[1=™)/2). This is the normalization of the local
Langlands correspondence with good rationality properties; in particular, for any ¢ € Aut(C) and any
7 € Admg GL,,(K) there is an isomorphism

recf(("w) =24 recIT( (7).

This can be seen using, for example, the characterization of reck and the description given in [Tat79) §3] of
the action of Galois on local e- and L-factors. It follows that for any €2 we can define a canonical bijection

reck : Admg GL, (K) <> WDg Wk

Suppose instead that K is a finite extension of R. Then there is a bijection (Langlands’ normaliza-

tion):
reck : Adme GL,(K) <> ReptWk.

Here we write Adme GL,,(K) for the set of infinitesimal equivalence classes of irreducible admissible repre-
sentations of GL,, (K) and Rep¢ Wi for the set of continuous semisimple representations of W into GL,, (C).
We define reck (1) = recg (| - |[1=™)/2).

Now suppose that E be an imaginary CM field with totally real subfield F', and let ¢ € Gal(E/F)
denote the non-trivial element.

Definition 2.1. 1. We say that an automorphic representation © of GL,(Ag) is RACSDC (regular al-
gebraic, conjugate self-dual, cuspidal) if it satisfies the following conditions:
e [t is conjugate self-dual: ¢ = V.
e [t is cuspidal.
o [t is regular algebraic. By definition, this means that for each place v|oo of E, the representation

recjbiu (my) is a direct sum of pairwise distinct algebraic characters.

2. We say that a pair (m,Xx) of an automorphic representation m of GL,(Ag) and a character x :
F*\A% — C* is RAECSDC (regular algebraic, essentially conjugate self-dual, cuspidal) if it satisfies
the following conditions:



e [t is essentially conjugate self-dual: ™ = 7V @ x o Ng/r.
e 7 is cuspidal.
e 7 is reqular algebraic.

e X is an algebraic character such that x,(—1) = (=1)" for each place v|co.

3. We say that an pair (7w, x) of an automorphic representation © of GL,(Ar) and a character y :
FX\Aj — C* is RAESDC (regular algebraic, essentially self-dual, cuspidal) if it satisfies the following
conditions:

o [t is essentially self-dual: m = 7V ® X.
e 7 is cuspidal.

e 7 is reqular algebraic. By definition, this means that for each place v|oco, the representation
recgv (my)|cx is a direct sum of pairwise distinct algebraic characters.

e X is an algebraic character such that x,(—1) is independent of the place v|oo.

If 7 is a regular algebraic automorphic representation of GL,, (Ag), then for each embedding T :
E — C, we are given a representation r, : C* — GL,(C), induced by recg, (7, ), where v is the infinite place
induced by 7, and the isomorphism E,;¢ =2 C* induced by 7. This representation has the form

relz) = (/27 (3/2)7),

where a,; € (n —1)/2 + Z. We will refer to the tuple a = (ar1,...,0rn)reHom(E,c), Where for each 7
we have a,1 > ar2 > -+ > ar,, as the infinity type of 7. We also define a tuple A = (A7) cHom(E,c) =
(Ar1s+ -+ Arn)reHom(E,C), Which we call the weight of 7, by the formula A\, ; = —ar y1-i+(n—1)/2—(n—1).
Then for each 7 : E < C, we have A1 > --- > A, ,,, and the irreducible admissible representation of GL,,(C)
corresponding to 7 has the same infinitesimal character as the dual of the algebraic representation of GL,,(C)
with highest weight A.. If 7 is a regular algebraic automorphic representation of GL,,(Ar), then for each
embedding F — C, we get a representation r, = recg, (7,)|cx, where v is the place of F corresponding to
7. In this case we use the same formulae to define the infinity type and the weight of the pair 7.

We will also have cause to consider representations which are not cuspidal. Suppose that o1, 02
are conjugate self-dual cuspidal automorphic representations of GL,,, (Ag), GL,,, (Ag), respectively, and that
¥ = o7 B oy is regular algebraic. Then the representations o;| - |(”i*")/ 2 are regular algebraic. We call
a representation X arising in this way a RACSD sum of cuspidal representations. In this case, define
a’ = (aL)rcHom(p,c) by the requirement that (al; + (n; —n)/2,...,a%,, + (n; —n)/2) equal the infinity
type of ;| - |(™~™)/2 and define b = (br)reHom(E,c) by the formula

(Ora, -y brp) = (a;17 .. ,ai)m,ai)l, cee a37n2).
Then there is a unique tuple w = (- ) ctHom(£,c) € SHemEC) guch that for each T € Hom(E, C), the infinity
type of ¥ is (b (1), - -+ 07w, (n))reHom(E,c)- Here &, denotes the symmetric group on the set {1,...,n}.

Theorem 2.2. 1. Let ™ be a RACSD sum of cuspidals or a RAECSDC automorphic representation of
GL,(Ag), and fix an isomorphism ¢ : Q; = C. Then there exists a continuous semisimple representation

r(m): Gg — GLn(@l)
satisfying the following property: for every finite place v of E not dividing [, there is an isomorphism
WD(T‘L(W”GEv )F'SS = recgv(flﬂv).

For each place v of E dividing l, r,(7)|g, is de Rham, and if 7 : E, — Q, is an embedding then the
Hodge Tate weights with respect to this embedding are

HT,(r, (7)) ={-a,-1,0+(n—=1)/2,...,—a,-1,, + (n — 1)/2}.



2. Let (m,x) be a RAESDC automorphic representation of GL,(AFr), and fix an isomorphism ¢ : Q; = C.
Then there exists a continuous semisimple representation

r.(7) : Gp — GL,(Q))
satisfying the following property: for every finite place v of F' not dividing l, there is an isomorphism

WD(r,(m)las, )" = reck, (17 1m).

For each place v of F dividing I, r,(7)|ay, is de Rham, and if T : F, — Q, is an embedding then the
Hodge Tate weights with respect to this embedding are

HT,(r, (7)) ={-a,-1,n+(n—1)/2,...,—a,-1, , + (n —1)/2}.

Proof. This theorem is due to many people. We give references for the case of a RACSDC automorphic
representation 7, from which the others can be deduced. In this case the existence of the representation
r, () is proved in [CH| Theorem 3.2.3]. The strong form of local-global compatibility is proved in [Car12]. O

Lemma 2.3. Let 7 be one of the above types of automorphic rlepresentations, and fix an isomorphism
1:Q; = C. Let o be a continuous automorphism of Q;. Then “° " is defined, by [Clo90, Theorem 3.135].
There are isomorphisms

T‘L(L(n_lﬂ) = TLU(TF) = JTL(W)'

Proof. This follows from local-global compatibility, the rationality of the local Langlands correspondence for
GL,,, and the Chebotarev density theorem. O

We will use the following convention for residual representations. If L is a number field and p :
Gr — GL,(Q,) is a continuous representation, then after choosing an invariant lattice, defined over a finite
extension of Q;, we obtain by reduction modulo ! a residual representation valued in GLn(E). By the
principle of Brauer-Nesbitt, the semisimplification of this representation depends, up to isomorphism, only
on p, and will be denoted p: G — GL,,(F,).

2.2 Ordinary forms

We recall that deformation theory in the context of ordinary, conjugate self-dual automorphic representations
has been studied by Geraghty [Ger]. Let L = E or F. If 7 is a regular algebraic automorphic representation
of GL,(Ar) of infinity type a and weight A, we define Hecke operators U i,v as follows at primes v above [.

They depend on a choice of isomorphism ¢ : Q; = C, which we fix for the rest of this section, as well as a
choice of uniformizer w, of Or,,. Define a matrix

o) = diag(wy, ..., @y, 1,...,1)
—_——— ——
J n—j

and set 4 '
Uy, = H LT (mgy ) TAm T F A1 [Twe(v)ad Twe(v)] .

T

By definition, the subgroup Iw.(v) C GL,(Og,) is the subgroup of matrices whose reduction modulo w¢
is an upper-triangular matrix with 1’s on the diagonal, and the product runs over embeddings 7 : L — C
such that (=17 induces the place v of L. We note that by [Ger, Lemma 2.3.3], the Hecke operators U{,

. . . 41 _q I .
commute with the inclusions ¢ 17TUWC(U) — 1 17vac,(v) when ¢ > c. It therefore makes sense to omit ¢ from

the notation defining U i »- We also write T.(v) C Iw(v) for the group of diagonal matrices with integral
entries which are congruent to 1 modulo @¢, e, for the absolute ramification index of [L, : Q], f, for the

v

absolute residue degree, and val : @lx — Q for the valuation such that val(l) = 1.



Definition 2.4. Let 7 be a regular algebraic automorphic representation of GL,(AL) of weight X. We say

that w is v-ordinary if for each place v of L dividing [, there is an integer ¢ > 1 and a line inside L_lml,wc(v)

which is invariant under each operator Ui,w and such that the eigenvalues of these operators on this line
are all l-adic units.

Lemma 2.5. Let w be a regular algebraic automorphic representation of GL,(AL), and let v be a place of
L dividing l. Then:

1. If L=F and 7 is RACSDC, then the eigenvalues of Uim on Flml,wC(”) are integral.

2. Let m, n denote the normalized Jacquet module with respect to the standard Borel subgroup, and suppose

that 7T'TC (v) £ 0. Then 1~ ', is a subquotient of a representation o = n- IndGL" a1 ® - ® ay, for some

characters o; : LY — Ql such that val(aq (wy)) < val(ag(wy,)) < -+ < val(ay(wy)). If wis t-ordinary,
then val(ay(w,)) < -+ < val(ay,(wy)) and 11w, is the unique generic subquotient of o.

If val(ay(wy)) < -+ < val(an(wy)) and m, is generic, let ug\v denote an eigenvalue of Ug\v with
smallest valuation. Then ug\,v # 0 is unique and there is a unique line inside L_lml)wf(v) where Uﬁ;,v
acts with eigenvalue ug\, j=1,...,n. Finally we have

val(a (@) = val(u} /ud ) — 1/ey Y arj,

the sum being over embeddings T : L — C such that +~'1 induces the place v of L.

Proof. The first part follows from Proposition below, Theorem and the corresponding fact for
automorphic representations of the definite unitary group considered in §2.4] below. For the second part, we

note as in the proof of [Gerl Lemma 5.1.3] that there is for any admissible representation o of GL,,(L,) over

Te(v) , where o denotes the normalized Jacquet module. The kernel of this

Q, a surjection p, : o™We() — gy
map is given by the subspace where some operator U: i’v does not act invertibly, and we have the formula for

all z € glwe(®);

; I (n—1)/2—(i—1 _ 5 )
Po (U4, ) = g AT T i ()~ 2 At (),

In particular, if 7TT =(v) # 0, as in the statement of the lemma, then by Frobenius reciprocity :~'m, is a

subquotient of the representation o= n—Ind%L” a1 @+ @ ap, and 0 = Oues, Qw(1) @+ @ Qy(n). We may

decompose ¢ 17rUWC(U) under the algebra Q,[U }"v, LU ;\lv] as the direct sum of the simultaneous generalized
eigenspaces of these operators; the sum of the eigenspaces corresponding to a tuple of non-zero eigenvalues

is mapped isomorphically onto L_17TT ]E,U).

The tuples appearing in o have the form

n

(Lo oo onaten] )

i=1 j=1

the j** entry having valuation > (val(aw(i) (@) +1/en >, am). If 7 is t-ordinary then there exists w €
S, such that >°7_; (val(au) (@) +1/ey Y., ar;) = 0 for each j = 1,...,n, and hence val(ov, ;) (@y)) =
—1/e, Y ar; for each j =1,...,n. This implies that w = 1 and the val(o;(w,)) are distinct.

Suppose now that 7 is not necessarily t-ordinary, but that the val(a;(w,)) are distinct. After the
Zelevinsky classification [Zel80|, the Jordan-Holder factors of the representation o appear with multiplicity
one, and ¢ has a unique generic subquotient p, characterized by the following condition: p%; is a direct sum
of those characters o, ® - - - ® ay., such that if o, = |- |, some 1 <4, <n, theni < j. If a; = |- |a; then
val(a;(wy)) = —f,+val(a;(w,)), and hence ¢ < j. This certainly holds for the character a1 ®- - - ® ey, which
shows that if 7 is t-ordinary then 7, is generic. Conversely, if 7, is generic then the character o1 ® -+ - ® «vy,



appears in m, y. It follows that there is a unique line inside L_IW},WC(”) where the operators Ui » act with

their eigenvalue u} , of minimal valuation
;

j
val(u = Z (Val ai(wy)) — 1/ey Za”> .

i=1

This completes the proof of the lemma. O

Lemma 2.6. Suppose that w1, 7o are cuspidal conjugate self-dual automorphic representations of GLy, (Ag)
and GL,,(Ag), respectively, where ny + no = n. Suppose that II = w1 B wo is regular algebraic. Then the
representations ;|| =™/2 are regular algebraic, and 11 is v-ordinary if and only if wy |-| ("1 =™)/2 7y |.|(P2=1)/2

are v-ordinary and the following condition on infinity types holds. Recall the Weyl group element w =
Hom(E,C
(wT)TEHOm(E C) € Gnom( )

'T E(—>Ql

. Then w, depends only on the place v of E dividing | induced by the embedding

Proof. We first establish some notation. Let v|l be a place of E. Suppose that m; is the generic subquotient

of the representation n—IndgL"1 81 ® - ® Bn,, and that my is the generic subquotient of the representation
GLn

n-Ind; ™ 91 ®- - - ®@p,, where val(f1(w,)) < --- < val(By, (w,)) and val(y1(w,)) < -+ < val(yn, (wy)). Let

01,300 =PB1,--, BnysV1s -+ - Yng. Since w1, and 7o ,, are unitary and generic, I, is the generic subquotient
of a representation n-Ind$™" a; ®- - -®@ay,, val(a;(w,)) < --- < val(ay,(w,)) and {ay,...,an} = {01, ..., 0, }.

Similarly, let b, c denote the infinity types of m; and my, respectively, and define d by d,1,...,d;, =
brdyeeesbrnyyCriyeeryCrmy. If 71 E — C is an embedding such that ¢='7 induces the place v of E, then

the Weyl group element w, is defined by the condition that d; ,, (;y = ar;, where a is the infinity type of II.

We now come to the proof of the lemma. Suppose first that II is t-ordinary. Then the val(o;(w,)) =
—1/e, Z a,; are distinct. We can therefore define a permutation w,, uniquely determined by m; and 73,
by the formula 4,,, ;) = a;. We show that w, = w, for each 7 as above. Suppose for contradiction that
w, # w, for some 7, and let j be minimal with the property that w,(j 4+ 1) # w,(j + 1) for some 7. Suppose
that

{511}0(1)7"'a5wv(j)} = {Bl?"'aﬁrv7lv"'778}'

Since II is t-ordinary, we have

min(val(B,1(w@y)), val(Vs41(@y))) = val(duw, (j+1)) = —1/€v Z drw, (j+1) = —1/ey Z max(br y4+1,Cr s4+1)-

Suppose that val(f,11(wy)) < val(ysi1(wy)). We have val(f;(w,)) = —1/e, > br; for each i = 1,.
so the previous lemma implies that val(f,41(w@,)) > —1/ey > br 41, and hence > max(bT’TH?cT,Hl)
>, brri1. Since II is regular algebraic, for each 7 we have b, ;41 # ¢ 511 0 equality holds and w,(j+1)
wy(§+1) = r+1. Similarly if val(8,4+1(wy)) > val(vs4+1(wy)) then we deduce w,(j+1) = w,(j+1) = s+1,
a contradiction.
We therefore have w, = w, for each 7, and val(8;(w,)) = —1/ey,Y . brj, 7 = 1,...,n1, and
val(yj(w,)) = —1/ey Y. ¢rjy § = 1,...,na. This implies that 7| - [ =)/2 7, - |("2=7)/2 are -ordinary.
Suppose conversely that 7| - |("177)/2 my| . |("2=7)/2 are 4-ordinary and that the condition on in-
finity types holds. We see that for each j = 1,...,n, val(a;(w@,)) = val(du, ;) = —1/€v D drw, ) =
—1/e, Y ar ;. By the previous lemma, II is also t-ordinary. D

A

2.3 Soluble base change for GL,

Let E be an imaginary CM field with totally real subfield F'. We suppose that L/E is a soluble CM extension.
We also fix a prime [ and an isomorphism ¢ : Q; =2 C

Theorem 2.7. 1. Letw be a RACSDC automorphic representation of GL, (Ag), and suppose thatr,(r)|c,
is irreducible. Then there exists a RACSDC automorphic representation wy, of GL,(AL) such that

r(m)|e, = 7L



2. Suppose that p: Gg — GL,(Q,) is a continuous representation such that p|g, is irreducible, and that
there exists a RACSDC automorphic representation I1 of GL,, (Ar) such that p|lg, = r,(I1). Then there
exists a RACSDC automorphic representation © of GL, (Ag) such that T1 = .

3. Let m be a RACSDC automorphic representation of GL,(Ag) such that r,(7)|a, is irreducible. Then
w18 t-ordinary if and only if mp, is t-ordinary.

Proof. For the first part, the existence of 7y, follows from [AC89, Theorem 4.2]. To see that 7, is cuspidal,
we reduce to the case L/E cyclic of prime order. If 7y fails to be cuspidal then there is an isomorphism
T ® € = 7, where € is an Artin character associated to L/E. This implies that r,(7)|g, is reducible, a
contradiction. The second part follows from [BLGHTIIl Lemma 1.4]. The third part follows from [Ger]
Lemma 5.1.6]. O

2.4 Definite unitary groups

We now suppose that E/F' is everywhere unramified and that [F': Q] is even. Let G be a unitary group in
n variables associated to the extension E/F, quasi-split at every finite place, such that G(R) is compact.
Such a group exists since [F' : Q] is even, and is uniquely determined up to isomorphism. We can choose the
matrix algebra B = M,,(F) and an involution { of B of the second kind, so that G is defined by

G(R)={g€(BarR)|glg=1}

for any F-algebra R. We may choose an order Op C B, stable under f{, so that Op ,, is maximal for any
place w of E split over F. This defines an integral model of G over O, and for any place v of F' split as
v = ww’ in E, we can choose an isomorphism

Op ®oy Of, = M, (Og,,) x M, (Og,.),

such that 1 acts as (g1, 92) — (g2, g1). Projection onto the first factor induces an isomorphism ¢,, : G(F,) —
GL,,(E,) such that t,,(G(OpF,)) = GL,(Og,).

Let [ be a prime, and suppose that every prime of F' above [ splits in E. Let S; denote the set of
primes of F' above [. We choose a prime v of E above v for each v € S;, and let S; denote the set of these
primes. Then, as above, we are given an isomorphism vy : G(F,) = GL,(E5). We write I; for the set of
embeddings F < Q;, and fl for the set of embeddings E < Q; inducing an element of gl. These two sets
are therefore in canonical bijection.

Let K C Q, be a finite extension of Q;, with ring of integers O and residue field k. We suppose
that K contains the image of E under every embedding E < @Q;. To a tuple A = (A\,1,.. - Arn) e, Of
dominant weights of GL,,, we associate a representation My of the group [[, ., G(OF,) as in [Gerl Definition
2.2.3]. It is an O-lattice inside the representation Wx = ®@__7 (Wi, ®p,,r K), where W, _ is the algebraic
representation of GL,,(F),) of highest weight A;, and v is the place of F' induced by 7.

Fix X and an open compact subgroup U = [[, U, C G(A%), such that U, C G(Op, ) for each v € S;.
Let A be an O-algebra. We can then define a space of automorphic forms with A-coefficients as follows. By
definition, Sx (U, A) is the set of functions f : G(F)\G(A¥F) — Mx ®o A such that for all u € U, we have
f(gu) =u; " f(g). Here u; denotes the projection of u to its [I,cs, G(OF,)-component. The relation with
classical automorphic forms is given by the following result. Let A denote the space of automorphic forms on
G(F)\G(A), and let ¢ : Q; = C be an isomorphism. There is an algebraic representation W, of G(F ®@¢ R),
defined by the formula ® 7, Wi, ®p, . C.

Proposition 2.8. There is a canonical isomorphism
(hgi Sa(U, K)) ®1x,. C = Homg(ragr) (Wi, A)-
U

In particular, for any irreducible subrepresentation o C A, we have a canonical subspace 1~'(c>)V C

S)\(Uv@l)'



Proof. This can be proved exactly as in the proof of [CHT08, Proposition 3.3.2]. O

If 7 is an automorphic representation of GL,,(Ag) and o is an automorphic representation of G(Ar),
we say that 7 is the base change of ¢ if for any finite place w of E, the following condition is satisfied:

e If w is split over the place v of F, then 7, = 0, 0 1, is the standard base change of o,.

e If w is inert over the place v of F' and o, is unramified, then 7, is the standard unramified base change
of oy, cf. [Minlll §4.1]

Proposition 2.9. 1. Suppose that o is an automorphic representation of G(Ar). Then there exist dis-
crete and conjugate self-dual representations my, ..., ms of GL,(Ag) such that # = m B ---B 7, is the
base change of o in the above sense.

2. Suppose that w is a RACSDC automorphic representation of GL,(Ag) such that if my, is ramified, then
w 1s split over F. Then there exists an automorphic representation o of G(Ap) such that w is the base
change of o in the above sense.

3. Suppose that m = 7, B is a RACSD automorphic representation of GL,(Ag), where m,, m, are
cuspidal, conjugate self-dual automorphic representations of GLy(Ag) and GLy(AEg), respectively. We
assume the following hypotheses:

o Let w = (Wr)reHom(E,c) denote the Weyl group element associated to the infinity types of ma, mp.
For each place v|oo of F, choose an embedding 1 : E — C inducing v. Then [], w,,y = 1.

e ab is even and a # b.

e If m, is ramified then w is split over F'.

Then there exists an automorphic representation o of G(Ap) such that w is the base change of o in
the above sense.

Proof. The first part follows from [Labl1l, Corollaire 5.3]. The second part follows from [Labl1ll Théoréme
5.4]. The third part can be deduced from results of Mok [Mok]|, exactly as in the proof of [CT] Theorem
3.13]. The only new point to note is that since ab is even, the Whittaker-normalized transfer factors for the
quasi-split group U(n) and its endoscopic group U(a) x U(b) coincide with the Langlands-Shelstad factors
since, in the notation of [CT| §3.6], the virtual representation V = Vg — Vy is trivial in this case. O

Let U =[], U, be an open compact subgroup as above, and suppose that there exists an integer
¢ > 1 such that for each v € Sy, U, = Lgl Iw.(v). For each prime v € S;, fix a uniformizer wy of O, and
define the matrix

o = diag(wsg, ..., w5, 1,...,1).
——— ——

J n—j

We define an endomorphism Ui,v of the space Sx(U, O) by the formula

Ui)v — H flr(w;))7>‘T’"+"'+)‘T’"“*j Lgl [Iwc(ﬂ)a{, Iwc(ﬁ)} ,

T

the product running over the embeddings 7 : E — C such that :~'7 induces the place ¥ of E. These
operators obviously act on Sy(U, K). In fact, they preserve the integral lattice Sx(U, O), by the remark
after [Ger| Definition 2.3.1]. It follows that if o is an irreducible subrepresentation of A such that (0°°)Y # 0
and 0o = W4, then the eigenvalues of Uj , on :71(c>)Y are integral. (This establishes the fact used in

the first sentence of the proof of Lemma )



3 Congruences and functoriality

In this section we formulate some conjectures about automorphic forms which are related to conjugate
self-dual Galois representations. Since we mostly take the point of view of Galois representations, rather
than automorphic forms, we formulate these using a Galois-theoretic language, rather than using e.g. the
automorphic language of [Clo90].

The conjectures below are stated in the context of an imaginary CM field E with totally real
subfield F, and automorphic representations mi,7o,.... When we state later that we will assume that
a given conjecture holds, we mean that it holds for all choices of E/F and automorphic representations
satisfying the given conditions.

3.1 Level raising

We put ourselves in the situation of §2:4 Thus G is a definite unitary group in n variables associated to
a CM extension E/F. Fix an irreducible G(Ap)-subrepresentation o of the space A with oo, = W)Y for
some dominant weight A and isomorphism ¢ : Q; = C. By [Guelll, Theorem 2.3], there exists a continuous
semisimple representation r,(¢) : Gg — Q satisfying the relation WD(r,(0)|g,, )" = recf, (17 0y 0 ty)
for every place w of E split over F. Let wy be such a place, and let vy be the place of F below it. If
Oy O Luw, has an Iwahori-fixed vector and wg does not divide I, then (o) EEW is unramified. We say

that o satisfies the level raising congruence at wy if the eigenvalues aq, ..., ay, of rL(U)|SC§EwO (Froby,, ) satisfy

o = o qqu_i mod mgz , up to re-ordering, where mz C 7, is the unique maximal ideal.

Conjecture 3.1 (LR,,). Suppose that o is t-ordinary and that the irreducible constituents of the residual
representation r,(c) have pairwise distinct dimensions. Suppose further that o satisfies the level-raising
congruence at the place wy.

LetU =[], U, C G(A$) be an open compact subgroup with (6°°)V # 0, and such that for some finite
place v of F, U, contains no non-trivial elements of finite order. Then there exists a second automorphic
representation o1 of G(AF) satisfying the following:

® 0100 =WNY.

o 7,(0)=r,(01).

e o0y is t-ordinary and (03°)Y # 0.

® 01 4, O L, 15 an unramified twist of the Steinberg representation.

This conjecture is closely related to Thara’s lemma (see for example [CHTO08, Conjecture B]). It
is known in some cases when n < 3, or when [ is a banal characteristic for GL,,(Fy,), cf. [Thob]. We
have chosen to restrict the statement to t-ordinary representations since this is all we require here for the
application to symmetric power functoriality, and since we believe that this may be easier than the most
general case. In fact, it would even suffice for our purposes to treat the case where g, = 1 mod [, o,, is
unramified, and r,(o) is trivial.

|GEwO

3.2 Automorphic tensor product

Let n > 1 be a positive integer, and suppose that E is an imaginary CM field with totally real subfield
F, and that (71,91) and (m2,12) are RAECSDC automorphic representations of GLy(Ag) and GL,(Ag),
respectively. We will state here a version of the conjectural GLy x GL,, — GLg, lifting that we hope will be
accessible through Galois-theoretic methods.

Conjecture 3.2 (TP,). Fiz a prime | and an isomorphism ¢ : Q; = C. Suppose that the representation
r,(m1) @r,(me) is irreducible and Hodge-Tate reqular. Then there exists a RAECSDC automorphic represen-
tation (7, x) of GLon(Ag) such that r,(w) = r,(m) @ r,(72).



This conjecture is known to be true if n = 2 or if n = 3 (see the papers [Ram00] and [KS02],
respectively). In addition, a ‘potential’ version of this conjecture follows in many cases from potential
automorphy theorems, cf. [BLGGT].

3.3 Automorphic symmetric power

Now suppose that F' is a totally real field, and that (m,x) is a RAESDC automorphic representation of
GL2(AF), without CM, i.e. not induced from an algebraic Grossencharacter of a CM quadratic extension of
F. Let n > 2 be an integer, and let K = {K7,..., K} be a set of finite Galois extensions of Q.

Conjecture 3.3 (SP,,.;(K)). Suppose that F' does not contain K;, for anyi=1,...,s. Then the n'* sym-
metric power lifting of T exists, in the following sense: there exists a RAESDC automorphic representation
(I1,v) of GLy11(AFR) such that for any isomorphism v : Q; & C, there is an isomorphism Sym" r,(7) = r,(II).

We remark that if K € K’, then SP,41(K) = SP,1(K’). This conjecture is known to be true
with K = 0 if n = 2, 3 or 4 (see the papers [GJ78], [KS02] and [Kim03], respectively). In many cases, a
‘potential’ version follows from potential automorphy theorems. The reason for introducing the set K here
is that the automorphy lifting theorems to be used later require supplementary hypotheses on the presence
of roots of unity in the base field F.

3.4 Main theorem

Let K = {Ki,..., K} be a set of finite Galois extensions of Q. We write Q((;)™ for the totally real subfield
of Q(Cl)
Theorem 3.4. Let | > 5 be prime, and let 0 < r < I be an integer. Suppose that Q(()T € K. Then the
following implication holds:
SPl_T(K) + SPT(K) + TP, + LRy, = SPH_T(K).
The proof of this theorem will be given in §§4[]

Corollary 3.5. Suppose that TP, and LR, 1 hold for all integers r > 1. Let F' be a totally real field, and let
(m,x) be a RAESDC automorphic representation of GLa(Ag), not automorphically induced from a quadratic
CM extension.

Suppose that if | > 5 is prime, then [F((;) : F] > 2. Then the symmetric v power lifting of 7 exists
for all integers r > 1.

Proof of Corollary[3.5 If r > 1 is an integer, let K, denote the set of fields Q({;)™, as [ runs over primes
5 < 1 < r. Under the assumption of hypotheses TP, and LR, i, the above theorem simply gives the
implication (whenever [ > 5 is prime and 0 < s < [, and Q(¢;)* € K):

SPI_S(K) + SPS(K) = SPH_S(K).

To prove the corollary, it suffices to prove SP,1(K,) for all » > 1. We prove this by induction on r > 1.
It is already known to hold for 1 < r < 4. For general r, note that by Bertrand’s postulate there exists a
prime [ satisfying (r +1)/2 <l <r+ 1, and hence I < r + 1 < 2. Writing » + 1 =1 + s, we therefore have
0 < s < I. The above implication now implies that SP;;s(K,) = SP,;1(K,) holds. O

Corollary 3.6. Suppose that LR,1 holds for all 1 < r < 26. Then SP,11(Kas) holds for all integers
1 <r <9, and for all odd integers 1 < r < 25.

Proof of Corollary[3.6. The deduction of this corollary is similar, using that TP, and SP,.(0) are already
known to hold for 1 < r < 3. Indeed, we now have the implications (under LR,+1, and Q(¢;)* € K):

SP1_1(K) = SPH_l(K), SPl_g(K) = SPl+2(K) and SP1_3(K) = SPH_g(K).

The result follows on using the primes 5,7, ..., 23. O
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3.5 Lemmas about ordinariness

In certain situations, the functorial operations above preserve the property of being ordinary. This is the
content of the results of this section.

Lemma 3.7. In the situation of conjecture TP,,, suppose the following.
e 7 and Ty are t-ordinary.

e Let a and b denote the infinity types of m1 and ma, respectively. Then a. and b, depend only on the
place of E induced by the embedding 117 : E — Q.

Then 7 is t-ordinary.

Proof. Let v|l be a place of E, and suppose that :~'m , is a subquotient of n—IndgL"‘ a1 @ ag, 1Timg,
is a subquotient of n-Ind$™" B ® --- ® B,, where val(ay(w,)) < val(as(w,)), and val(B(w,)) < --- <
val(f,(w,)). Since m and 7y are t-ordinary, we have by Lemma the equalities

val(ai(wy)) = —1/ey Y ar; and val(B;(w)) = —1/ey > br;,

the sum being over embeddings 7 : E < C such that :~'7 induces the place v. In particular, since
r,(m) ® r,(m2) is Hodge-Tate regular, the quantities val(a;(w,)B;(w,)) are distinct as i,j vary, and the
permutation required to put these quantities in strictly increasing order is the same as the permutation
required, for each 7, to put the quantities a,; + b, ; in strictly decreasing order. The same argument as in
the proof of Lemma [2.6| now gives the conclusion. O

Lemma 3.8. In the situation of conjecture SP,,11(K), suppose that w is t-ordinary. Then I is t-ordinary.

Proof. The proof is essentially the same as the proof of Lemma [3.7] O

4 Construction of a special automorphic representation

Let E be an imaginary CM field with totally real subfield F' such that E/F is everywhere unramified and
[F: Q] is even. Suppose that 7 is a RACSDC automorphic representation of GLy(Ag) of weight A = 0. Let
!l > 5 beaprime, and let 0 <7 <I. Set n=10+r.

We fix a choice of isomorphism ¢ : Q; = C. In order to reduce notation, we now write p = 7,(7). We
suppose that the following hypotheses are in effect.

e Every prime of F' dividing [ or above which 7 is ramified is split in E.
e 7 is t-ordinary.

e The residual representation p : G — GLo(IF;) is irreducible, and its image contains SLo(Fa) up to
conjugation, for some a > 1.

e There exist RACSDC automorphic representations Iy, IIs of the groups GL,(Ag) and GL;_,.(Ag),
respectively, such that r,(II;) = Sym" ' p and 7, (II) = Sym!~""!p. (These Galois representations

are irreducible, by the previous hypothesis.)

e There exists a place wy of E, split over F' and coprime to [, such that m,, is an unramified twist of
the Steinberg representation. We write vy for the place of F' below wy.

In this case we note that there is an isomorphism of residual representations

(Sym™ ') = (sp@Sym™'p) @ X Sym' "' p,

11



where ¢ denotes a lift to Q; of the arithmetic Frobenius, and y = det p. (This follows from the corresponding
identity of representations of GLg(IF;), which can be seen by calculating the trace on either side of an upper-
triangular element.) The two summands here are irreducible, and each of different dimension, coprime to
I. We remark that ¥p is already the residual representation of a RACSDC automorphic representation of
GLy(Ag) of weight zero, by Lemma and [Clo90, Proposition 4.12], which describes the action of Galois
on infinity types.

Proposition 4.1. Suppose that conjecture TP, holds. Then there exist cuspidal conjugate self-dual auto-
morphic representations o1,09 of GLar(Ag) and GL;_.(Ag), respectively, and satisfying the following:

e Y = 01 B oy is regular algebraic and t-ordinary of weight zero.
o The representation ¥, has an Iwahori-fixed vector.

e There is an isomorphism of residual representations

r,(X) = (Sym“'r_1 ﬁ) ” )

o [f X, is ramified then m,, is ramified.

Proof. By [Thol2| Theorem 10.2] and [Thol2, Theorem 9.1], there exists an t-ordinary RAECSDC auto-
morphic representation (7/, |- ['~!) of GLy(Ag) satisfying the following:

o r () =y, (n)Vel.

!

.7Tw

, has an Iwahori fixed vector.
e If 7/, is ramified then 7, is ramified.
e For all embeddings 7 : E — Q;, we have HT, (r,(7")) = {0,1}.

By TP,, there exists an RAECSDC automorphic representation (IT5, x") of GLy,(Ag) such that r,(IT,) =
¢r,(7') @ r,(I). In fact, we have ' = | - |"=Y, and II, is t-ordinary, by Lemma Let oy = IIj| - | (=772,
Then o, is conjugate self-dual and cuspidal, and o9 4, has an Iwahori fixed vector. Let 1) = (ex)". Then
Pp¢ =1 and o1 = II; ® 1y is RACSDC, t-ordinary, and has an Iwahori-fixed vector.

We claim that ¥ = o1 H o9 is regular algebraic. To see this it suffices to calculate the infinity types
of the constituent cuspidal representations at each embedding 7 : E < C. These are independent of 7; for
o2 we have the infinity type (I —r—1)/2,...,(r +1—1)/2), and for o1 we have

(+r=1)/2,...;(l—r+1)/2,(r=1-1)/2,...,(1—r—=1)/2).

The representation 3,,, has an Iwahori-fixed vector, and is t-ordinary by Lemma It satisfies the third
and last points by construction. This concludes the proof. O

Theorem 4.2. With hypotheses as above, assume conjectures TP, and LRy4.,.. Then there exists a RACSDC
automorphic representation IT of GL;y,(Ag) satisfying the following:

o IT is t-ordinary.
o The representation Il,,, is an unramified twist of the Steinberg representation.

e There is an isomorphism
- 88
r,(II) = (Syml”*1 ﬁ) .
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Proof. Let ¥ denote the automorphic representation constructed in Proposition Let G be the definite
unitary group of with n = [ + r. By Proposition there exists an automorphic representation 3; of
G(Ar) such that ¥ is the base change of ¥;. Applying conjecture LR, to X1, we deduce the the existence
of an t-ordinary automorphic representation ¥, of G(Ar) of the same weight, such that X5 ., 0 ty, is an
unramified twist of the Steinberg representation. Let IT denote the base change of X5 to GL;4,-(Ag), which
exists, again by Proposition Since II,,, is an unramified twist of the Steinberg representation, IT must
be cuspidal. This completes the proof. O]

5 Proof of Theorem (3.4

In this section we give the proof of Theorem 3.4 We therefore suppose throughout that [ > 5 is a prime, and
that 0 < r < 1. We fix a set K = {K3,..., K} of finite Galois extensions, and suppose that Q(¢;)* € K.
We also assume that conjectures SP;_,.(K), SP.(K), LR;4,, and TP, hold. The linchpin in the proof is
the following special case, which asserts that we can deduce the existence of the (I +r — 1)*® symmetric
power lifting of a Hilbert modular form when certain local hypotheses are in play. First, let us note that
by [Gur, Theorem 1.2], there exists an integer a > 1 such that the representations ¢ Sd ® Sym" ! Sd and
Sym'~""1Sd of SLy(F};) are adequate, in the sense of [Thol2, §2], whenever b > a, where Sd denotes the
standard representation of SLy(F;»). We recall that by [Gur, Lemma 1.4], any finite subgroup of GLy(IF;)
containing an adequate subgroup as a normal subgroup of index prime to [ is adequate.

Proposition 5.1. Let F be a totally real field, and fix an isomorphism 1 : Q, = C. Suppose that (%) is a
RAESDC automorphic representation of GLo(AR) satisfying the following hypotheses:

o 7 is t-ordinary of weight X = 0. (In more classical language, ™ has parallel weight two.)

e The image of the residual representation r,(m) contains SLa(Fp) for some integer b > a.
o There exists a place vo 11 of F such that m,, is an unramified twist of the Steinberg representation.

Then the (I + 1 — 1) symmetric power lifting of © exists: there exists an t-ordinary RAESDC automorphic
representation 11 of GLyy.(Ap) such that r,(IT) = Sym'™ 1 r (7).

Proof. We deduce the theorem from [Thoal Theorem 7.1]. After replacing F' by a soluble extension not
containing any K;, we can assume that there exists a quadratic CM imaginary extension E/F', linearly
disjoint over F' from the extension of F((;) cut out by r,(m) and satisfying the hypotheses of Arguing as
in the proof of [CHT08|, Theorem 4.4.3], we see that there exists an algebraic character ¢ : Gg — @lx such
that x|g, = ¥°, and (if mg denotes the base change of 7 to E) n’ = mg ® ¢~ is RACSDC. Replacing F'
again by a soluble extension, we can arrange that the hypotheses of §4] apply to 7/, so by Theorem there
exists a RACSDC automorphic representation IT of GL;y,.(Ag) such that

SS

r(ID = (sym™ ' (@)

and moreover that II is t-ordinary and II,,, is an unramified twist of the Steinberg representation, for some
place wgy of E above vg. The result follows from [Thoa, Theorem 7.1] and Theorem on checking the
following remaining hypotheses of [Thoal Theorem 7.1]:

e The element (; is not fixed by ker ad r, (IT).

e Each irreducible constituent of r,(IT) is adequate.

|GE<<,>

The first point holds because [E((;) : E] > 2 and the extension of E cut out by adr,(IT) is contained inside
the extension cut out by ad r, (7). On the other hand, the projective image of r,(7) contains a simple normal
subgroup of index at most 2 (by the classification of finite subgroups of PGLy(F;)). The second point follows
from our hypothesis and [Gur, Lemma 1.4]. O

13



We now reduce the general case of SP;,.(K) to this one by using a chain of congruences. Let F' be a
totally real field not containing K;, i = 1,..., s and let (7, x) denote a RAESDC automorphic representation
of GLy(Af) without CM. We must show that the symmetric (I +r — 1) power lifting of 7 exists.

Proposition 5.2. There exists a prime p # [, an isomorphism 1, : Q, = C, and a soluble totally real

extension F'/F linearly disjoint from the extension of F((p) cut out by v, (m) and not containing any field
K;, and a RAESDC automorphic representation ©' of GLy(Ap/) satisfying the following:

o The image of the residual representation r,, () contains SLo(IF,), up to conjugation.
o 7' has weight zero, and for every prime v|l, 7l is an unramified twist of the Steinberg representation.

e There exists a place vo of F', not dividing pl, and such that 7, is an unramified twist of the Steinberg
representation.

e The symmetric (I +r — 1) power lifting of 7 exists if and only if the symmetric (I +r — 1) power

lifting of ©’ exists.

Proof. By [Dim05l, Proposition 3.8], all but finitely many pairs (p, ¢,) satisfy the first bullet point. We can
therefore choose p > 2(1 + r + 1) and ¢, such that the first bullet point is satisfied and p is unramified in F.
We can moreover assume that for every embedding 7 : F < Q,, the Hodge-Tate weights HT, (r,, (7)) differ
by at most p — 2. Then 7, (7) is potentially diagonalizable, by [BLGGT), Lemma 1.4.1]. Let F’ be a soluble

totally real extension of F', linearly disjoint from the extension of F'((,) cut out by r, (), not containing any

K, and such that for every prime v|l of F”, r, (7)|q,, is trivial and ¢, = 1 mod p. Choose a place vg 1 Ip

of F' such that r, (7)|g,, is trivial, and ¢,, = 1 mod p. By [Geell], Corollary 3.1.7], there exists a second
vo

RAESDC automorphic representation 7’ of GLy(Afg+) such that r, (7)|g,, = r,, (7'), such that r, (7’) is
potentially diagonalizable of weight zero at every prime v of F’ dividing p, and such that the representations
7, and 7, for each place v|l of F’ are each an unramified twist of the Steinberg representation. Here we
note [GKl, Lemma 4.4.1], which states that a potentially Barsotti-Tate representation is also potentially
diagonalizable.

It now follows that both representations Sym'™" = r.,(7)|a,, and Sym r,,(n') are potentially
diagonalizable. Moreover, their residual representations are irreducible and isomorphic, and adequate, even
on restriction to G (c,), since p > 2(l +r + 1) (see the appendix to [Thol2]). We deduce immediately from
IBLGGT!| Theorem 4.2.1] that the automorphy of either one of these Galois representations is equivalent
to that of the other. The final bullet point for 7’ now follows on combining this with soluble base change
[IBLGHTT1l Lemma 1.3]. O

I+r—1

After replacing F' by F’ and 7 by «/, we can suppose without loss of generality that the following
hypotheses are in effect:

1. m has weight zero.
2. For each place v|l, 7, is an unramified twist of the Steinberg representation.

3. There exists a place vy of F, not dividing I, such that m,, is an unramified twist of the Steinberg
representation.

Proposition 5.3. With assumptions as above, there exists a prime p # I, coprime to vy, an isomorphism
tp: Q, = C, and a RAESDC automorphic representation 7' of GLa(AF) satisfying the following hypotheses:

e The image of the residual representation r,,(m) contains SLy(F,), up to conjugation.
e p is unramified in F, both m and 7' are unramified at p, and p is split in the coefficient field of .
o 7' has weight zero, and for every prime v|l, 7 is an unramified twist of the Steinberg representation.

e T, is an unramified twist of the Steinberg representation.

14



e For every isomorphism 1 : Q; = C, the image of the residual representation r, (') contains SLa(Fyp),
up to conjugation, for some b > a.

o The symmetric (I +r — 1) power lifting of m exists if and only if the symmetric (I +r — 1) power
lifting of ©’ exists.

Proof. We use a trick inspired by Khare-Wintenberger’s use of so-called ‘good-dihedral’ primes, in their proof
of Serre’s conjecture, cf. [KW09, Lemma 8.2]. Let E C C denote the coefficient field of w. As in the proof
of Proposition we choose a prime p > max(2(l + r 4+ 1), #GL,,(F=)) split in E(y/—1) and such that F'

and 7 are unramified above p. We fix an isomorphism ¢, : Q, = C. After conjugating we can assume that
the image of the residual representation p = r,, () is contained in GL3(IF,); we assume also that p has been
chosen so that the residual image contains SLq(IF,).

Let K/F denote the maximal abelian extension of exponent 2 which is ramified only at primes of
F where 7 is ramified. Let M/F denote the extension inside F cut out by Pp, the projective representation
associated to p. Thus Gal(M/F) is isomorphic either to PGLy(F,) or PSLa(F,), the index 2 simple subgroup.
Let L = M N F((,). Then M and F((,) are linearly disjoint over L, and L/F is an extension of degree at
most 2. Let v be an infinite place of F, and let ¢, € Gr denote a complex conjugation at this place. Since
p=1mod 4, p(c,) € Gal(M/L). By linear disjointness, we can therefore choose a prime u of F' coprime to
p at which p is unramified and such that Pp(Frob, ) = Pp(c,), up to conjugation, and such that w is split in
L and g, = —1 mod p. We can moreover assume that u is split in K.

Applying [Geelll Corollary 3.1.7] once more, we can find a RAESDC automorphic representation 7’
of GLa(AF) such that r,, (1) = p, such that the representations 7;, and 7;, for v|l are each an unramified twist
of the Steinberg representation, and such that 7’ is of weight zero and r,, (7’) is potentially diagonalizable,
and moreover such that there is an isomorphism

e = () o )

with ¢ : Ip, — Z; a character of order p. In particular, r, (7’)|c, is irreducible, and induced from a
character. Moreover, we can suppose that, away from w, 7’ is ramified only at those places of F' where 7 is
also ramified.

The representation 7’ satisfies the final point above. This is proved in exactly the same manner
as the same point for the representation 7' of Proposition It remains to show that 7' satisfies the
penultimate bullet point. Fix an isomorphism ¢ : Q; = C, and consider the residual representation r, (7).
It is irreducible, since its restriction to Gp, is already irreducible, being induced from a character whose
restriction to I, has order p { ¢, — 1. Since the projective image of r,(7’) contains an element of order
p > 5, either r,(7’) contains a conjugate of SLy(F;») for some b > 1, or r,(7’) is induced from a character.
In the first case, by choice of p we obtain a conjugate with b > a.

It therefore remains to rule out the possibility that r,(7/) & Indf(o a, for some quadratic extension

Ky/F and some character a : G, — EX. The extension Ky/F is ramified only at those places where r, (')
is also ramified, hence at the places dividing I, u, or where 7 is ramified. Since r,(7')|g,, is induced from
a character of the unramified quadratic extension of F,, by construction, we see that K is unramified at
u, and hence Ko C K. But u is split in K, hence in Ky, which implies that the representation r,(7’)|q,,

is a direct sum of two characters. This contradiction shows that r,(7/) must in fact have residual image
containing SLo(F;s), some b > a, and therefore concludes the proof. O

After replacing m by n’ we may therefore suppose that m satisfies, in addition to the above 3 points, the
following:

4. For every isomorphism ¢ : Q; = C, the image of the residual representation r, () contains SLo(F;s), up
to conjugation, for some b > a.

We claim that m now satisfies the hypotheses of Theorem Indeed, it remains to check only that 7 is
t-ordinary, for some choice of ¢. This follows immediately from points 1 and 2 above, by [Ger, Lemma 5.1.5].
We deduce that the (I +r — 1)*® symmetric power lifting of 7 exists. This concludes the proof.
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