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Abstract. We prove new automorphy lifting theorems for essen-
tially conjugate self-dual Galois representations into GLn. Existing
theorems require that the residual representation have ‘big’ image,
in a certain technical sense. Our theorems are based on a strength-
ening of the Taylor-Wiles method which allows one to weaken this
hypothesis.
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Introduction

In this paper we prove new automorphy lifting theorems for essen-
tially conjugate self-dual Galois representations into GLn, over CM
imaginary fields. The main improvement on existing lifting theorems
is to weaken the hypothesis ‘big’ slightly.

We follow the structure of the arguments of [CHT08] closely. Broadly
speaking, in order to prove an automorphy lifting theorem one proceeds
as follows. Given a residual Galois representation, one can construct
a universal deformation ring R classifying deformations with certain
properties (e.g. de Rham, ramified at only finitely many places). On
the other hand, a space of automorphic forms gives rise to a Hecke
algebra T, and there is a map R → T which classifies the ‘universal
automorphic deformation’. One hopes to show that this is in fact
an isomorphism, thereby showing that all the deformations of a given
residual Galois representation of fixed type arise from automorphic
forms. (This is not always possible in practice, but approximations to
R = T type results still yield useful information).

An essential step in the proof is the introduction of auxiliary sets
of primes, in what are called ‘Taylor-Wiles systems’. The existence of
primes satisfying the relevant criteria is a problem in Galois cohomol-
ogy, and a positive solution can be given when the image of the residual
representation satisfies a corresponding hypothesis.

The condition used in [CHT08] was that the image of the residual
representation was ‘big’, in a certain technical sense. The main in-
novation in this paper is to allow more general types of ramification
at the primes of our Taylor-Wiles systems, which allows us to weaken
the restrictions on the image of the residual representation. We call
subgroups satisfying this new condition ‘adequate’.

This new condition is often satisfied in practice. In particular, we
show in the appendix that, working with an n-dimensional represen-
tation in characteristic l, it is satisfied whenever l ≥ 2(n + 1) and the
representation is absolutely irreducible.

The arguments in this paper can be used to strengthen all existing
automorphy lifting theorems for GLn. We have chosen to generalize two
existing automorphy lifting theorems, with an eye towards applications
to potential automorphy (cf. [BLGGT]). First, we give a minimal
lifting theorem, applicable in situations where an R = T type result is
still inaccessible. Second, we give a strengthening of one of Geraghty’s
ordinary lifting theorems (cf. [Ger]) which is useful, for example, in
changing the weight.
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We now give an outline of the contents of this paper. In the first
section we recall some results on the Galois representations associated
to automorphic forms. In section 2, we recall the definition of ‘big’ and
give the definition of ‘adequate’ subgroups.

In section 3, we recall some foundational material from [CHT08] on
the deformation theory of Galois representations valued in the group
Gn (whose definition is recalled below). We also take the opportu-
nity to define some local deformation problems that are used later.
These definitions have been heavily inspired by the papers [Tay08] and
[BLGG11].

In section 4, we define the new local deformation problem that is used
in the definition of the Taylor-Wiles systems, and prove the existence
of such systems under the hypothesis that the image of the residual
representation is adequate. Then in section 5 we perform the local
calculations on the automorphic side needed in order to be able to con-
struct the Hecke modules in the Taylor-Wiles patching argument. This
is the technical heart of the paper, and contains the only essentially
new material.

In sections 6 and 7 we use these calculations to deduce an automor-
phy lifting theorem in the ‘minimal’ case. Then in sections 8 and 9 we
use these calculations again to extend Geraghty’s ordinary lifting theo-
rems. In section 10 we prove some technical results on the finiteness of
certain deformation rings that we hope will be useful to other authors.

Finally in the appendix we give a discussion of the properties of
adequate subgroups.

Acknowledgements. I would like to thank my advisor Richard Tay-
lor for drawing my attention to these problems and for many helpful
conversations. I would also like to thank Florian Herzig for comments
on an earlier draft of this paper.

Notation

If F is a field of characteristic zero, we write GF for its absolute
Galois group. If F/F+ is a quadratic extension of such fields, we write
δF/F+ for the non-trivial character of Gal(F/F+). We write εl : GF →
Z×l for the l-adic cyclotomic character. If the prime l is understood,
we will write εl = ε.

We fix an algebraic closure Ql of Ql. If F is a number field and χ
is a character A×F/F× → C× of type A0 (i.e. the restriction of χ to
(F ⊗ R)×0 is given by

∏
τ :F ↪→C x

aτ
τ for some integers aτ ), and ι is an

isomorphism Ql
∼→ C, then we write rl,ι(χ) for the associated character
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of GF → Ql

×
, given by the formula

ι

(rl,ι(χ) ◦ ArtF )(x)
∏

τ∈Hom(F,C)

x−aτι−1τ

 = χ(x)
∏

τ∈Hom(F,C)

x−aττ ,

where ArtF is the global Artin map

ArtF =
∏
v

ArtFv : A×F → Gab
F .

We normalize the local Artin maps ArtFv to take uniformizers to geo-
metric Frobenii.

If Fv is a finite extension of Ql inside Ql, we will write OFv for its
ring of integers and k(v) for its residue field. We will write Frobv
for the geometric Frobenius element in GFv/IFv . Suppose that ρ :
GFv → GLn(Ql) is a continuous representation, and take an embedding
τ : Fv ↪→ Ql. We write HTτ (ρ) for the multiset of integers whose
elements are the integers i such that gri(ρ ⊗τ,Fv BdR)GFv 6= 0, with
multiplicity dimQl gri(ρ ⊗τ,Fv BdR)GFv . Thus, for example, we have

HTτ (ε) = {−1} for any τ .
If π is an irreducible admissible representation of GLn(Fv) over Ql

then we will use the notation rl(π) introduced on page 81 of [CHT08]
to denote the l-adic representation associated to π under the local
Langlands correspondence, when it exists.

If F is a number field and ρ : GF → GLn(Ql) is a continuous rep-
resentation, and τ : F ↪→ Ql, we write HTτ (ρ) to mean HTτ (ρ|GFv ),
where v is the place of F induced by the embedding τ . Thus for the
character rl,ι(χ) defined above, we have

HTτ (rl,ι(χ)) = {−aιτ}.
We write Zn

+ ⊂ Zn for the set of tuples λ = (λ1, . . . , λn) of integers
with λ1 ≥ · · · ≥ λn.

If ρ : G → GL(V ) is a representation of a group G on a vector
space V , then we write ad ρ (resp. ad0 ρ) for the representation of G
on EndV given by conjugation by ρ (resp. the subspace of trace zero
endomorphisms).

1. Automorphic forms on GLn and their associated Galois
representations

This paper is dedicated to proving that certain Galois representations
are automorphic. In this section we briefly review what this means.

Suppose that F is an imaginary CM field with totally real subfield
F+. Let c be the non-trivial element of Gal(F/F+). Consider a pair
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(π, χ), where π is a cuspidal automorphic representation π of GLn(AF )
and χ a character of A×F+ of type A0. We say that (π, χ) is RAECSDC
(regular, algebraic, essentially conjugate self-dual, cuspidal) if:

(i) πc ∼= π∨ ⊗ (χ ◦ NF/F+ ◦ det).
(ii) χv(−1) = (−1)n for each v | ∞.
(iii) The infinitesimal character of π∞ agrees with the infinitesimal

character of an algebraic representation of ResFQ GLn.

(Note that this differs slightly from the definition given in [BLGHT11]).
Take λ ∈ (Zn

+)Hom(F,C). We let Ξλ be the algebraic representation of

GLHom(F,C)
n which is the tensor product of the irreducible representa-

tions with highest weight λτ . If π∞ has the same infinitesimal character
as Ξ∨λ , then we say that π has weight λ.

Let C be an algebraically closed field of characteristic zero. If w ∈ Z,

We write (Zn
+)

Hom(F,C)
w ⊂ (Zn

+)Hom(F,C) for the set of λ with

λτ,i + λτ◦c,n+1−i = w

for each τ . Note that if λ is the weight of a representation π as above

then λ must lie in (Zn
+)

Hom(F,C)
w for some w.

The following theorem is [BLGHT11], Theorem 1.2.

Theorem 1.1. Let (π, χ) be as above, and choose an isomorphism
ι : Ql → C. Then there exists a continuous semisimple representation
rl,ι : GF → GLn(Ql), uniquely characterized by the following properties:

(i) rl,ι(π)c = rl,ι(π)∨ε1−nrl,ι(χ)|GF .
(ii) For each place v - l of F we have

(rl,ι(π)|GFv )ss ∼= rl(ι
−1πv)

∨(1− n)ss.

(iii) For each place v | l of F , rl,ι(π)|GFv is de Rham. If πv is
unramified, then it is even crystalline. Moreover, we have for
each τ : F ↪→ C,

HTι−1τ (rl,ι(π)) = {λτ,j + n− j}j=1,...,n.

Consider a representation ρ : GF → GLn(Ql). Given a choice of

λ ∈ (Zn
+)Hom(F,Ql), we write ι∗λ ∈ (Zn

+)Hom(F,C) for the element with

(ι∗λ)τ,i = λιτ,i.

If ρ satisfies the conditions characterizing rl,ι(π) above for some π and
ι, with π of weight ι∗λ, then we say that ρ is automorphic of weight λ.

In Definition 5.1.2 of [Ger] it is defined what it means for an au-
tomorphic representation π as above to be ι-ordinary. If we have a
representation ρ : GF → GLn(Ql) and an isomorphism ρ ∼= rl,ι(π) for
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some ι and some ι-ordinary RAECSDC representation π, then we say
that ρ is ordinarily automorphic.

Finally, if L/F is an extension of CM imaginary fields, and λ ∈
(Zn

+)Hom(F,C), then we define λL ∈ (Zn
+)Hom(L,C) by (λL)τ = λτ |F . We

recall the following ([BLGHT11], Lemma 1.4).

Lemma 1.2. Suppose that L/F is a soluble extension of CM imaginary

fields. Let χ : GF+ → Ql
×

be a continuous character with χ(cv) inde-
pendent of v|∞, and let r : GF → GLn(Ql) be a continuous semisimple
representation with rc ∼= r∨ε1−nχ. Suppose that r|GL is irreducible and
automorphic of weight µ. Then:

(i) There exists λ ∈ (Zn
+)Hom(F,Ql) such that µ = λL.

(ii) r is automorphic of weight λ.

2. Bigness revisited

Let k be a finite field of characteristic l, and let G be a subgroup
of GLn(k) = GL(V ), which acts absolutely irreducibly in the natural
representation. We assume that k is large enough to contain all eigen-
values of all elements of G. If g ∈ G and α ∈ k is an eigenvalue of
g, then we write eg,α : V → V for the g-equivariant projection to the
generalized α-eigenspace.

We recall the following definitions from [CHT08].

Definition 2.1. Gn is a group scheme over Z, defined as the semi-direct
product of GLn×GL1 by the group {1, j}, which acts on GLn×GL1 by

j(g, µ)j−1 = (µtg−1, µ).

We write ν for the natural homomorphism Gn → GL1 which takes (g, µ)
to µ and j to −1, and G0

n for the connected component of Gn. Note that
Gn acts naturally on Lie GLn ⊂ LieGn. We will sometimes write this
representation as adV .

Definition 2.2. Let G be as above. We say that G is big if the fol-
lowing conditions are satisfied:

• H0(G, ad0 V ) = 0.
• H1(G, k) = 0.
• H1(G, ad0 V ) = 0.
• For every irreducible k[G]-submodule W ⊂ ad0 V , there exists

an element g ∈ G with a multiplicity one eigenvalue α such
that tr eg,αW 6= 0.

Similarly, we say that a subgroup G of Gn(k) is big if it satisfies the
following conditions. Let G0 = G ∩ G0

n(k).
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• H0(G, adV ) = 0.
• H1(G0, k) = 0.
• H1(G, adV ) = 0.
• For every irreducible k[G]-submodule W ⊂ adV , there exists

an element g ∈ G0 with a multiplicity one eigenvalue α such
that tr eg,αW 6= 0.

We remark as in [CHT08] that if G/G0 surjects onto Gn(k)/G0
n(k) and

G0 is big then G is big. We now make the following revised definitions:

Definition 2.3. Let G ⊂ GL(V ) be as above. We say that G is ade-
quate if the following conditions are satisfied.

• H0(G, ad0 V ) = 0.
• H1(G, k) = 0.
• H1(G, ad0 V ) = 0.
• For every irreducible k[G]-submodule W ⊂ ad0 V , there exists

an element g ∈ G with an eigenvalue α such that tr eg,αW 6= 0.

Similarly, we say that a subgroup G of Gn(k) is adequate if it satisfies
the following conditions. Let G0 = G ∩ G0

n(k).

• H0(G, adV ) = 0.
• H1(G0, k) = 0.
• H1(G, adV ) = 0.
• For every irreducible k[G]-submodule W ⊂ adV , there exists

an element g ∈ G0 with an eigenvalue α such that tr eg,αW 6= 0.

Thus the only difference between ‘adequate’ and ‘big’ is that we no
longer require the eigenvalue α to have multiplicity one. We have the
following.

Lemma 2.4. (i) Big ⇒ adequate.
(ii) Suppose that l ≥ 2(n + 1). If G is a subgroup of Gn(k) which

surjects onto Gn(k)/G0
n(k), and G0 acts absolutely irreducibly,

then G is adequate.

Proof. The first part is obvious. For the second, it is proved in the
appendix that when l ≥ 2(n + 1), any subgroup of GLn(k) which acts
absolutely irreducibly is adequate. The result now follows from the
remarks above. �

3. Deformations of Galois representations

In this section we recall from [CHT08] some of the concepts that we
will need relating to deformations of Galois representations valued in
Gn. Let F be an imaginary CM field with totally real subfield F+. We
fix a finite set of places S of F+ which split in F and write F (S) for
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the maximal extension of F unramified outside S. We write GF+,S =
Gal(F (S)/F+) and GF,S ⊂ GF+,S for the subset of elements fixing F .

For each v ∈ S we choose a place ṽ of F above it, and write S̃ for the
set of these places.

We fix a finite field k of characteristic l and a representation r :
GF+,S → Gn(k) such that GF,S = r−1(GLn×GL1(k)). Let K be a

finite extension of Ql in Ql with ring of integers O, maximal ideal λ,
and residue field k. Choose a character χ : GF+,S → O× such that
ν ◦ r = χ. We will consider deformations of r to objects of CO, the
category of complete Noetherian local O-algebras with residue field k.
If ṽ ∈ S, we write r|GFev for the composite

GFev → GF,S → G0
n(k)→ GLn(k).

Definition 3.1. A lifting of r (resp. r|GFev ) to an object R of CO is

a continuous homomorphism r : GF+,S → Gn(R) (resp. r : GFev →
GLn(R)) with r mod mR = r (resp. = r|GFev ) and ν ◦ r = χ (resp. no

further condition). Two liftings are said to be equivalent if they are
conjugate by an element of 1 + Mn(mR) ⊂ GLn(R). An equivalence
class of liftings is called a deformation.

Let T ⊂ S. By a T -framed lifting of r to R we mean a tuple
(r;αv)v∈T where r is a lifting of r and αv ∈ 1 + Mn(mR). We call
two framed liftings (r;αv) and (r′;α′v) equivalent if there is an element
β ∈ 1 + Mn(mR) with r′ = βrβ−1 and α′v = βαv. By a T -framed
deformation of r we mean an equivalence class of framed liftings.

Definition 3.2. If v ∈ S then we define a local deformation problem
at v to be a subfunctor Dv of the functor of all liftings of r|GFev to objects
of CO satisfying the following conditions:

(i) (k, r) ∈ Dv.
(ii) Suppose that (R1, r1) and (R2, r2) ∈ Dv, that I1 (resp. (I2)) is

a closed ideal of R1 (resp. R2) and that f : R1/I1 → R2/I2 is
an isomorphism in CO such that f(r1 mod I1) = r2 mod I2.
Let R3 denote the subring of R1 × R2 consisting of pairs with
the same image in R1/I1

∼= R2/I2. Then (R3, r1 × r2) ∈ Dv.
(iii) If (Rj, rj) is an inverse system of elements of Dv then

(limRj, lim rj) ∈ Dv.
(iv) Dv is closed under equivalence.
(v) If R ⊂ S is an inclusion in CO and if r : GF → GLn(R) is a

lifting of r such that (S, r) ∈ Dv then (R, r) ∈ Dv.
We recall (cf. [BLGHT11], Lemma 3.2) that to give a local defor-

mation problem, it suffices to give a quotient R of the universal lifting
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ring R� of r|GFev which is reduced, and such that the defining ideal of

R is invariant under the natural conjugation action of 1 +Mn(mR�).
Given a collection of deformation problems Dv for v ∈ S, we have a

(global) deformation problem

S =
(
F/F+, S, S̃,O, r, χ, {Dv}v∈S

)
.

Definition 3.3. Let T ⊂ S. We call a T -framed lifting (r;αv)v∈T of
r of type S if for all v ∈ S, the restriction r|GFev lies in Dv. We say

that a T -framed deformation is of type S is some (equivalently any)
element of the equivalence class is of type S.

We let Def�T
S denote the functor which associates to an object R of

CO the set of all T -framed deformations of r to R of type S. If T = S
then we refer to framed deformations and write Def�

S . If T = ∅ we
refer to deformations and write DefS .

If Rv denotes the ring representing the local deformation problem Dv,
then we write

Rloc
S,T = ⊗̂v∈TRv.

The following is [CHT08], Proposition 2.2.9.

Proposition 3.4. Suppose that r|GF,S is absolutely irreducible. Then

the functors Def�T
S ,Def�

S ,DefS are represented by objects of CO. We

write respectively R�T
S , R�

S and Runiv
S for the representing objects.

Local deformation problems in the case l = p. Here we define
some local deformation problems that will be useful later. Fix a finite
extension Lv of Ql. Assume that K is large enough to contain every
embedding of Lv in Ql. Now fix a representation ρ : GLv → GLn(k),
and write ρ� : GLv → GLn(R�) for the universal (unrestricted) lift-
ing. Given an element λ ∈ (Zn

+)Hom(Lv ,K) we define for every τ ∈
Hom(Lv, K) a multiset of integers

Hτ = {λτ,j + n− j}j=1,...,n.

Theorem 3.5. Let λ be as above. There exists a reduced l-torsion
free quotient Rλ,cr

v of R�, uniquely characterised by the property that
a homomorphism ζ : R� → Ql factors through Rλ,cr

v if and only if
ρ = ζ ◦ ρ� : GLv → GLn(Ql) is crystalline, with HTτ (ρ) = Hτ for each
τ : Lv ↪→ Ql.

Moreover, SpecRλ,cr
v [1/l] is formally smooth over K and equidimen-

sional of dimension n2 + 1
2
n(n− 1)[Lv : Ql].

Proof. This is deduced in [BLGG11] from the theorems of [Kis08]. �
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Note in particular that the ring Rλ,cr
v defines a local deformation

problem. There is also a potentially crystalline version:

Theorem 3.6. Let λ be as above, and let L′v be a finite extension

of Lv. There exists a reduced l-torsion free quotient R
λ,L′v−cr
v of R�,

uniquely characterised by the property that a homomorphism ζ : R� →
Ql factors through R

λ,L′v−cr
v if and only if ρ = ζ ◦ ρ� : GLv → GLn(Ql)

is de Rham with HTτ (ρ) = Hτ for each τ : Lv ↪→ Ql, and moreover
ρ|GL′v is crystalline.

Moreover, SpecR
λ,L′v−cr
v [1/l] is equidimensional of dimension n2 +

1
2
n(n− 1)[Lv : Ql].

Proof. This also follows in a straightforward manner from the results
of [Kis08]. �

Definition 3.7. Let ρ1, ρ2 : GLv → GLn(O) be continuous lifts of ρ.
We write ρ1 ∼ ρ2 if the following are satisfied:

(i) There exists λ ∈ (Zn
+)Hom(Lv ,K) and a finite extension L′v/Lv

such that both ρ1 and ρ2 correspond to points of R
λ,L′v−cr
v .

(ii) ρ1 and ρ2 give rise to closed points on the same irreducible

component of SpecR
λ,L′v−cr
v ⊗O Ql.

Note that ρ1 ∼ ρ2 implies that ρ1|GL′′v ∼ ρ2|GL′′v for any finite exten-

sion L′′v/Lv.

Suppose that C is an irreducible component of R
λ,L′v−cr
v ⊗OQl. Then

we writeRλ,C
v for the maximal reduced, l-torsion free quotient ofR

λ,L′v−cr
v

such that SpecRλ,C
v ⊗OQl is equal to this irreducible component. (This

exists provided that K is large enough, which we always assume).

Lemma 3.8. Say that a lift (ρ,R) is of type DCv if the induced map
R� → R factors through Rλ,C

v . Then DCv is a local deformation problem.

Proof. The proof is identical to that of Lemma 1.2.1 of [BLGGT]. �

Definition 3.9. Let λ ∈ (Zn
+)Hom(Lv ,K). We say that a continuous

representation ρ : GLv → GLn(O) is ordinary of weight λ if:

(i) There exists a increasing invariant filtration Fili of On, with
each griOn an O-module of rank one. Write χi for the char-
acter GLv → O× giving the action on griOn.

(ii) For every α ∈ L×v sufficiently close to 1, we have

(χi ◦ ArtLv(α)) =
∏
τ

(τ(α))−(λτ,n−i+1+i−1).

We say that ρ is ordinary if it is ordinary of some weight.
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Thus HTτ (ρ) = Hτ , whenever ρ is ordinary of weight λ.

Theorem 3.10. Suppose ρ is the trivial representation. Write Λv for
the completed group ring of the group IabLv(l)

n, where (l) denotes pro-

l completion. There exists a reduced l-torsion free quotient R4,arΛv
of

Λv⊗̂OR� satisfying the following properties:

(i) Let χ̃ = (χ̃1, . . . , χ̃n) denote the universal n-tuple of characters

of IabLv(l). Let ζ : R4,arΛv
→ Ql be a continuous homomorphism.

Then ζ ◦ ρ� is conjugate to a representation
χ1 ∗ . . . ∗ ∗
0 χ2 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . χn−1 ∗
0 0 . . . 0 χn


where χ|ILv = (χ1|ILv , . . . , χn|ILv ) = ζ ◦ χ̃.

(ii) Let Q be a minimal prime of Λ. Then R4,arΛv
/Q is irreducible.

Moreover, R4,arΛv
defines a local deformation problem.

Proof. This is all proved in [Ger]. �

Finally we define a lifting ring which classifies representations which
are both ordinary and semistable.

Theorem 3.11. There exists a reduced l-torsion free quotient Rλ,ss-ord
v

of R� such that if ζ : R� → Ql is a homomorphism, then ζ factors
through Rλ,ss-ord

v if and only if:

(i) ζ ◦ ρ� is ordinary of weight λ.
(ii) ζ ◦ ρ� is semistable.

Moreover, SpecRλ,ss-ord
v is equidimensional of dimension n2 + 1

2
n(n −

1)[Lv : Ql].

Proof. This follows from the results of [Ger], Section 3 (where the ring
Rλ,ss-ord
v is denoted R4λw ,st). �

Local deformation problems in the case l 6= p. Let Lv be a finite
extension of Qp. Let ρ : GLv → GLn(O) be a continuous representation.

Let R� denote the universal (unrestricted) lifting ring. Then R�⊗OQl

is equidimensional of dimension n2 (see [Gee]). Let C be an irreducible
component or a set of irreducible components. Then we will write RCv
for the maximal quotient of R� which is reduced and l-torsion free,
and such that SpecRCv ⊗O Ql consists of the irreducible components in
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C. (Again, this requires K to be sufficiently large). We write R�
v for

the maximal reduced and l-torsion free quotient of R�.
The proof of the following lemma is exactly the same as that of

Lemma 3.8 above.

Lemma 3.12. Say that a lift (ρ,R) is of type DCv if the induced map
R� → R factors through RCv . Then DCv is a local deformation problem.

Definition 3.13. Let ρ1, ρ2 : GLv → GLn(O) be continuous lifts of ρ.
We write ρ1 ∼ ρ2 if the points of SpecR� ⊗O Ql induced by ρ1 and ρ2

lie on a common irreducible component.
We write ρ1 ; ρ2 if ρ1 ∼ ρ2 and moreover the point of SpecR�⊗OQl

corresponding to ρ1 lies on a unique irreducible component.

Proposition 3.14. Suppose that ρ1, ρ2 : GLv → GLn(O) are continu-
ous unramified lifts of ρ. Suppose that (ρ1⊗O Ql)

ss = (rl(π)∨(1− n))ss

for some generic unramified smooth irreducible representation π of
GLn(Lv) over Ql. Then ρ1 ; ρ2.

Proof. It is immediate that ρ1 ∼ ρ2. A standard argument shows that
SpecR�⊗OQl is formally smooth at the point corresponding to ρ1⊗OQl

if the group H0(GLv , ad(ρ1 ⊗O Ql)(1)) vanishes. The genericity of π
implies that no two of the eigenvalues of ρ1(Frobv) differ by #k(v) = qv,
so the result follows. �

We will need a slight generalization of the ‘level-raising’ deforma-
tion problems of [Tay08]. Before defining these, we give a geometrical
lemma.

Lemma 3.15. Let q be an integer, and let α1, . . . , αn be roots of unity
in O×. Let M(

∏n
i=1(X −αi), q) be the moduli space over O of pairs of

n×n matrices (Φ,Σ) where Φ is invertible, charΣ(X) =
∏n

i=1(X−αi),
and ΦΣΦ−1 = Σq. (Thus M(

∏n
i=1(X − αi), q) is an affine O-scheme).

(i) Suppose first that αj = 1 for each j. Let Mi denote the irre-
ducible components of M((X − 1)n, q) with their reduced sub-
scheme structure. Then each Mi ⊗ K is non-empty of di-
mension n2. Moreover, the distinct irreducible components of
M((X−1)n, q)⊗k are the Mi⊗k and each is non-empty and
generically reduced.

(ii) Suppose that q ≡ 1 mod l, and that the αj are distinct roots
of unity in 1 + λ ⊂ O×. If q 6= 1 we suppose that they are
distinct (q − 1)st roots of unity. Then M(

∏n
i=1(X − αi), q)red

is flat over O.
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Proof. We treat the first part of the lemma. When l > n and q ≡ 1
mod l, this is Lemma 3.2 of [Tay08]. In fact, the proof there works
without any restriction on q. Taylor has given another proof valid
without restriction on l, and I thank him for allowing me to reproduce
this here.

Let us abbreviateM =M((X−1)n, q). Let Nil be the space of n×n
nilpotent matrices, and Pol the space of monic degree n polynomials.
M has natural maps to Nil and Pol taking a pair (Φ,Σ) to N = Σ− 1
and charΦ(X), respectively.

Let σ be a partition of n, say n = n1 + · · · + nr, and let Nil(σ)
be the corresponding subvariety of Nil, as defined in [Tay08] (it is the
variety of nilpotent matrices whose Jordan normal form refines the
partition σ). It has an open subvariey Nil(σ)0 (the variety of nilpo-
tent matrices whose Jordan normal form corresponds to the partition
σ). Let Pol(σ, q) be the subvariety of Pol consisting of polynomials
whose multiset of roots can be partitioned into r multisets of the form
{α, qα, . . . , qni−1α}.

We consider the following subschemes of M:

(i) M(σ)0 is the locally closed pre-image of Nil(σ)0 in M.
(ii) M(σ) is the reduced subscheme of the closure ofM(σ)0 inM.

(iii) M(σ)′ is the reduced subscheme of the intersection of the
pre-image of Nil(σ) under the first map and the pre-image of
Pol(σ, q) under the second map above.

Let L be a field, and let (Φ,Σ) be an L-point of M(σ)0. Then
charΦ(X) ∈ Pol(σ, q)(L). When L has characteristic zero, this can be
deduced just as in [Tay08]. Suppose instead that L has characteristic
l. Let M be an integer such that lM > n, and choose a positive integer
m such that mq ≡ 1 mod lM . Then ΦΣΦ−1 = Σmq = Σ. Writing
N = Σ− 1, we have

Φ(N + 1)mΦ−1 = (N + 1)

and hence
Φ(miN i +O(N i+1)) = N iΦ.

It follows that Φ preserves kerN i. We deduce that

charΦ|kerNi+1/ kerNi
(X) | charΦ|kerNi/ kerNi−1

(qX),

and hence charΦ(X) ∈ Pol(σ, q)(L).
We deduce the chain of inclusions

(M(σ)0)red ⊂M(σ) ⊂M(σ)′,

these schemes being reduced and the inclusions holding on field-valued
points. Just as in [Tay08], we have that the projection M(σ)0 →
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Nil(σ)0 is isomorphic locally in the Zariski topology to the projection

Nil(σ)0 × ZGLn(N(σ))→ Nil(σ)0,

where N(σ) is a nilpotent Jordan matrix corresponding to the partition
σ. In particular, M(σ)0 is smooth over O and the fibres are integral

of dimension n2. Now, choose a1, . . . , ar ∈ k
×

such that the multisets
Si = {ai, qai, . . . , qni−1ai} for i = 1, . . . , r are disjoint. Choose a matrix
Φ(σ, a) such that

charΦ(X) =
r∏
j=1

∏
α∈Sj

(X − α)

and (Φ, 1 +N(σ)) ∈M(σ)0. Then this tuple defines a point of(
M(σ)0 −

⋃
σ′ 6=σ

M(σ′)′

)(
k
)
⊂

(
M(σ)−

⋃
σ′ 6=σ

M(σ′)

)(
k
)
.

Thus theM(σ) are the irreducible components ofM, and they satisfy
the conditions of the lemma.

The second part of the lemma follows from an analogous modification
to the argument given in [Tay08] (replace exp(N) by the map N 7→
1 +N ; the proof then goes through essentially unchanged). �

Now let χv,1, . . . , χv,n : O×Lv → O
× be finite order characters, which

become trivial on reduction modulo λ. Suppose that #k(v) = qv ≡ 1
mod l. Suppose that ρ is trivial. We write Dχv for the set of liftings ρ
of ρ to objects of O such that for all σ ∈ ILv , we have

charρ(σ)(X) =
n∏
i=1

(X − χv,j(ArtLv(σ))−1).

This is a local deformation problem, studied in [Tay08]. Write Rχv
v for

the corresponding local lifting ring. We have the following.

Proposition 3.16. (i) Suppose that χv,j = 1 for each j. Then
each irreducible component of R1

v has dimension n2 + 1, and
every prime of R1

v minimal over λ contains a unique minimal
prime. Every generic point is of characteristic zero.

(ii) Suppose that the χv,j are pairwise distinct. Then SpecRχv
v is

irreducible of dimension n2 + 1, and its generic point is of
characteristic zero.

Proof. The first part of the proposition follows from Lemma 2.7 of
[Tay08] and Lemma 3.15 above. The second part follows from Lemmas
2.7, 3.3 and 3.4 of [Tay08] and Lemma 3.15 above. (The proofs of these
other results do not use the assumption l > n). �
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Now suppose that ρ is not necessarily trivial, and that qv 6≡ 1 mod l.
We consider the set Dav of liftings ρ to objects of O such that for all
σ ∈ ILv , we have

charρ(σ)(X) = (X − 1)n.

This is a local deformation problem. Let Ra
v denote the corresponding

local lifting ring.

Proposition 3.17. Each irreducible component of Ra
v has dimension

n2+1, and every prime of Ra
v minimal over λ contains a unique minimal

prime. Every generic point is of characteristic zero.

Proof. This follows from Lemma 2.7 of [Tay08] and Lemma 3.15 above
(complete at the point in the special fibre ofM corresponding to ρ). �

Finally, suppose that ρ is unramified and make no hypothesis on qv.
We write Durv for the collection of all unramified liftings of ρ.

Proposition 3.18. Durv is a local deformation problem, and the corre-
sponding lifting ring Rur

v is formally smooth over O.

4. Galois theory

The following generalizes the discussion in Section 2.5 of [CHT08].

Definition 4.1. Suppose that

S =
(
F/F+, S, S̃,O, r, χ, {Dv}v∈S

)
is a global deformation problem and that T ⊂ S. Let Q be a finite set
of primes v 6∈ S of F+ which split in F and for which

Nv ≡ 1 mod l.

Let Q̃ denote a set of primes of F containing exactly one prime ṽ of F
lying above each prime of Q.

If v ∈ Q then r|GFev is unramified. We write it in the form sv ⊕ ψv
where ψv is an eigenspace of Frobenius corresponding to an eigenvalue
αv, on which Frobenius acts semisimply. Then we define a second global
deformation problem

SQ = SQ,{ψv}v∈Q = (F/F+, S ∪Q, S̃ ∪ Q̃,O, r, χ, {Dv}v∈S∪Q),

where for v ∈ Q we take Dv to consist of all lifts which are 1+Mn(mR)-
conjugate to one of the form sv ⊕ ψv, where sv is unramified and ψv
may be ramified, but the image of inertia under ψv is contained in the
set of scalar matrices.
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Note that if one chooses the ψv to be one-dimensional, then this just
recovers Definition 2.5.7 of [CHT08]. The following lemma shows that
the above definition makes sense.

Lemma 4.2. Let Fv be a finite extension of Qp, and let r : GFv →
GLn(k) = s ⊕ ψ and Dv be as above. Then Dv is a local deformation
problem.

Proof. Of the conditions required for Dv to be a local deformation
problem (recalled in the previous section), only (ii) and (iii) present any
difficulty. Let us treat (ii) first. Let F be a Frobenius lift. By Hensel’s
lemma, applied to the characteristic polynomial of ri(F ), there is for
each i a unique splitting ri ∼= si⊕ψi where si, ψi are subrepresentations

of ri lifting s and ψ, respectively. Similarly, we have ri mod Ii ∼= s̃⊕ ψ̃
for unique subrepresentations s̃, ψ̃.

Let ẽ1, . . . , ẽn be elements of Ri/Ii lifting the standard basis of kn

such that ẽ1, . . . , ẽm lie in s̃ and ẽm+1, . . . , ẽn lie in ψ̃. By Nakayama’s

lemma, ẽ1, . . . , ẽm is a basis of s̃, and similarly for ψ̃.
Now lift these again to elements ei1, . . . , e

i
n of Ri for i = 1, 2. Let

Ai be the change of basis matrix. Then we have Ai ∈ 1 + Mn(mRi).
Setting A3 = A1 × A2, we find A3 ∈ 1 +Mn(mR3) and

A3(r1 × r2)A−1
3 = (s1 × s2)⊕ (ψ1 × ψ2).

Hence (R3, r1 × r2) ∈ Dv.
For (iii), let (R, r) = (limRj, lim rj). Then applying Hensel’s lemma

again gives a splitting r ∼= s ⊕ ψ, for subrepresentations s, ψ. (Note
that the property of inertia commuting with every choice of Frobenius
lift F is preserved under passing to the limit). Applying the uniqueness
of the splitting of each rj, we see that s must be unramified, and that
inertia acts centrally through ψ. The result follows. �

The following is proved in the same way as Lemma 2.5.8 of [CHT08]
(in fact the statement below is identical, but our notation SQ now
means something slightly more general). We refer back to [CHT08],
Section 2 for the definition of Lv and L⊥v below (informally, these are
the local conditions in cohomology coming from our choice of local
deformation problems Dv).

Lemma 4.3. Suppose that we are in the situation of the above defini-
tion, and that r is absolutely irreducible. Suppose also that for v ∈ S−T
we have

dimk Lv − dimkH
0(GFev , ad r) =

{
[F+
v : Ql]n(n− 1)/2 if v | l

0 if v - l.
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Then R�T
SQ can be topologically generated over Rloc

S,T = Rloc
SQ,T by

dimkH
1
L(Q)⊥,T (GF+,S, ad r(1)) + #Q−

∑
v∈T,v|l

[F+
v : Ql]n(n− 1)/2

− dimkH
0(GF+,S, ad r(1))− n

∑
v|∞

(1 + χ(cv))/2

elements.

Proposition 4.4. Let q0 ∈ Z≥0. Suppose given a deformation problem

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S).

Suppose that r is absolutely irreducible and that r(GF+(ζl)) is adequate.
Suppose also that for v ∈ S − T we have

dimk Lv − dimkH
0(GFev , ad r) =

{
[F+
v : Ql]n(n− 1)/2 if v | l

0 if v - l.

Let q be the larger of dimkH
1
L⊥,T (GF+,S, ad r(1)) and q0.

Then for any N ∈ Z≥1 we can find (Q, Q̃, {ψv}v∈Q) as in the above
definition, such that

• #Q = q ≥ q0.
• If v ∈ Q then Nv ≡ 1 mod lN .
• R�T

SQ can be topologically generated over Rloc
S,T = Rloc

SQ,T by

#Q−
∑
v∈T,v|l

[F+
v : Ql]n(n− 1)/2− n

∑
v|∞

(1 + χ(cv))/2

elements.

Proof. Given (Q, Q̃, {ψv}v∈Q) there is an exact sequence

0 // H1(GF+,S, ad r(1)) // H1(GF+,S∪Q, ad r(1)) //

//
⊕

v∈QH
1(IFev , ad s(1))⊕H1(IFev , adψ(1)),

the last arrow given by restriction. Now, for v ∈ Q, Lv is the subspace
of

H1(GFev , ad r(1)) = H1(GFev , ad s(1))⊕H1(GFev , adψ(1))

whose projection to H1(IFev , ad s(1)) is trivial and whose projection to

H1(IFev , adψ(1)) actually takes values in

H1(IFev , Z(ψ)(1)),

where Z(ψ) ⊂ adψ is the subspace of scalar matrices.
Recall that the complement L⊥v of Lv is taken with respect to the

pairing ad r× ad r(1)→ k(1) given by (A,B) 7→ trAB. It follows that



18 J. THORNE

for v ∈ Q, L⊥v is identified with the subspace of unramified cohomol-
ogy classes in H1(GFev , ad r(1)) whose projection to H1(GFev , adψ(1))

actually takes values in H1(GFev , ad0 ψ(1)). In particular, the group
H1
L(Q)⊥,T (GF+,S∪Q, ad r(1)) is the kernel of the map

H1
L⊥,T (GF+,S, ad r(1))→ ⊕v∈Qk

given by [φ] 7→ (tr eFrobev ,αvφ(Frobev))v∈Q. By the previous lemma, we’ll
be done if for any non-zero cohomology class

[φ] ∈ H1
L⊥,T (GF+,S, ad r(1)),

we can find a place v of F+ such that v splits completely in F (ζlN ) and
that

tr eFrobev ,αvφ(Frobev) 6= 0

for one of the places ṽ of F above v and choice of eigenvalue αv, and
such that r(Frobev) acts semisimply on its αv-eigenspace.

By the Chebotarev density theorem, it suffices to find an element σ0

of GF (ζ
lN

) such that

tr eσ0,αφ(σ0) 6= 0

for some eigenvalue α of r(σ0).
Let L/F (ζlN ) be the extension cut out by ad r. We have an exact

sequence

0 // H1(GF+(ζ
lN

), ad r(1)) // H1(GL, ad r(1))
GF+(ζ

lN
) .

Thus φ(GL) is a non-zero GF+(ζ
lN

)-submodule of ad r(1). By hypoth-

esis, there exists σ ∈ GF (ζ
lN

), α such that r(σ) acts semisimply on its
α-eigenspace and such that

tr eσ,αφ(GL) 6= 0.

If
tr eσ,αφ(σ) 6= 0

then we’re done. So we can assume that in fact

tr eσ,αφ(σ) = 0.

For τ ∈ GL, r(τσ) is a scalar multiple of r(σ) and we have φ(τσ) =
φ(τ) + φ(σ), hence

tr eσ,αφ(τσ) = tr eσ,αφ(τ).

Therefore we can choose σ0 = τσ for any τ ∈ GL such that

tr eσ,αφ(τ) 6= 0.

This concludes the proof. �
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5. Smooth representation theory of q-adic GLn

We introduce some more notation. Let F be a finite extension of Qp,
and choose a uniformizer $. Let q denote the size of the residue field
f of F . We write G = GLn(F ), B for its standard Borel subgroup. We
fix a partition n = n1 + n2, and let P be the standard parabolic (con-
taining B) corresponding to this partition. Let P = MN be its Levi
decomposition. We will use P interchangeably to denote the algebraic
subgroup of GLn or its F -points. This should not cause any confusion.
We let P denote the opposite parabolic of P .

We write K = GLn(OF ), and p for the parahoric subgroup of G
corresponding to those elements of K whose reduction modulo $ lies in
P (k). Let m = M(OF ). We write Iw for the standard Iwahori subgroup
of G. We consider smooth representations of G over an algebraically
closed field C of characteristic zero.

We use Ind to denote standard unnormalized parabolic induction
and n-Ind to denote the normalized parabolic induction n-IndGP σ =

IndGP σδ
1
2
P , where δP is the modulus character of P . We use π 7→ πN to

denote the normalized Jacquet functor which is right adjoint to n-Ind.
In particular, if π = n-IndGB χ1 ⊗ · · · ⊗ χn is irreducible then

rl(π)∨(1− n) = ⊕i(χi| · |(1−n)/2)) ◦ Art−1
F .

If ψ is an unramified character, we write Spm(ψ) for the unique
generic subquotient of

n-IndGLm
Bm

ψ ⊗ ψ| · | ⊗ · · · ⊗ ψ| · |m−1,

where Bm ⊂ GLm is the standard Borel subgroup. We refer to this as
a Steinberg representation.

Write W for the Weyl group of G. Given a parabolic subgroup Q
of G, we write WQ ⊂ W for the Weyl group of its Levi factor. Recall
that WQ\W/WP has a canonical set of representatives, which we will
denote [WQ\W/WP ], given by taking in each double coset the element
of minimal length (cf. the first section of [Cas]).

Lemma 5.1. Let Q be the standard parabolic corresponding to the par-
tition n = m1 + · · ·+mr. Then there is a bijection

WQ\W/WP
∼= the set of partitions mi = ni1 + ni2, i = 1, . . . , r

such that
∑
i

ni1 = n1 and
∑
i

ni2 = n2,

given as follows. Let

Mi = {m1 + · · ·+mi−1 + 1, . . . ,m1 + · · ·+mi−1 +mi},
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N1 = {1, . . . , n1}, and N2 = {n1 + 1, . . . , n}. Then we take

WQwWP 7→ the partition mi = (#Mi ∩ wN1) + (#Mi ∩ wN2).

(Here W acts in the natural manner on {1, . . . , n}.)

Given Q as in the lemma, we write Li for the ith block factor of its
Levi subgroup. Given a partition mi = ni1 + ni2, corresponding to a
double coset WQwWP , we write pwi for the parahoric subgroup of Li
corresponding to those elements of Li(OF ) whose reduction modulo $
lies in the two-block standard parabolic given by mi = ni1 + ni2.

Lemma 5.2. Let Q be as above.

(i) If w ∈ [WQ\W/WP ], then Li ∩ wpw−1 = pwi .
(ii) For each i, let πi be a smooth representation of Li. Then

(n-IndGQ π1 ⊗ · · · ⊗ πr)p = ⊕w∈[WQ\W/WP ]π
pw1
1 ⊗ · · · ⊗ πpwr

r .

Proof. We recall that an element w ∈ W is of minimal length in its
double coset if and only if it is of minimal length in WQw and wWP .
If R is the parabolic corresponding to a partition n = a1 + · · · + as
then an element is minimal in its left WR-coset if and only if it is order
preserving on the sets

{a1 + · · ·+ ai−1 + 1, . . . , a1 + · · ·+ ai−1 + ai}
for each i = 1, . . . , s. This is well known, but can be deduced easily
from e.g. the results on p. 20 of [BB05]. The first part now follows from
a direct calculation (alternatively, one could apply [Cas], Proposition
1.3.3).

For the second part, we use the Bruhat decomposition to deduce
that

G =
∐

w∈[WQ\W/WP ]

Qwp.

Then we have from the definition of induction

(n-IndGQ π1 ⊗ · · · ⊗ πr)p = ⊕w∈[WQ\W/WP ](π1 ⊗ · · · ⊗ πr)Q∩wpw−1

,

and applying the first part of the lemma gives the result. �

Let π be an irreducible smooth representation of G. If π is generic,
then it has an expression π = n-IndGQ π1 ⊗ · · · ⊗ πr as above, where
each πi is an irreducible essentially square-integrable representation of
Li (cf. [PR08]).

Corollary 5.3. Suppose that πp 6= 0. Then there exist unramified
characters χ1, . . . , χs and ψ1, . . . , ψt of F× such that

π = n-IndGQ χ1 ⊗ · · · ⊗ χs ⊗ Sp2(ψ1)⊗ · · · ⊗ Sp2(ψt).
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Proof. Since Iw ⊂ p, π must be a quotient of an unramified principal
series. Therefore if we write

π = n-IndGQ π1 ⊗ · · · ⊗ πr

then each πi is either an unramified character or a Steinberg repre-
sentation Spn(ψ). The representation Spn(ψ) has invariants under a
two-block parahoric subgroup only if n = 2, so by the previous lemma
the factors πi must have the given form. Since π is generic the normal-
ized induction is independent of the order of the factors, hence we can
write π as in the statement of the corollary. �

Following [Vig98], we introduce Hecke algebras Hp = HZ(G, p) and
Hm = HZ(M,m). We recall from section II of that paper that Hm

has a subalgebra H−m consisting of elements with ‘negative’ support.
In particular, this subalgebra contains the Hecke operators T j defined
below. Moreover, there is a natural homomorphism t : H−m ⊗ C →
Hp ⊗ C, given on characteristic functions of double cosets by χmgm 7→
δP (g)

1
2χpgp.

Proposition 5.4. Let π be an admissible representation of G, and let
q : πp → πm

N be the natural projection. Then q is an isomorphism, and
for all v ∈ πp, h ∈ H−m , we have

q(t(h) · v) = h · q(v).

Proof. Since p has an Iwahori decomposition with respect to P , q is
surjective ([Vig98], II.10.1). It remains to prove injectivity. There is a
commutative diagram

πp //

��

πIw

��
(πN)J // (πR)T0 ,

where R is the radical of B and T0 is the maximal compact subgroup
of T , and J is the standard Iwahori subgroup of M = GLn1 ×GLn2 .
The right vertical arrow is an isomorphism ([Vig98], II.7). Similarly
the bottom horizontal arrow is an isomorphism. It follows that the left
vertical arrow is injective.

The second part of the proposition is [Vig98], Lemma II.9 (but note
that we use normalized restriction here). �
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We will be interested in the following Hecke operators. For j =
1, . . . , n2, let αj be the n2 × n2 matrix

diag($, . . . , $︸ ︷︷ ︸
j

, 1, . . . , 1).

We let V j ∈ Hp be defined as the double coset operator[
p

(
1n1 0
0 αj

)
p

]
.

Similarly T j is the double coset operator[
m

(
1n1 0
0 αj

)
m

]
.

One computes easily that V j = qjn1/2t(T j). Note that since t is an
algebra homomorphism, the fact that the T j commute implies that the
operators V j must also commute.

Proposition 5.5. (i) Let w ∈ [WQ\W/WP ], corresponding to a
partition mi = ni1 + ni2. This can be viewed as a partition
n1 =

∑
i n

i
1, n2 =

∑
i n

i
2. Then w−1Qw ∩M is the standard

parabolic of M = GLn1 ×GLn2 corresponding to this partition.
(ii) Let π = n-IndGQ π1 ⊗ · · · ⊗ πr, where each πi is an admissible

representation of Li. Then

πss
N
∼= ⊕w∈[WQ\W/WP ] n-IndMw−1Qw∩M w−1(π1 ⊗ · · · ⊗ πr)L∩wNw−1 .

Proof. The first part is [Cas], Proposition 1.3.3. The second is [BZ77],
Lemma 2.12. �

We deduce the following.

Corollary 5.6. Suppose that π is generic and πp 6= 0. Then we have
a presentation

π = n-IndGQ χ1 ⊗ · · · ⊗ χs ⊗ Sp2(ψ1)⊗ · · · ⊗ Sp2(ψt)

as above. There is an isomorphism

πssN
∼= σ ⊕

⊕
S

n-IndMB∩M

(⊗
i 6∈S

χi ⊗
t⊗

j=1

(ψj ⊗ | · |)⊗
⊗
i∈S

χi ⊗
t⊗

j=1

ψj

)
,

where σ is a representation with no m-invariants. Here the sum is over
subsets S ⊂ {1, . . . , n− 2t} of order n2 − t. In particular, when t = 0,
we have

πssN
∼=
⊕
S

n-IndMB∩M

(⊗
i 6∈S

χi

)
⊗

(⊗
i∈S

χi

)
.
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Proof. The main point to note is that

Sp2(ψ)N = ψ| · | ⊗ ψ.
�

Since passing to m-invariants is exact, the above computes (πssN )m =
(πm

N)ss as a Hm-module. Combining this with Proposition 5.4, along
with the analogous computation for unramified Hecke operators on
GLn, we can compute the eigenvalues of the operators V j on πp with
their multiplicities.

Corollary 5.7. Remain in the above situation. Let 1 ≤ j ≤ n2. Let
A be the set of subsets of {1, . . . , n− 2t} of order n2− t. View πp as a
module for the commutative algebra C[V 1, . . . , V n2 ]. Then (πp)ss is a
direct sum of 1-dimensional modules indexed by A. If S ∈ A then V j

acts on the corresponding line as

qj(n−j)/2
∑
J1⊂S

J2⊂{1,...,t}

∏
a∈J1

χa($)
∏
b∈J2

ψb($),

with the sum ranging over subsets J1, J2 with #J1 + #J2 = j. In
particular, when t = 0, V j acts on the line corresponding to S as

qj(n−j)/2
∑
J⊂S

#J=j

∏
a∈J

χa($).

We now specialize to the case C = Ql, and q ≡ 1 mod l. Fix also a
subfield K ⊂ C finite over Ql, with ring of integers O, maximal ideal
λ, and residue field k. We suppose that l is odd. Then O contains
a square root of q, and we fix a choice of square root congruent to 1
modulo λ.

Proposition 5.8. Let 1 ≤ j ≤ n2. There is a unique way to func-
torially associate to every monic polynomial P (X) of degree n with
coefficients in an O-algebra A another monic polynomial Pj(X) such
that when A is an algebraically closed field of characteristic zero and

P (X) =
n∏
i=1

(X − αi),

the roots of Pj(X) with multiplicities are precisely the

qj(1−j)/2
∑
J⊂S

#J=j

∏
a∈J

αa

as S ranges over subsets of {1, . . . , n} of order n2.
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(The point of this is that when

π = χ1 � · · ·� χn

and

ρ = rl(π)∨(1− n)

and P (X) is the characteristic polynomial of ρ(ArtF ($)), the charac-
teristic polynomial of V j on πp divides Pj (and equality holds when π
is generic)).

Proposition 5.9. Let R be a complete local O-algebra with residue
field k. Let Π be a smooth R[G]-module, and suppose that for every
open compact subgroup U ⊂ G, ΠU is a finite free O-module. We
write RU for the image of R in EndO ΠU . Suppose that Π ⊗O Ql is
a semisimple Ql[G]-module, and that every irreducible constituent is
generic. Suppose that each RU ⊗O Ql is a semisimple algebra.

Suppose there exists a continuous representation ρ : GF → GLn(Rp)
such that for any homomorphism ϕ : Rp → Ql, and any irreducible
constituent π of the representation generated by Πp ⊗Rp,ϕ Ql, there is
an isomorphism

(rl(π)∨(1− n))ss ∼= (ρ⊗Rp,ϕ Ql)
ss.

Fix a Frobenius lift F , corresponding to uniformizer $ under the local
Artin map. Suppose that ρ = ρ mod mR is unramified, and that ρ(F )
has an eigenvalue α of multiplicity n2. Let P (X) be the characteristic
polynomial of ρ(F ), and let Pj(X) be as above. By Hensel’s lemma, we
can factor Pj(X) = Qj(X)Rj(X), where

Rj(X) ≡
(
X −

(
n2

j

)
αj
)kj

mod mR

and

Qj

((
n2

j

)
αj
)
6≡ 0 mod mR.

Set

pr$ =

n2∏
j=1

Qj(V
j) ∈ EndR Πp.

Then pr$ induces an isomorphism

ΠK ∼→ pr$ Πp ⊂ Πp

of R-modules.
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Proof. First we show that if π is an irreducible constituent of the rep-
resentation generated by some Πp ⊗Rp,ϕ Ql and pr$ π

p 6= 0 then π is
unramified. If π is ramified, then as above we have for some t > 0

π ∼= n-IndGQ χ1 ⊗ · · · ⊗ χs ⊗ Sp2(ψ1)⊗ · · · ⊗ Sp2(ψt).

The eigenvalues of (ρ⊗Rp,ϕ Ql)(F ) are, with multiplicities,

χ1($), . . . , χs($), ψ1($), |$|ψ1($), . . . , ψt($), |$|ψt($).

Moreover, these last elements are contained in the image of Rp in Ql.
Suppose first that α ≡ ψj($) mod mR for some j. (We view the

image of R in Ql as a quotient of R, which therefore has maximal ideal
induced by mR). Then, since ψ and ψ|·| are congruent modulo mR, pr$
projects to a space where Vj acts as the root of Pj(X) corresponding to
a set S of eigenvalues including both ψj($) and ψj($)|$|. However,
our earlier computation shows that the only lines that occur correspond
to a set of eigenvalues containing only ψj. So this is impossible.

Suppose instead that α 6≡ ψj($) mod mR for any j. Then pr$
maps into a line corresponding to a set of eigenvalues not containing
any ψj($). But one knows that each ψj($) occurs in every line of πp,
so this is also impossible.

Returning to the situation of the proposition, it follows that

rankO ΠK ≥ rankO pr$ Πp.

Therefore to show that the map

pr$ : ΠK → pr$ Πp

is in fact an isomorphism, it will suffice to show that it is injective after
−⊗O k.

Suppose that it is not, and let x ∈ ΠK ⊗O k be a non-zero vector
in the kernel such that mR · x = 0. Let N be an irreducible quotient
of the admissible k[G]-module generated by x. The following lemma
shows that NK is 1-dimensional, generated by x, and that

pr$N
K 6= 0.

This contradiction concludes the proof. �

Lemma 5.10. Let π be an unramified irreducible smooth representation
of G over k = F. Then:

(i) There is an isomorphism π ∼= n-IndGQ χ1◦det⊗ · · ·⊗χr◦det for
some distinct unramified characters χ1, . . . , χr, Q correspond-
ing to a partition n = m1 + · · ·+mr.

(ii) πK is 1-dimensional.
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(iii) Set n2 = mr and n1 =
∑r−1

i=1 mi. Let P (X) =
∏r

i=1(X −
χi($))mi, and let Pj(X) be as above. Factor each Pj(X) =
Qj(X)Rj(X), with

Rj(X) =

(
X −

(
n2

j

)
χmr($)j

)kj
and Rj(X), Qj(X) coprime. Then

pr$ =

n2∏
j=1

Qj(V
j)

induces an isomorphism

πK
∼→ pr$ π

p ⊂ πp.

Proof. The first part is [Vig98], Assertion VI.2. The second part is an
easy calculation.

For the third part, we argue as follows. First we give a description
of the Iwahori Hecke algebra HIw = HF(G, Iw) = HZ(G, Iw) ⊗Z F,
following [Vig96], I.3.14. For j = 1, . . . , n, we let

aj = diag($, . . . , $︸ ︷︷ ︸
j

, 1, . . . , 1).

Then we let Aj = [Iw aj Iw] and Xj = Aj(Aj−1)−1. (This makes sense
since each Aj is invertible in HIw). On the other hand, if sj is the
permutation matrix corresponding to the simple transposition (j, j+1)
then we set Sj = [Iw sj Iw]. HIw is generated by the Sj and Xj.
Moreover, it is canonically isomorphic to the group algebra of the group
W n Zn, where the transpositions Sj generate the W factor and the
operators X1, . . . , Xn form a basis for F[Zn] ⊂ F[W n Zn]. (Thus
W ∼= Sn acts on Zn by permuting basis vectors).

We note that πIw has a basis given by the functions ϕw for w ∈
[WQ\W/WB], defined as follows: ϕw has support Qw Iw, and ϕw(1) =
1. Define characters ψj by

ψ1 ⊗ · · · ⊗ ψn = χ1 ⊗ · · · ⊗ χi ⊗ · · · ⊗ χi︸ ︷︷ ︸
mi

⊗ · · · ⊗ χr.

Then X i acts on ϕw as the scalar ψw(i)($). This can be deduced as
follows.

First, note that π ⊂ n-IndGB ψ in a natural manner (i.e. π is the set
of functions G→ F which transform under the left translation by Q in
a suitable manner, hence a fortiori by ψ under B). Each ϕw is a sum
of functions φw1 with support Bw1 Iw, for w1 ∈ WQw. By computing
the action of generators of the Iwahori Hecke algebra, one checks that
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X i acts on φw1 as the scalar ψw1(i)($) = ψw(i)($); cf. Corollary 3.2 of
[Lan02]. (We note that q = 1 ∈ F is used here in an essential manner).
The corresponding result now follows for the vectors ϕw.

There is a commutative diagram

πp //

q1
��

πIw

q2
��

(πN)m q3 // (πR)T0 ,

where R is the unipotent radical of B and T0 is the maximal compact
subgroup of T . Note that q1 and q2 are isomorphisms, while q3 is
injective. Repeatedly applying Lemma II.9 of [Vig98], we find that for
all x ∈ πp we have

q2V
j(x) = q3q1V

j(x) = q3T
jq1(x) =

∑
J⊂{n1+1,...,n}

#J=j

Y Jq3q1(x)

=
∑

J⊂{n1+1,...,n}
#J=j

Y Jq2(x) =
∑

J⊂{n1+1,...,n}
#J=j

q2X
J(x),

where XJ =
∏

i∈J X
i and Y J = [T0yJT0], where yJ is the diagonal

matrix with (yJ)ii = $ if i ∈ J , and (yJ)ii = 1 otherwise. The
third equality above comes from writing coset representatives for T j

(cf. Proposition 4.1 of [Man01]) and using the fact that q = 1 in F.
Hence V j(x) =

∑
J X

J(x), which is to say that the restriction of∑
J X

J to the space of p-invariants is equal to V j. It follows that
{ϕw} is a basis of simultaneous eigenvectors for the operators V j. If
w ∈ [WQ\W/WP ] corresponds to the partition mi = ni1 + ni2, then the
eigenvalue of V j on ϕw is

sj(χ1($), . . . , χi($), . . . , χi($)︸ ︷︷ ︸
ni2 times

, . . . , χr($)),

where sj is the jth symmetric polynomial of degree n2.
Set ϕ =

∑
w ϕw; this vector spans πK . It is now easy to see that

pr$ ϕ = ϕw, where w is the element of [WQ\W/WP ] corresponding to
the partition

m1 = m1 + 0, . . . ,mr−1 = mr−1 + 0,mr = 0 +mr = 0 + n2,

and moreover that ϕw spans pr$ π
p.

�
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At this point we introduce another congruence subgroup p1 ⊂ p as
follows. It is the kernel of the homomorphism

p // P (f) // GLn2(f) det
// f× // f×(l),

where f×(l) denotes the maximal l-power order quotient of f×. Thus
p/p1

∼= f×(l). We define an extra Hecke operator on p1-invariants: for
α ∈ O×F , Aα = diag(α, 1, . . . , 1),

Vα =

([
p1

(
1n1 0
0 Aα

)
p1

])
.

We also have the operator

V j =

[
p1

(
1n1 0
0 αj

)
p1

]
.

Note that this now depends on the choice of $, although we do not
include $ in the notation. At this point we have two operators denoted
V j, acting on the spaces πp and πp1 , for any smooth representation π.
One checks that the inclusion πp ⊂ πp1 takes one operator to the other,
so in fact there is no ambiguity.

Lemma 5.11. Let π be a generic irreducible smooth K-representation
of G. Suppose that πp1 6= 0, but πp = 0. Then πp1 is 1-dimensional
and for any representation

ρ : GF → GLn(O)

with ρss ∼= rl(π)∨(1− n), we in fact have

ρF−ss ∼= rl(π)∨(1− n)

and ρ has abelian image. We can write

π = n-IndGB χ1 ⊗ · · · ⊗ χn
where χ1, . . . , χn1 are unramified and the remaining characters are tamely
ramified with identical restriction to inertia.

Proof. Consider the subgroups U1 ⊂ U0 ⊂ GL2(OF ) defined as follows:

U1 =

{(
∗ ∗
0 1

)
mod $

}
, U0 =

{(
∗ ∗
0 ∗

)
mod $

}
.

Since πp1 6= 0, we have a presentation

π = n-IndGQ χ1 ⊗ · · · ⊗ χs ⊗ Sp2(ψ1)⊗ · · · ⊗ Sp2(ψt),

with for each j Sp2(ψj)
U1 6= 0. If t > 0 then by conductor consider-

ations we see that each ψj is unramified and Sp2(ψj)
U1 = Sp2(ψj)

U0 ,
and hence πp 6= 0, a contradiction (compare [CHT08], proof of Lemma
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3.1.5). It follows that t = 0. Now note that p1 contains the subgroup
Iw′ ⊂ Iw defined as follows:

Iw′ = {(aij) ∈ Iw such that
n∏

i=n1+1

aii ≡ 1 mod $}.

We can now apply [CHT08], Lemma 3.1.6 (or more precisely its proof)
and the genericity of π to deduce that it must have the form stated
above.

Since π is generic, any Weil-Deligne representation (r,N) with r =
rl(π)∨(1 − n)ss necessarily has N = 0. Applying this to WD(ρF−ss)
gives the result, on noting that a representation of WF with open kernel
is abelian if and only if its Frobenius-semisimplification is. (Here we
use WD to denote the associated Weil-Deligne representation). �

Proposition 5.12. Let R be a complete local O-algebra with residue
field k. Let Π be a smooth R[G]-module, and suppose that for every
open compact subgroup U ⊂ G, ΠU is a finite free O-module. We
write RU for the image of R in EndO ΠU . Suppose that Π ⊗O Ql is
a semisimple Ql[G]-module, and that every irreducible constituent is
generic. Suppose that each RU ⊗O Ql is a semisimple algebra.

Suppose there exists a continuous representation ρ : GF → GLn(Rp1)
such that for any homomorphism ϕ : Rp1 → Ql, and any irreducible
constituent π of the representation generated by Πp1 ⊗Rp1 ,ϕ

Ql, there is
an isomorphism

(rl(π)∨(1− n))ss ∼= (ρ⊗Rp1 ,ϕ
Ql)

ss.

Fix a Frobenius lift F , corresponding to uniformizer $ under the local
Artin map. Suppose that ρ = ρ mod mR is unramified, and that ρ(F )
has an eigenvalue α of multiplicity n2. Define pr$ as above. Let R′

denote the image of R in EndO(pr$ Πp1).
Then we can decompose ρ ⊗Rp1

R′ = s ⊕ ψ canonically as a sum of
two subrepresentations such that s is unramified, ψ is tamely ramified
and its restriction to inertia acts as a scalar character φ. Finally we
have for every α ∈ O×F , Vα = φ(ArtF (α)) in R′ ⊂ EndO(pr$ Πp1).

Proof. Let ϕ, π be as in the statement of the proposition. Proposition
5.9 and Lemma 5.11 show that if pr$ π

p1 6= 0, then π is either un-
ramified or a ramified principal series, and in either case the image of
ρ⊗Rp1 ,ϕ

Ql is abelian. Let ρ′ = ρ⊗Rp1
R′.

Let P be the characteristic polynomial of ρ′(F ), and factor P (X) =
A(X)B(X), where B(α) = 0 and A, B are coprime. Then we decom-
pose

R′n = B(F )R′n ⊕ A(F )R′n = s⊕ ψ, say.
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Since ρ′ has abelian image, this decomposition is ρ′-invariant.
To prove the rest of the proposition, we can replace R′ with its image

in Ql, for some ϕ, π with pr$ π
p1 6= 0. We replace ρ′ with ρ′⊗R′,ϕQl. If

π is unramified then s and ψ are both unramified and Vα acts trivially
on pr$ π

p1 .
If on the other hand π is ramified then we must have

π ∼= n-IndGB χ1 ⊗ · · · ⊗ χn
where χ1, . . . , χn1 are unramified and the remaining characters are ram-
ified with equal restriction to inertia. Now pr$ π

p1 6= 0 implies that
pr$ π

p1 = πp1 . One now computes that V j acts on the one dimensional
space πp1 as the scalar

qj(n−j)/2
∑
J⊂S

#J=j

∏
a∈J

χa($),

S = {n1 + 1, . . . , n}. On the other hand V j acts on pr$ π
p1 as the

scalar

qj(n−j)/2
∑
J⊂S′
#J=j

∏
a∈J

χa($),

S ′ equal to the set of i such that χi($) ≡ α mod mR.
Since these are the same, we find that

sss ∼= (χ1 ⊕ · · · ⊕ χn1)| · |(1−n)/2 ◦ Art−1
F

and that

ψss ∼= (χn1+1 ⊕ · · · ⊕ χn)| · |(1−n)/2 ◦ Art−1
F .

The final line of the proposition follows from the computation of the
action of Vα on πp1 . �

6. Automorphic forms on definite unitary groups

The constructions in the first part of this section are now standard,
cf. [Ger], [Gue]. The main point of repeating them here is to convince
the reader that they go through with the assumption that l > n weak-
ened to the assumption that l is merely an odd prime. We also take
some steps to remove the hypothesis that the open compact subgroup
U is “sufficiently small”.

We suppose that L is an imaginary CM field such that L/L+. Let c
denote the non-trivial element of Gal(L/L+). Let B denote the matrix
algebra Mn(L), and let (·)∗ be an involution on B of the second kind.
We let G be the associated unitary group of transformations g ∈ B
such that gg∗ = 1.
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Suppose now that L/L+ is unramified at all finite places and that 4
divides n[L+ : Q]. Under these hypotheses, we can choose (·)∗ so that

(i) For every finite place v of L+, G is quasi-split at v.
(ii) For every infinite place v of L+, G(L+

v ) ∼= Un(R).

We can find a maximal order OB ⊂ B such that O∗B = OB and such
that OB,w is a maximal order in Bw for every place w ∈ L split over
L+. This defines an integral model for G over OL+ , which we continue
to denote as G. We do not prove these facts here, but refer instead to
[CHT08], Section 3.3, with the set S(B) taken to be empty.

Let v be a finite place of L+ which splits as v = wwc in L. Then we
can find an isomorphism

ιv : OB,v →Mn(OL,v) = Mn(OLw)×Mn(OLwc ),
such that ιv(g

∗) = tιv(g)c. Projection to the first factor then gives rise
to an isomorphism

ιw : G(OL+
v

)→ GLn(OLw).

Let l be an odd prime number, and suppose that every place of L+

above l splits in L. Let Sl denote the set of places of L+ dividing l.
For each place in v ∈ Sl we choose a place ṽ of L above it and denote

the set of these by S̃l.
Let K be a finite extension of Ql in Ql, with ring of integers O and

residue field k. We write λ for the maximal ideal of O. We will suppose
K large enough to contain the image of every embedding of L in Ql.

Let Ĩl denote the set of embeddings L ↪→ K inducing a place in S̃l.

To each λ ∈ (Zn
+)

eIl we associate a finite free O-module Mλ as follows:

Mλ = ⊗τ∈eIlMλτ ,

where Mλτ is as constructed in [Ger], Section 2.2. (It is the alge-
braic representation of GLn /O with highest weight diag(t1, . . . , tn) 7→∏n

i=1 t
λτ,i
i ).

Then Mλ can be viewed as a continuous representation of the group
G(OL+,l), via the product of the maps

τ ◦ ιev(τ) : G(OL+
v(τ)

)→ GLn(OLev(τ))→ GLn(O).

(Here ṽ(τ) and v(τ) are the places L and L+, respectively, induced by
the embedding τ : L ↪→ K). Similarly Wλ = Mλ ⊗O K can be viewed
as a continuous representation of the group G(L+

l ).
Let R be a finite set of finite places of L+, disjoint from Sl and

containing only places which split in L. Let T ⊃ Sl ∪R be a finite set
of places of L+ which split in L. For each v ∈ T we choose a place ṽ
of L above it, extending our previous choice for v ∈ Sl. We suppose
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that U =
∏

v Uv is an open compact subgroup of G(A∞L+) such that
Uv ⊂ ι−1ev Iw(ṽ) for v ∈ R. (We recall that for a place ṽ of L, Iw(ṽ)
is the subgroup of GLn(OLev) consisting of matrices whose image in
GLn(k(ṽ)) is upper triangular. We will also write Iw1(ṽ) ⊂ Iw(ṽ) for
the subgroup of matrices whose image in GLn(k(ṽ)) is upper-triangular
and unipotent).

For each v ∈ R, we choose a character

χv = χv,1 × · · · × χv,n : Iw(ṽ)/ Iw1(ṽ)→ O×,
the decomposition being with respect to the natural isomorphism

Iw(ṽ)/ Iw1(ṽ) ∼= (k(ṽ)×)n.

We set

Mλ,{χv} = Mλ ⊗O

(⊗
v∈R

O(χv)

)
and Wλ,{χv} = Mλ,{χv} ⊗O K.

These are representations of the groups G(OL+,l) ×
∏

v∈R Iw(ṽ) and
G(L+

l )×
∏

v∈R Iw(ṽ), respectively.

Definition 6.1. Let λ, U, {χv} be as above. If A is an O-module, and
Uv ⊂ G(OF+

v
) for v | l, we write Sλ,{χv}(U,A) for the set of functions

f : G(L+)\G(A∞L+)→Mλ,{χv} ⊗O A

such that for every u ∈ U , we have f(gu) = u−1
Sl∪Rf(g), where uSl∪R

denotes the projection to
∏

v∈Sl∪R Uv.

We write Sλ,{χv}(Ql) for the set of functions

f : G(L+)\G(A∞L+)→ Wλ,{χv} ⊗K Ql

such that there exists an open compact subgroup V such that for every
v ∈ V , we have f(gv) = v−1

Sl∪Rf(g). This space receives an action of

the group G(A∞,RL+ )×
∏

v∈R Iw(ṽ) via

(u · f)(g) = (uSl∪R)f(gu).

Thus for U as above, we have Sλ,{χv}(Ql)
U = Sλ,{χv}(U,Ql).

If R is empty then we write Sλ,{χv}(U,A) = Sλ(U,A).

The spaces Sλ,{χv}(U,A) receive an action of the Hecke operators

T jw = ι−1
w

([
GLn(OLw)

(
$w1j 0

0 1n−j

)
GLn(OLw)

])
.

Here w is a place of L split over L+, not in T and $w is a uniformizer
of Lw. We let TT

λ,{χv}(U,A) be the (commutative) O-subalgebra of
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EndO(S{χv},λ(U,A)) generated by the operators T jw, j = 1, . . . n, and
(T nw)−1 for w as above. Again, if R is empty, then we write

TT
λ,{χv}(U,A) = TT

λ (U,A).

We briefly recall the relation between the spaces defined above and
the space A of automorphic forms on G(L+)\G(AL+).

Proposition 6.2. Choose an isomorphism ι : Ql
∼→ C. For each

τ ∈ Ĩl, we have ιτ : F ↪→ C. Let ξλιτ be the C-representation of
G(L+

τ |L+
) ∼= Un(R) of highest weight λτ , and let ξιλ be the represen-

tation ⊗τ∈eIlξλιτ of G(L+
∞). Then there is an ι-linear isomorphism of

G(A∞,RL+ )×
∏

v∈R Iw(ṽ)-modules

ι : Sλ,{χv}(Ql)
∼→ HomG(L+

∞)

(
(⊗v∈RC(ιχ−1

v ))⊗ ξ∨ιλ,A
)
.

In particular, if Π is a G(AL+)-constituent of A with

Π∞ = HomG(L+
∞)

(
(⊗v∈RC(ιχ−1

v ))⊗ ξ∨ιλ,Π
)
6= 0,

then we can view ι−1Π∞ as a G(A∞,RL+ ) ×
∏

v∈R Iw(ṽ)-constituent of

Sλ,{χv}(Ql).

Proof. The proof is almost identical to the first part of the proof of
[CHT08], Proposition 3.3.2. �

We end this section with two lemmas about these spaces, generalizing
[CHT08], Lemma 3.3.1.

Lemma 6.3. Suppose that for all t ∈ G(A∞L+), the group

t−1G(L+)t ∩ U
contains no element of order l. Then the functor A 7→ Sλ,{χv}(U,A) on
O-modules is exact.

Proof. Write G(A∞L+) =
∐

iG(L+)tjU , a finite union. Then we have

Sλ,{χv}(U,A) = ⊕j(Mλ,{χv} ⊗O A)t
−1
j G(L+)tj∩U ,

f 7→ (f(tj))j.

Now note that for each j, t−1
j G(L+)tj ∩ U is a finite group of order

prime to l (compare [Gro99], Proposition 4.3). �

Lemma 6.4. Suppose that for all t ∈ G(A∞L+), the group

t−1G(L+)t ∩ U
contains no element of order l, and let V ⊂ U be a normal open compact
subgroup with U/V abelian, of l-power order. The group U/V operates
on the space Sλ,{χv}(U,A) via the diamond operators u 7→ [V uV ]. Then:
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(i) The map trU/V : Sλ,{χv}(V,A)U/V → Sλ,{χv}(U,A) is an iso-
morphism.

(ii) Sλ,{χv}(V,O) is a free O[U/V ]-module.

Proof. For the first part of the lemma, we can suppose that U/V is
cyclic; let σ be a generator. By the previous lemma we can also assume
that A = O.

Let λ∨ be the weight defined by λ∨τ,i = −λτ,n+1−i. Then we have

(Wλ,{χv})
∨ ∼= Wλ∨,{χ−1

v } as representations of G(L+
l ) ×

∏
v∈R Iw(ṽ) (cf.

[Jan03], Corollary II.2.5). Thus (Mλ,{χv})
∨ defines a lattice in Wλ∨,{χ−1

v }
which is invariant under the action of G(OL+,l) ×

∏
v∈R Iw(ṽ). If W

is a compact open subgroup of G(A∞L+), and A is an O-module, let us
temporarily write Sλ∨,{χ−1

v }(W,A) for the set of functions

f : G(L+)\G(A∞L+)→ (Mλ,{χv})
∨ ⊗O A

such that for every w ∈ W , we have f(gw) = w−1
Sl∪Rf(g).

We now have a pairing Sλ,{χv}(V,O)×Sλ∨,{χ−1
v }(V,O)→ O given by

the formula

(f, g)V =
∑

t∈G(L+)\G(A∞
L+ )/V

〈f(t), g(t)〉
#(t−1G(L+)t ∩ V )

,

where 〈, 〉 is the natural duality pairing. We use the same formula to
define a pairing (, )U on the spaces of level U . In fact, these are perfect
pairings, and for u ∈ U we have

([V uV ]f, g)V = (f, [V u−1V ]g)V .

Moreover, the diagram

Sλ,{χv}(V,O) × Sλ∨,{χ−1
v }(V,O) → O

↓ trU/V ⊂ ‖
Sλ,{χv}(U,O) × Sλ∨,{χ−1

v }(U,O) → O
commutes. The map trU/V being an isomorphism is equivalent to the
exactness of the sequence

0 //(σ − 1)Sλ,{χv}(V,O) //Sλ,{χv}(V,O)
trU/V //Sλ,{χv}(U,O) ////0.

Applying Pontryagin duality, and the pairing constructed above, this
is equivalent to the natural map

Sλ∨,{χ−1
v }(U,O)⊗K/O → (Sλ∨,{χ−1

v }(V,O)⊗K/O)σ=1

being an isomorphism. But by the same argument as in the proof of
previous lemma, this is just the map

Sλ∨,{χ−1
v }(U,K/O)→ (Sλ∨,{χ−1

v }(V,K/O))U/V ,
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and the right hand side equals the left hand side by definition.
The second part of the lemma now follows from the first part as

follows. Let r = dimk Sλ,{χv}(U, k). By Nakayama’s lemma, there is a
surjection

O[U/V ]r → Sλ,{χv}(V,O)

of O[U/V ]-modules. To show that this is an isomorphism, it’s enough
to check that

dimK Sλ,{χv}(V,K) = #(U/V )r = #(U/V ) dimK Sλ,{χv}(U,K).

But this follows from the fact that for any t we have tG(L+)t−1 ∩U =
tG(L+)t−1∩V , along with the description of Sλ,{χv}(V,K) given in the
proof of the previous lemma. �

Galois representations. Keep the assumptions of the previous sec-
tion.

Theorem 6.5. Suppose that π be an irreducible G(A∞,RL+ )×
∏

v∈R Iw(ṽ)-

constituent of Sλ,{χv}(Ql). Then there exists a continuous semisimple
representation

rl(π) : GL → GLn(Ql)

such that:

(i) If v 6∈ Sl is a place of L+ which splits as v = wwc in L, then

(rl(π)|GLw )ss ∼= (rl(πv ◦ ι−1
w ))ss.

(ii) rl(π)c ∼= rl(π)∨(1− n).
(iii) If v is an inert place and πv has a fixed vector for a hyperspecial

maximal compact in G(L+
v ) then rl(π) is unramified at v.

(iv) If v ∈ R and π
ι−1ev Iw(ev)
v 6= 0, then for every σ ∈ ILev , we have

charrl(π)(σ)(X) =
n∏
j=1

(
X − χ−1

v,j(Art−1
Lev (σ))

)
.

(v) If v ∈ Sl splits as v = wwc then rl(π)|GFw is de Rham. If πw
is unramified then rl(π)|GFw is even crystalline. Moreover, for

each τ ∈ Ĩl, we have

HTτ (rl(π)) = {λτ,j + n− j}j=1,...,n.

Finally if rl(π) is irreducible then for each place v of L+ which splits
as L as wwc, the representation πw ◦ ι−1

w is generic.

Proof. This follows from Theorem 2.3 of [Gue] and Corollary 5.10 of
[Sha74]. �
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Proposition 6.6. Let m be a maximal ideal of TT
λ (U,O). Then there

is a unique continuous semisimple representation

rm : GL → GLn(TT
λ (U,O)/m)

such that:

(i) rcm
∼= r∨m(1− n).

(ii) rm is unramified outside T . For all v 6∈ T splitting in L as
v = wwc, the characteristic polynomial of rm(Frobw) is

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T jwX
n−j + · · ·+ (−1)n(Nw)n(n−1)/2T nw .

Proof. This follows quickly from the above theorem; see the proof of
[CHT08], Proposition 3.4.2 for details. �

We will fix henceforth a maximal ideal m such that rm is absolutely
irreducible (or non-Eisenstein).

Proposition 6.7. In this case, rm admits an extension to a continuous
homomorphism

rm : GL+ → Gn(TT
λ (U,O)/m),

with the property that r−1
m (GLn×GL1(TT

λ (U,O)/m)) = GL and that
ν ◦ rm = ε1−nδµm

L/L+ for some µm ∈ Z/2Z. Moreover, rm admits a

continuous lift, unique up to conjugacy, to a representation

rm : GL+ → Gn(TT
λ (U,O)m)

satisfying the following:

(i) If v 6∈ T is a finite place of L+ which splits as wwc in L, then
rm is unramified at w and wc, and rm(Frobw) has characteristic
polynomial

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T jwX
n−j + · · ·+ (−1)n(Nw)n(n−1)/2T nw .

(ii) If v is a finite place of L+ inert in L, and Uv is a hyperspecial
maximal compact subgroup of G(L+

v ), then rm is unramified at
v.

(iii) ν ◦ rm = ε1−nδµm

L/L+.

Proof. This is proved exactly as the first part of Proposition 3.4.4 of
[CHT08]. We note that we use here the fact that l > 2, in the form of
Lemma 2.1.12 of [CHT08]. �
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A patching argument. We now suppose R = ∅, so that T = Sr
∐
Sl,

for some set Sr of primes. We will define a local deformation problem
Dv for each v ∈ T , by giving a suitable quotient Rv of the universal

lifting ring R�ev at ṽ. For v ∈ Sr, take Rv = R�ev . For v ∈ Sl, we will

take the ring Rλ,crev . See Section 3 for the definitions of these rings.
Thus we have the global deformation problem

S =
(
L/L+, T, T̃ ,O, r, ε1−nδµm

L/L+ , {R�ev }v∈Sr ∪ {Rλ,crev }v∈Sl
)
.

We set Rloc =
(⊗̂

v∈SrR
�ev
)
⊗̂O
(⊗̂

v∈SlR
λ,crev
)
.

Suppose now that U =
∏

v Uv has the following form:

(i) Uv = G(OL+
v

) if v ∈ Sl.
(ii) Uv = G(OL+

v
) if v 6∈ T is split in L.

(iii) Uv is a hyperspecial maximal compact of G(L+
v ) if v is inert in

L.
(iv) Uv is arbitrary for v ∈ Sr.

Suppose also that for all t ∈ G(A∞L+), the group t−1G(F+)t ∩ U is
trivial.

Theorem 6.8. The lifting

rm : GL+ → Gn(TT
λ (U,O)m)

defined above is of type S. Suppose moreover that rm(GL+(ζl)) is ade-
quate. Let r : GL+ → Gn(O) be another lifting of rm of type S. Suppose
there exists a homomorphism f ′ : TT

λ (U,O)m → O such that:

(i) For v ∈ Sl, (f ′ ◦ rm)|GLev and r|GLev lie on the same component

of SpecRλ,crev ⊗O Ql.
(ii) For v ∈ Sr, (f ′ ◦ rm)|GLev ; r|GLev .

Then there exists a second homomorphism f : TT
λ (U,O)m → O such

that r and f ◦ rm are conjugate by an element of GLn(O).

Proof. That rm is of type S follows immediately from its construction
and the fact that TT

λ (U,O)m is reduced and l-torsion free. Let

q0 = [L+ : Q]n(n− 1)/2 + [L+ : Q]n(1− (−1)µm−n)/2.

By Proposition 4.4, we may choose for every N ≥ 1 a tuple

(QN , Q̃N , {ψev}v∈QN )

such that

• #QN = q for all N .
• Nv ≡ 1 mod lN for all v ∈ QN .
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• The ring R�T
SQN

can be topologically generated over Rloc by

g = q − q0 = q − [L+ : Q]n(n− 1)/2 + [L+ : Q]n(1− (−1)µm−n)/2

elements.
• ψev is a subrepresentation of r|GLev of dimension dvN .

For each v,N ≥ 1, let pev
N , p

ev
N,1 be the parahoric subgroup of GLn(OLev)

corresponding to the partition n = (n−dvN)+dvN , as defined previously.
We let

U1(QN) =
∏
v

U1(QN)v, U0(QN) =
∏
v

U0(QN)v

be the compact open subgroups of G(A∞L+) with Ui(QN) = Uv for v 6∈
QN , U1(QN) = ι−1ev pev

N,1, U0(QN) = ι−1ev pev
N for v ∈ QN .

We have natural maps

TT∪QN
λ (U1(QN),O) //TT∪QN

λ (U0(QN),O) //

//TT∪QN
λ (U,O) //TT

λ (U,O).

The first two arrows are surjective, the last is injective. Thus m deter-
mines maximal ideals denoted mQN ,mQN ,m,m of these four algebras.
After localizing at m the last map is an isomorphism, since rm is abso-
lutely irreducible (cf. the proof of [CHT08], Corollary 3.4.5).

For each v ∈ QN , let φev ∈ GLev be a Frobenius lift and let $ev be the
uniformizer with ArtLev $ev = φev|Labev . In Proposition 5.9 we have defined

commuting projection operators pr$ev at each place ṽ. For i = 0, 1, we
set

Hi,QN =

( ∏
v∈QN

pr$ev
)
Sλ(Ui(QN),O)mQN

,

and let Ti,QN denote the image of TT∪QN
λ (Ui(QN),O) in EndO(Hi,QN ).

Let H = Sλ(U,O)m.
Let ∆QN = U0(QN)/U1(QN). Let aQN ⊂ O[∆QN ] denote the aug-

mentation ideal. For each α ∈ O×Lev , let Vα denote the Hecke operator

Vα = ι−1ev
([

pev
N,1

(
1n−dvN 0

0 Aα

)
pev
N,1

])
,

where Aα = diag(α, 1, . . . , 1).
We claim that the following hold:

(i) For each N , the map∏
v∈QN

pr$ev : H → H0,QN

is an isomorphism.
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(ii) For each N , H1,QN is free over O[∆QN ] with

H1,QN/aQN
∼→ H0,QN .

(iii) For each N and for each v ∈ QN , there is a character Vev :
O×Lev → T×1,QN such that
(a) for any α, Vα = Vev(α) on H1,QN .
(b) (rmQN

⊗ T1,QN )|GLev ∼= s ⊕ ψ with s unramified, lifting

sev, ψ lifting ψev, and ψ|ILev acting as the scalar character

Vev ◦ Art−1
Lev |ILev .

In fact these follow respectively from Proposition 5.9, Lemma 6.4 and
Proposition 5.12.

For each N , the lift rmQN
⊗ T1,QN is of type SQN and gives rise

to a surjection Runiv
SQN

→ T1,QN . Thinking of ∆QN as the maximal l-

power order quotient of
∏

v∈QN ILev , we obtain a homomorphism ∆QN →
(Runiv
SQN

)× as follows: for each v ∈ QN , decompose runiv
SQN
|GLev = s⊕ψ and

take a diagonal entry of ψ in some basis. This does not depend on the
choice of basis.

We thus have homomorphisms O[∆QN ]→ Runiv
SQN
→ R�T

SQN
and natu-

ral isomorphisms Runiv
SQN

/aQN
∼= Runiv

S and R�T
SQN

/aQN
∼= R�T

S . Moreover,

this makes the maps Runiv
SQN
→ T1,QN into homomorphisms of O[∆QN ]-

algebras.
At this point we can apply Lemma 6.10 below, with the following

identifications: we take

T = TT
λ (U,O), H = Sλ(U,O)m.

R = Runiv
S , RN = Runiv

SQN
.

t = #T, and q, g are as constructed above.

We choose a lifting runiv
S : GL+ → Gn(Runiv

S ) representing the univer-
sal deformation, and for every N a lifting runiv

SQN
: GL+ → Gn(Runiv

SQN
)

reducing to the this one. This induces compatible isomorphisms

R�T
S → Runiv

S ⊗̂OT and R�T
SQN
→ Runiv

SQN
⊗̂OT .

The rings R�T
S and R�T

SQN
are naturally Rloc-algebras, and we take RL =

Rloc. We take

S∞ = O[[x1, . . . , xn2t, y1, . . . , yq]],

and let a be the kernel of the augmentation map S∞ → O. Finally
applying the lemma, we are given a R∞-module H∞ satisfying the
following:



40 J. THORNE

(i) H∞ receives an action of S∞, which commutes with the R∞ ac-
tion, and H∞/aH∞ ∼= H, compatibly with the homomorphism

Rloc → R�T
S → Runiv

S .
(ii) H∞ is a finite free S∞-module.
(iii) The action of S∞ on H∞ factors through the action of R∞.

In particular, we have that depthR∞ H∞ = dimS∞ = 1 + n2#T + q.
On the other hand, R∞ is equidimensional of dimension 1 + n2#T +
n(n− 1)/2[L+ : Q] + g. It follows that

1 + n2#T + q ≤ 1 + n2#T + q − [L+ : Q]n(1− (−1)n−µm)/2.

Thus equality holds, with n ≡ µm mod 2. In particular, the support
of H∞ on R∞ is a union of irreducible components (cf. Lemma 2.3 of
[Tay08]).

For each v ∈ T , let Cv be the unique component of R�ev or Rλ,crev
containing (f ′ ◦ rm)|GLev . Define a new deformation problem

S ′ =
(
L/L+, T, T̃ ,O, r, ε1−nδµm

L/L+ , {RCvev }v∈Sr ∪ {Rλ,Cvev }v∈Sl
)
.

There is a natural surjection Runiv
S → Runiv

S′ .
The hypotheses of the theorem imply that the closed point of R∞[1/l]

induced by f ′ is contained in a unique irreducible component, hence
the entirety of this irreducible component is contained in the support
of H∞. But the subset SpecRuniv

S′ ⊂ SpecR∞ is contained in this
component. In particular,

SuppRuniv
S′

H∞ ⊗R∞ Runiv
S′ = SpecRuniv

S′ .

Thus H ⊗Runiv
S

Runiv
S′ is a nearly faithful Runiv

S′ -module, and the homo-

morphism Runiv
S′ → O induced by r actually factors through TT

λ (U,O)m.
This concludes the proof of the theorem. �

Corollary 6.9. We have µm ≡ n mod 2. Moreover, let S ′ be the de-
formation problem defined in the proof above. Then with the hypotheses
of the theorem, Runiv

S′ is a finite O-algebra.

Proof. The proof actually shows that Runiv
S′ /J is a quotient of the finite

O-algebra TT
λ (U,O)m, for some nilpotent ideal J of Runiv

S′ . Then Runiv
S′ /λ

is an Artinian k-algebra, hence of finite length; now apply [Mat89],
Theorem 8.4. �

We suppose that all rings in the statement of the following lemma
are Noetherian.

Lemma 6.10. Let R → T be a surjective O-algebra homomorphism,
with T a finite O-algebra. Let H be a finite T -module. Fix positive
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integers t, q. Suppose that we have for each N ≥ 1 a surjective ho-
momorphism RN → TN of SN = O[(Z/lNZ)q] algebras which reduces
to the homomorphism R → T on quotienting out by the augmentation
ideal. Let HN be a finite TN -module which is free of finite rank as an
SN -module. Suppose that this rank is independent of N .

Let T = O[[x1, . . . , xn2t]], and let S∞ = T [[y1, . . . , yq]]. Let RL be an
O-algebra and suppose that RN⊗̂OT , R⊗̂OT are RL algebras in such a
way that RN⊗̂T → R⊗̂OT is a homomorphism of RL-algebras. Finally
suppose that each RN⊗̂OT can be topologically generated over RL by
g generators. Let R∞ = RL[[x1, . . . , xg]]. Let a be the ideal of S∞
generated by the xi and yj. Then:

(i) There exists an R∞-module H∞ which receives a commuting
action of S∞, and H∞/aH∞ ∼= H, compatibly with the homo-
morphism RL → R⊗̂OT → R.

(ii) H∞ is a finite free S∞-module.
(iii) The action of S∞ on H∞ factors through the action of R∞.

Proof. We do not prove this here but note that it can easily be extracted
from e.g. the proof of Theorem 3.6.1 of [BLGG11]. �

7. Minimal automorphy lifting

Theorem 7.1. Let F be an imaginary CM field with totally real subfield
F+ and let c be the non-trivial element of Gal(F/F+). Let n ∈ Z≥1

and let l be an odd prime. Let K ⊂ Ql denote a finite extension of Ql

with ring of integers O, residue field k, and maximal ideal λ. Let

ρ : GF → GLn(O)

be a continuous representation and let ρ = ρ mod λ. Let µ : GF+ →
O× be a continuous character. Suppose that (ρ, µ) satisfy the following
properties:

(i) ρc ∼= ρ∨ε1−nµ|GF .
(ii) µ(cv) is independent of v | ∞.
(iii) ρ is ramified at only finitely many places.
(iv) ρ is absolutely irreducible and ρ(GF (ζl)) ⊂ GLn(k) is adequate.
(v) ζl 6∈ F .

(vi) There is a continuous representation ρ′ : GF → GLn(O), a
continuous character µ′ : GF+ → O×, a RAECSDC automor-
phic representation (π, χ) of GLn(AF ) which is potentially un-

ramified above l and ι : Ql
∼→ C such that

(a) ρ′ ⊗O Ql
∼= rl,ι(π) : GF → GLn(Ql).

(b) µ′ ⊗O Ql
∼= rl,ι(χ).

(c) (ρ, µ) = (ρ′, µ′).
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(d) For all places v - l of F , either
• πv and ρ|GFv are both unramified, or
• ρ′|GFv ; ρ|GFv .

(e) For all places v | l, ρ′|GFv ∼ ρ|GFv .

Then (ρ, µ) is automorphic. Moreover, if π has level prime to l and ρ
is crystalline, then (ρ, µ) is automorphic of level prime to l.

Proof. We use twisting and soluble base change to reduce the theorem
to Theorem 6.8, proved above. Let C be the set of places of F+ above
which ρ or π is ramified, together with the places of F+ dividing l.
After a soluble base change we can assume that each place of C splits
in F and that ρ is crystalline and π has level prime to l. The final
sentence of the theorem will follow from the observation that in the
soluble extensions L/F below, we can take all primes of F above l to
split completely in L.

Let us suppose first that µ = χ = δnF/F+ . Let L/F be an imaginary
CM extension such that:

(i) L/F is soluble.

(ii) L is linearly disjoint with F
ker ρ

(ζl) over F .
(iii) 4 divides [L+ : F+].
(iv) L/L+ is unramified at all finite places.

In particular, the hypotheses of Section 6 are satisfied. We write
G/OL+ for the algebraic group constructed there. By Théorème 5.4 and
Corollaire 5.3 of [Lab], there exists an automorphic representation Π of
G(AL+) such that πL is a strong base change of Π, in the terminology
of that paper.

Let v1 be a place of L+ split in L, of residue characteristic not divid-
ing the order of any element of G(L+), and above which both ρ|GL and
πL are unramified. For a place w of L above v1, we have ρ′|GFw ; ρ|GFw
(since πw is generic).

We let Sr be the set of primes of L+ above which πL or ρ|GL are
ramified, along with the prime v1. Let Sl be the set of places of L+

dividing l. Let T = Sl ∪ Sr, and choose for every v ∈ T a place ṽ of L

above v. Denote the set of such places T̃ .
Choose an open compact subgroup U =

∏
v Uv of G(A∞L+) satisfying

the following:

(i) Uv = G(OL+
v

) if v ∈ Sl.
(ii) Uv = G(OL+

v
) if v 6∈ T is split in L.

(iii) Uv is a hyperspecial maximal compact of G(L+
v ) if v is inert in

L.
(iv) Uv1 = ι−1ev1 Iw1(ṽ1).
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(v) ΠUv
v 6= 0 for v ∈ Sr, v 6= v1.

Then for all t ∈ G(A∞L+), the group t−1G(L+)t∩U is trivial (the addition

of the place v1 ensures this). Let Ĩl denote the set of embeddings

L ↪→ K giving rise to an element of T̃ . For τ ∈ Ĩl, giving rise to ṽ,
let λτ ∈ Zn

+ be such that HTτ (ρ
′|GLev ) = {λτ,j + n − j}j=1,...,n. Then

λ ∈ (Zn
+)

eIl defines a space of automorphic forms Sλ(U,O), as in the
previous section.

The action of the Hecke operators T jw on the space (ι−1Π∞)U defines
a homomorphism TT

λ (U,O)→ Ql. After extending K, we can suppose
that this homomorphism is valued in O. Let m be the maximal ideal
containing the kernel.

In the notation of the previous section, m is non-Eisenstein, so the
representation ρ′|GL admits an extension to a continuous representation

rm : GL+ → Gn(k).

Since ζl 6∈ L, rm(GL+(ζl)) is adequate. After possibly extending K
again, ρ|GL admits an extension to a continuous representation

r : GL+ → Gn(O)

lifting rm. In particular, r is a lifting of type S. Theorem 6.8 now
applies, and then Lemma 1.2 shows that ρ is automorphic.

We now suppose that µ, χ are arbitrary and reduce to the case
treated above. By Lemma 4.1.4 of [CHT08], we can find a character
ψ : A×F/F× → C× of type A0 such that

ψ ◦ NF/F+ = χ ◦ NF/F+ ,

with ψ unramified above l and at all primes v where π and ρ are
unramified. Twisting both π and ρ, we can therefore assume that
χ = δnF/F+ and µ = δnF/F+ . (It is easy to see that this preserves the

hypotheses (d) and (e) above). Now let S be the set of primes of F+

dividing l or at which π or ρ are ramified. For each place v ∈ S, choose
a place ṽ of F lying above it.

Applying Lemma 4.1.6 of [CHT08], we can find a character θ : GF →
Ql
×

such that θ is trivial, µ|GF = θθc, and such that for each v ∈ S, θ
is unramified at ṽc. Since µ is crystalline, θ is crystalline at each prime
above l. Making a further soluble base change, we can suppose that θ
is also unramified outside S.

We now twist ρ by θ−1 to reduce to the case where µ = δnF/F+, treated
above. Thus the proof of the theorem will be complete as soon as we
show that this preserves the hypotheses (d) and (e) above. For v ∈ S,
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we have

ρ′|GFevc ; (ρ′ ⊗ θ−1)|GFevc ; (ρ⊗ θ−1)|GFevc .
(Use that θ is unramified at ṽc and apply Lemma 3.4.2 of [BLGG11]).
Then we have

ρ′|GFev ∼= (ρ′∨)|cGFevc ⊗ ε
1−n ; (ρ⊗ θ−1)∨|cGFevc ⊗ ε

1−n ∼= (ρ⊗ θ−1)|GFev .
The theorem follows. �

Remark. In many cases the hypothesis (d) can be weakened to the
following: for each v - l, either

• ρ|GFv and πv are both unramified, or
• ρ′|GFv ∼ ρ|GFv .

We explain this remark as follows. If ρ1 ∼ ρ2 and ιWD(ρ1)F−ss =
recK(π) for some generic irreducible smooth representation π of GLn(M)
over C, then in fact ρ1 ; ρ2, as one can check that the generic fibre
of the local lifting ring is formally smooth at ρ1 in this case. Thus one
can use the weaker hypothesis whenever local-global compatibility is
known to hold in this form for π, at the place v. At the time of writing
this is known to be true, for example, when πv becomes unramified
after a finite base change (cf. [Che]) or when π has slightly regular
weight in the sense of [Shi].

8. Ordinary forms on definite unitary groups

We take up the assumptions of the beginning of Section 6. Thus
L/L+ is an imaginary CM field and G is a unitary group over OL+ , Sl
is the set of places of L+ dividing l, and R is a set of places disjoint from
L+. We suppose that T is a set of places of L+ containing R ∪ Sl, and
that every place in T is split in L. We fix an open compact subgroup
U =

∏
v Uv.

We are going to follow [Ger] in recalling some constructions in Hida
theory and proving an R = T type result in the ordinary case. As such
we will briefly sketch the theory from op. cit., and refer the reader to
that paper for a more complete development. For integers 0 ≤ b ≤ c,
and v ∈ Sl, we consider the subgroup Iw(ṽb,c) ⊂ GLn(OLev) defined as
those matrices which are congruent to an upper-triangular matrix mod-
ulo ṽc and congruent to a unipotent upper-triangular matrix modulo
ṽb. We set U(lb,c) = U l ×

∏
v∈Sl Iw(ṽb,c).

We define some additional Hecke operators at the places dividing l
on the spaces Sλ,{χ}(U(lb,c), A). Let v be a place of L+ dividing l, and
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let $ev be a uniformizer of Lev. We have an n× n matrix

αj$ev = diag($ev, . . . , $ev︸ ︷︷ ︸
j

, 1, . . . , 1).

We set
U j
λ,$ev = (w0λ)(αj$ev)−1

[
U(lb,c)ι−1ev (αj$ev)U(lb,c)

]
.

We refer to [Ger], Section 2.2 for the definition of the character w0λ.
If u ∈ T (OLev) then we write

〈u〉 =
[
U(lb,c)ι−1ev (u)U(lb,c)

]
.

It is proved in [Ger] that for any O-module A, these operators act on
the spaces Sλ,{χ}(U(lb,c), A) and commute with the inclusions

Sλ,{χ}(U(lb,c),O) ⊂ Sλ,{χ}(U(lb
′,c′),O),

when b ≤ b′ and c ≤ c′. We write TT
λ,{χv}(U(lb,c), A) for the O-

subalgebra of EndO(Sλ,{χv}(U,A)) generated by the operators T jw and
(T nw)−1 as above and all the operators 〈u〉 for

u ∈ T (OL+,l) =
∏
v∈Sl

T (OL+
v

).

With these identifications, the operators 〈u〉 endow each Hecke algebra
TT
λ,{χv}(U(lb,c), A) with the structure of algebra for the completed group

ring
Λ+ = O[[T (OL+,l)]]

and for its subring
Λ = O[[T (l)]],

where T (l) is defined by the exact sequence

0 // T (l) //
∏

v∈Sl T (OL+
v

) //
∏

v∈Sl k(v)× // 0.

We have the ordinary idempotent e = limr→∞ U(l)r!, where we set

U(l) =
∏
v∈Sl

n∏
j=1

U j
λ,$ev .

Definition 8.1. We define the ordinary Hecke algebra

TT,ord
λ,{χv}(U(lb,c), A) = eTT

λ,{χv}(U(lb,c), A).

Equivalently, TT,ord
λ,{χv}(U(lb,c), A) is the image of TT

λ,{χv}(U(lb,c), A) in the

algebra of O-endomorphisms of the space

Sord
λ,{χv}(U(lb,c), A) = eSλ,{χv}(U(lb,c), A).
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We also consider the space

Sλ,{χv}(U(l∞), K/O) = lim−→
c

Sλ,{χv}(U(lc,c), K/O),

which receives a faithful action of the algebra

TT
λ,{χv}(U(l∞), K/O) = lim←−

c

TT
λ,{χv}(U(lc,c), K/O).

We recall ([Ger], Lemma 2.4.7) that this algebra is naturally isomorphic
to

TT
λ,{χv}(U(l∞),O) = lim←−

c

TT
λ,{χv}(U(lc,c),O).

Finally we can apply the idempotent e to these spaces, in which case
we decorate them with ‘ord’ superscripts.

Proposition 8.2. Suppose that for all t ∈ G(A∞L+), the group

t−1G(L+)t ∩ U

contains no element of order l. Then Sord
λ,{χv}(U(l∞), K/O)∨ is a free

Λ-module of rank

r = dimk S
ord
λ,{χv}(U(l1,1),F).

Proof. The proof is the same as that of Proposition 2.5.3 of [Ger],
but references to Lemma 2.2.6 of that paper should be replaced with
references to Lemma 6.3 above. �

The following is Definition 2.6.2 of [Ger].

Definition 8.3. We define a homomorphism T (l)→ TT,ord
0,{χv}(U(l∞),O)×

by

u 7→

∏
τ∈eIl

n∏
i=1

τ(ui)
1−i

 〈u〉.
This gives rise to an O-algebra homomorphism Λ→ TT,ord

0,{χv}(U(l∞),O),

and we write

TT,ord
{χv} (U(l∞),O)

for the TT,ord
0,{χv}(U(l∞),O), endowed with this Λ-algebra structure. This

is the universal ordinary Hecke algebra of level U .
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Galois representations. The following proposition is proved in ex-
actly the same way as Proposition 6.6.

Proposition 8.4. Let m be a maximal ideal of TT,ord
0,{χv}(U(l∞),O). Then

there is a unique continuous semisimple representation

rm : GL → GLn(TT,ord
{χv} (U(l∞),O)/m)

such that:

(i) rcm
∼= r∨m(1− n).

(ii) rm is unramified outside T . For all v 6∈ T splitting in L as
v = wwc, the characteristic polynomial of rm(Frobw) is

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T jwX
n−j + · · ·+ (−1)n(Nw)n(n−1)/2T nw .

We will fix henceforth a maximal ideal m such that rm is absolutely
irreducible. The following is proved in exactly the same way as Propo-
sition 6.7.

Proposition 8.5. In this case rm admits an extension to a continuous
homomorphism

rm : GL+ → Gn(TT,ord
{χv} (U(l∞),O)/m),

with the property that r−1
m (GLn×GL1(TT,ord

{χv} (U(l∞),O)/m)) = GL and

ν ◦ r = ε1−nδµm

L/L+, for some µm ∈ Z/2Z. Moreover, rm admits a con-

tinuous lift, unique up to conjugacy, to a representation

rm : GL+ → Gn(TT,ord
{χv} (U(l∞),O)m)

satisfying the following:

(i) If v 6∈ T is a finite place of L+ which splits as wwc in L, then
rm is unramified at w and wc, and rm(Frobw) has characteristic
polynomial

Xn + · · ·+ (−1)j(Nw)j(j−1)/2T jwX
n−j + · · ·+ (−1)n(Nw)n(n−1)/2T nw .

(ii) If v is a finite place of L+ inert in L, and Uv is a hyperspecial
maximal compact subgroup of G(L+

v ), then rm is unramified at
v.

(iii) Suppose that if v ∈ R then Uv = ι−1ev Iw(ṽ). Then for every
σ ∈ ILev , we have

charrm(σ)(X) =
n∏
j=1

(
X − χ−1

v,j(Art−1
Lev (σ))

)
.

(iv) ν ◦ rm = ε1−nδµm

L/L+.
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Another patching argument. We specialize to the case where T =
R ∪ Sl ∪ {v1}, for some place v1 of L+ split in L. We will assume the
following:

(i) For each each v ∈ R ∪ Sl, rm(GLev) is trivial.
(ii) For each v ∈ R, Nv ≡ 1 mod l, and that if lN‖(Nv − 1) then

lN > n and O contains an (lN)th root of unity.
(iii) rm is unramified above v1, and Nv1 6≡ 1 mod l.
(iv) For each v ∈ R, the characters χv,1, . . . , χv,n : O×Lev → O×

become trivial after reduction modulo λ.

We now specify our open compact subgroup U as follows:

(i) Uv = G(OL+
v

) if v ∈ Sl.
(ii) Uv = G(OL+

v
) if v 6∈ T is split in L.

(iii) Uv is a hyperspecial maximal compact of G(L+
v ) if v is inert in

L.
(iv) Uv = Iw(ṽ) for v ∈ R.
(v) Uv1 = Iw(ṽ1).

Then for all t ∈ G(A∞L+), the group t−1G(L+)t ∩ U contains no ele-
ment of order l (by the choice of v1). Let m = m{1} be a non-Eisenstein

maximal ideal of TT,ord
{1} (U(l∞),O). Using that the χv are trivial modulo

λ, we can identify the spaces

Sord
0,{χv}(U(l∞), k) = Sord

0,{1}(U(l∞), k).

Thus we get a maximal ideal m{χv} of the algebra TT,ord
{χv} (U(l∞),O).

We will define a deformation problem, by giving the local lifting ring
Rv corresponding to a local deformation problemDv for each v ∈ T . We
are going to consider liftings to the category CΛ of complete Noetherian
local Λ-algebras with residue field k, instead of the category CO used
above. See [Ger], Definition 4.1.3. This is a minor technical point
which will not appear again, so we make no further mention of it.

For v ∈ R, let Rv = Rχev . For v ∈ Sl, we will take Rv = R4,arΛev . We
take Rv1 = Raev1 . (See Section 3 for the definitions of these quotients).

We now have a deformation problem S{χv} given by the tuple(
L/L+, T, T̃ ,Λ, rm{χv}

, ε1−nδµm

L/L+ , {Rχev}v∈R ∪ {R4,arΛev }v∈Sl ∪ {Raev1}
)
.

We set Rloc
{χv} =

(⊗̂
v∈RR

χev
)
⊗̂O
(⊗̂

v∈SlR
4,ar
Λev

)
⊗̂ORaev1 . Using the nat-

ural isomorphism ⊗̂v∈SlΛev ∼= Λ, we see that Rloc
{χv} is naturally a Λ-

algebra.
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Theorem 8.6. With assumptions as above, the lifting

rm{χv}
: GL+ → Gn(TT,ord

{χv} (U(l∞),O)m{χv}
)

defined above is of type S{χv}. Suppose moreover that rm(GL+(ζl)) is
adequate. Let r : GL+ → Gn(O) be a lifting of rm of type S{1}, which
is unramified above v1. Suppose there exists a homomorphism f ′ :
TT,ord
{1} (U(l∞),O)m → O such that (f ′ ◦ rm) is unramified above v1.

Then there exists a second homomorphism f : TT,ord
{1} (U(l∞),O)m →

O such that r and f ◦ rm are conjugate by an element of GLn(O).

Proof. That rm{χv}
is of type S{χv} is Lemma 4.1.7 of [Ger]. To prove

the above theorem we will apply the Taylor-Wiles-Kisin method in a
similar manner to before. Let

q0 = [L+ : Q]n(n− 1)/2 + [L+ : Q]n(1− (−1)µm−n)/2.

We can fix for every N ≥ 1 a tuple (QN , Q̃N , {ψev}v∈QN ) such that

• #QN = q for all N .
• Nv ≡ 1 mod lN for all v ∈ QN .
• The ring R�T

S{χv},QN
can be topologically generated over Rloc

{χv}
by

g = q − q0 = q − [L+ : Q]n(n− 1)/2 + [L+ : Q]n(1− (−1)µm−n)/2

elements.
• ψev is a subrepresentation of r|GLev of dimension dvN .

This can be deduced from Proposition 4.4 just as Proposition 4.2.1 of
op. cit. is deduced from Proposition 2.5.9 of [CHT08]. For each v,N ≥
1, let pev

N , p
ev
N,1 be the parahoric subgroup of GLn(OLev) corresponding

to the partition n = (n− dvN) + dvN , as defined previously. We let

U1(QN) =
∏
v

U1(QN)v, U0(QN) =
∏
v

U0(QN)v

be the compact open subgroups of G(A∞L+) with Ui(QN) = Uv for v 6∈
QN , U1(QN) = ι−1ev pev

N,1, U0(QN) = ι−1ev pev
N for v ∈ QN .

We have natural maps

TT∪QN ,ord
{χv} (U1(QN)(l∞),O)→ TT∪QN ,ord

{χv} (U0(QN)(l∞),O)

→ TT∪QN ,ord
{χv} (U(l∞),O)→ TT,ord

{χv} (U(l∞),O).

The first two arrows are surjective, the last is injective. Thus m{χv}
determines maximal ideals denoted m{χv},QN ,m{χv},QN ,m{χv},m{χv} of
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these four algebras. After localizing at m{χv} the last map is an iso-
morphism, since rm is absolutely irreducible (cf. the proof of [CHT08],

Corollary 3.4.5). We set T{χv} = TT,ord
{χv} (U(l∞),O)m{χv}

.

For each v ∈ QN , let φev ∈ GLev be a Frobenius lift and let $ev be
the uniformizer with ArtLev $ev = φev|Labev . In Proposition 5.9 we have

defined a projection operator pr$ev for each v ∈ QN . For each α ∈ O×Lev ,
we have the Hecke operator Vα defined above.

Let ∆QN = U0(QN)/U1(QN). Let aQN denote the kernel of the aug-
mentation map Λ[∆QN ]→ Λ. For i = 0, 1, let Hi,QN be defined by

H∨i,{χv},QN =

( ∏
v∈QN

pr$ev
)
Sord

0,{χv}(Ui(QN)(l∞), K/O)m{χv},QN
,

where (−)∨ = HomO(−, K/O) denotes Pontryagin dual. Let Ti,{χv},QN
denote the image of TT∪QN ,ord

{χv} (Ui(QN)(l∞),O) in EndΛ(Hi,{χv},QN ). Sim-

ilarly we define H{χv} by

H∨{χv} = Sord
0,{χv}(U(l∞), K/O)m{χv},QN

.

We claim that the following hold:

(i) For each N , the map( ∏
v∈QN

pr$ev
)∨

: H0,{χv},QN → H{χv}

is an isomorphism.
(ii) For each N , H1,{χv},QN is free over Λ[∆QN ] with

H1,{χv},QN/aQN
∼→ H0,{χv},QN ,

the isomorphism induced by restriction.
(iii) For each N and for each v ∈ QN , there is a character Vev :
O×Lev → T×1,{χv},QN such that

(a) for any α, Vα = Vev(α) on H1,{χv},QN .
(b) (rm{χv},QN

⊗ T1,{χv},QN )|GLev ∼= s ⊕ ψ with s unramified,

lifting sev, ψ lifting ψev, and ψ|ILev acting as the scalar char-

acter Vev ◦ Art−1
Lev |ILev .

These are proved as in Lemma 4.2.2 of [Ger], by passing to the limit
from corresponding facts in the finite level case and using Proposition
8.2 above.

For each N , the lift rm{χv},QN
⊗ T1,{χv},QN is of type S{χv},QN and

gives rise to a surjection Runiv
S{χv},QN

→ T1,{χv},QN . Thinking of ∆QN as
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the maximal l-power order quotient of
∏

v∈QN ILev , we obtain a homo-

morphism ∆QN → (Runiv
S{χv},QN

)× as follows: for each v ∈ QN , decompose

runiv
S{χv},QN

|GLev = s⊕ψ and take a diagonal entry of ψ in some basis. This

does not depend on the choice of basis.
We thus have homomorphisms Λ[∆QN ]→ Runiv

S{χv},QN
→ R�T

S{χv},QN
and

natural isomorphisms Runiv
S{χv},QN

/aQN
∼= Runiv

S{χv} and R�T
S{χv},QN

/aQN
∼=

R�T
S{χv}

. Moreover, this makes the maps Runiv
S{χv},QN

→ T1,{χv},QN into

homomorphisms of Λ[∆QN ]-algebras.
At this point we apply a patching argument, for the details of which

we refer to the proof of Theorem 4.3.1 of [Ger]. For each v ∈ R, we
choose a character χv = χv,1 × · · · × χv,n such that the χv,j are all
distinct (this can be done since we assumed that lN‖Nv − 1⇒ lN > n
for each v ∈ R). We define the following rings:

T = O[[x1, . . . , xn2#T ]]
∆∞ = Zq

l

S∞ = Λ⊗̂OT [[∆∞]]

R�T
{χv},∞ = Rloc

{χv}[[Y1, . . . , Yq′ ]]

R�T
{1},∞ = Rloc

{1}[[Y1, . . . , Yq′ ]]

a = ker(S∞ → Λ).

After patching, one is given the following:

(i) Surjective homomorphisms

R�T
{χv},∞ → Runiv

S{χv}
and R�T

{1},∞ → Runiv
S{1} .

(ii) Modules H�
1,{χv},∞ for R�T

{χv},∞ and H�
1,{1},∞ for R�T

{1},∞.

(iii) Commuting actions of S∞ on these modules, such that they
become free of finite rank over S∞.

These satisfy the following:

(i) The S∞ actions factor through the respective R�T
{χv},∞ and

R�T
{1},∞ actions.

(ii) There are isomorphisms

H�
1,{χv},∞/a

∼= H{χv}

H�
1,{1},∞/a

∼= H{1}

compatible with the homomorphisms R�T
{χv},∞ → Runiv

S{χv}
→

T{χv} and R�T
{1},∞ → Runiv

S{1} → T{1}.
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(iii) After modding out by λ, the objects decorated with {χv} can
be identified with the objects decorated with {1}, and the var-
ious maps between them are then the same.

As in the proof of Theorem 6.8, we deduce that µm ≡ n mod 2 and
that for every minimal prime Q of Λ, the support of H�

1,{χv},∞/Q in

SpecR�T
{χv},∞/Q is a union of irreducible components. The same state-

ment holds for the support of H�
1,{1},∞/Q in SpecR�T

{1},∞/Q.

By Lemma 3.3 of [BLGHT11], giving an irreducible component C of

R�T
{χv},∞ or R�T

{1},∞ is the same as giving an irreducible component Cv
of the local lifting ring Rv for each v ∈ T . We will write suggestively
C = ⊗vCv.

Take a minimal prime Q of Λ, and consider R�T
{χv},∞/Q. It satisfies:

(i) Every generic point of SpecR�T
{χv},∞/Q has characteristic 0.

(ii) For each v 6= v1, Rv is irreducible. In particular, there is

a bijection between the irreducible components of R�T
{χv},∞/Q

and the irreducible components of Rv1 .

On the other hand, R�T
{1},∞/Q satisfies the following properties:

(i) Every generic point of SpecR�T
{1},∞/Q has characteristic 0.

(ii) Every prime of R�T
{1},∞/Q minimal over λ contains a unique

minimal prime.

Justification for the fact that the individual factors of Rloc
{χv} and Rloc

{1}
have the relevant properties has been given in Section 3. One now
just needs to know that they are preserved under completed tensor
products, and this is the content of Lemma 3.3 of [BLGHT11].

We now argue as follows. Using the existence of f , we see that
Supp

R
�T
{1},∞

H�
1,{1},∞ contains an irreducible component C = ⊗vCv with

Cv1 = Curv1 , where Curv1 is the irreducible component of Raev1 which classifies
unramified liftings. (The local component at v1 is generic).

Using the identification modulo λ, we see that

Supp
R

�T
{χv},∞

/λ
H�

1,{χv},∞/λ

contains an irreducible component ⊗vCv of SpecR�T
{χv},∞/λ with Cv1 =

Curv1 , in the obvious notation. Using the properties (1) and (2) of

SpecR�T
{χv},∞ above, we see that Supp

R
�T
{χv},∞

H�
1,{χv},∞ contains an ir-

reducible component C ′v = ⊗vC ′v with C ′v1 = Curv1 . (Here we use the
following property of Raev1 : every prime of Raev1 minimal over λ contains
a unique minimal prime.)
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Applying the identification modulo λ in the opposite direction, we
find that

Supp
R

�T
{1},∞/λ

H�
1,{1},∞/λ

contains every irreducible component C ′ = ⊗vC
′
v with C ′v1 = Curv1 . Now

applying properties (1) and (2) of SpecR�T
{1},∞ above, we deduce that

for every minimal prime Q of Λ, Supp
R

�T
{1},∞/Q

H�
1,{1},∞/Q contains every

irreducible component C ′′ = ⊗vC ′′v with C ′′v1 = Curv1 .
Now consider the deformation problem

S ′{1} =
(
L/L+, T, T̃ ,Λ, rm, ε

1−nδµm

L/L+ , {R1ev}v∈R ∪ {R4,arΛev }v∈Sl ∪ {Rurev1 )}
)
.

As in the proof of Theorem 6.8, we see that H{1}⊗Runiv
S{1}

Runiv
S′{1}

is a nearly

faithful Runiv
S′{1}

-module, hence the homomorphism Runiv
S′{1}
→ O induced

by r′ actually factors through T{1}. (Recall that T{1} is reduced). This
concludes the proof of the theorem. �

Corollary 8.7. With the hypotheses of the theorem, Runiv
S′{1}

is a finite

Λ-module.

Proof. This is proved in exactly the same way as Corollary 6.9, using
that T{1} is a finite Λ-algebra. �

9. Ordinary automorphy lifting

Theorem 9.1. Let F be an imaginary CM field with totally real subfield
F+ and let c be the non-trivial element of Gal(F/F+). Let n ∈ Z≥1

and let l be an odd prime. Let K ⊂ Ql denote a finite extension of Ql

with ring of integers O, residue field k and maximal ideal λ. Let

ρ : GF → GLn(O)

be a continuous representation and let ρ = ρ mod λ. Let µ : GF+ →
O× be a continuous character. Suppose that ρ satisfies the following
properties:

(i) ρc ∼= ρ∨ε1−nµ|GF .
(ii) µ(cv) is independent of v | ∞.
(iii) ρ is ramified at only finitely many places.
(iv) For each v | l, ρ|GFv is ordinary, in the sense of Definition 3.9.
(v) ρ is absolutely irreducible and ρ(GF (ζl)) ⊂ GLn(k) is adequate.

(vi) ζl 6∈ F .



54 J. THORNE

(vii) There is a continuous representation ρ′ : GF → GLn(O), a
continuous character µ′ : GF+ → O×, a RAECSDC automor-
phic representation (π, χ) of GLn(AF ) and ι : Ql

∼→ C such
that
(a) ρ′ ⊗O Ql

∼= rl,ι(π) : GF → GLn(Ql).

(b) µ′ ⊗O Ql
∼= rl,ι(χ).

(c) (ρ, µ) = (ρ′, µ′).
(d) π is ι-ordinary at all places dividing l.

Then ρ is ordinarily automorphic. If moreover ρ is crystalline (resp.
potentially crystalline) at each place of F above l then ρ is ordinarily
automorphic of level prime to l (resp. of level potentially prime to l).

Proof. As in the proof of Theorem 7.1, we reduce to the case that
χ = µ = δnF/F+ . The reduction of the theorem in this case to Theorem
8.6, proved above, is analogous to the reduction of Theorem 5.3.2 of
[Ger] to Theorem 4.3.1 of that paper. The only changes are as follows.
First, instead of introducing the places Sa, one chooses a place v of F+

split in F such that Nv 6≡ 1 mod l and such that both ρ and π are
unramified above v. After making a soluble base change one takes the
place v1 of Theorem 8.6 to be a place of L above v. The choice of Uv1
there ensures that for all t ∈ G(A∞L+), the group t−1G(L+)t∩U contains
no element of order l. Second, one has to ensure that if lN‖(Nv − 1)
then lN > n at the primes at which ρ or π ramify. (The final sentence
of the theorem requires a fixed weight version of Theorem 8.6, as in
Theorem 4.3.1 of [Ger]. The modifications that one must make to the
proof in this case are analogous and slightly simpler to those made for
the variable weight version, so we omit them here). �

10. Finiteness theorems

Let F be an imaginary CM field with totally real subfield F+, and
let l be an odd prime. Let S be a finite set of places of F+, each of

which splits in F , and containing all of the places above l, and let S̃
be a set of places of F containing exactly one place above each place
of S. Let K be a finite extension of Ql, contained in Ql, with ring of
integers O and residue field k. Fix an isomorphism ι : Ql

∼→ C.

A minimal finiteness theorem. Let (π, χ) be a RAECSDC auto-
morphic representation of GLn(AF ) of weight ι∗λ, unramified outside
S. Let ρ : GF → GLn(O) be a continuous representation with rl,ι(π) ∼=
ρ ⊗O Ql. Let µ be a character GF+ → O× with rl,ι(χ) = µ ⊗O Ql.
Suppose that ρ is absolutely irreducible, and let r be an extension to
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a representation
r : GF+ → Gn(k)

with ν ◦ r = µε1−nδκF/F+ for some κ ∈ Z/2Z. For each v ∈ S, fix an

irreducible component Cv of R�ev if v - l or Rλ,crev if v | l such that ρ|GFev
lies on no other irreducible component.

We consider the global deformation problem

S =
(
F/F+, S, S̃,O, r, µε1−nδκF/F+ , {RCvev }v∈S,v-l ∪ {Rλ,Cvev }v∈S,v|l

)
.

Theorem 10.1. With hypotheses as above, suppose further that the
group ρ(GF (ζl)) is adequate and that ζl 6∈ F . Then κ = 0 and Runiv

S is
a finite O-module.

Proof. After twisting as in the proof of Theorem 7.1, we can assume
that χ = δnF/F+ . Let L/F be an imaginary CM extension such that:

(i) L/F is Galois and soluble.

(ii) L is linearly disjoint with F
ker ρ

(ζl) over F .
(iii) 4 divides [L+ : F+].
(iv) L/L+ is unramified at all finite places.
(v) Each place of S splits completely in L+.

In particular, the hypotheses of section 6 are satisfied and we are given
a unitary group G/OL+ . There exists an automorphic representation Π
of G(AL+) such that πL is a strong base change of Π, in the sense of
[Lab].

Let SLl , SLr denote the sets of places of L+ above Sl and Sr, respec-

tively, and let S̃Ll and S̃Lr be defined analogously. Choose a place v1 of
L+ split in L at which π is unramified, and such that the residue charac-
teristic of v1 does not divide the order of any element of G(L+). Let ṽ1

we a place of L above v1. Let T = SLl ∪SLr ∪{v1}, and T̃ = S̃Ll ∪S̃Lr ∪{ṽ1}.
We define one further deformation problem SL by the tuple(
L/L+, T, T̃ ,O, r|GL+ , ε

1−nδκ+n
L/L+ , {Rλ,Cvev }v∈SLl ∪ {R

Cvev }v∈SLr ∪ {Rurev1}
)
.

(Since every prime of S splits in L+, the components Cv for v ∈ S we
chose induce components of the lifting rings for v ∈ SL in a natural
manner). There is a natural homomorphism Runiv

SL → Runiv
S , given by

restriction of the universal deformation. The argument of Lemma 3.2.5
of [GG] shows that this homomorphism is in fact finite, so it suffices to
show that Runiv

SL is a finite O-algebra.
Let U =

∏
v Uv be the open compact subgroup of G(A∞L+) defined as

follows:

(i) Uv = G(OL+
v

) if v ∈ SLl .
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(ii) Uv = G(OL+
v

) if v 6∈ T is split in L.
(iii) Uv is a hyperspecial maximal compact of G(L+

v ) if v is inert in
L.

(iv) ΠUv
v 6= 0 for v ∈ SLr .

(v) Uv1 = ι−1ev1 Iw1(ṽ1).

Let Ĩl be the set of embeddings L ↪→ K giving rise to a place of S̃Ll .

Define an element λL ∈ (Zn
+)

eIl by λL,τ = λτ |F . Then (ι−1Π∞)U 6= 0,
and the action of TT

λL
(U,O) on (ι−1Π∞)U gives rise to a homomorphism

TT
λL

(U,O) → Ql. After possibly extending K, we can suppose that
this homomorphism takes values in O. Let m be the maximal ideal
contained in the kernel of this homomorphism. We can suppose that
the representation rm : GL+ → Gn(k) is equal to r|G+

L
. (Note that their

restrictions to GL are already isomorphic, so this is a matter of choosing
the correct extension of rm to Gn. See Lemma 2.1.4 of [CHT08]).

The hypotheses of Theorem 6.8 and its corollary now apply, and the
result follows. �

An ordinary finiteness theorem. Let (π, χ) be a RAECSDC au-
tomorphic representation of GLn(AF ), unramified outside S and ι-
ordinary. Let ρ : GF → GLn(O) be a continuous representation with
rl,ι(π) ∼= ρ ⊗O Ql. Let µ : GF+ → O× be a de Rham character with
µ = rl,ι(χ). Suppose that ρ is absolutely irreducible, and let r be an
extension to a representation

r : GF+ → Gn(k)

with ν ◦ r = µε1−nδκF/F+ for some κ ∈ Z/2Z. Note that HTτ (µ) = {w}
is independent of τ : F+ ↪→ K. Choose λ ∈ (Zn

+)
Hom(F,Ql)
w .

We have the global deformation problem

S =
(
F/F+, S, S̃,O, r, µε1−nδκF/F+ , {R�ev }v∈S,v-l ∪ {Rλ,ss-ordev }v∈S,v|l

)
.

(We use R�ev here to denote the unrestricted lifting ring at the places in
S not dividing l).

Theorem 10.2. With hypotheses as above, suppose further that the
group ρ(GF (ζl)) is adequate and that ζl 6∈ F . Then κ = 0 and Runiv

S is
a finite O-module.

Proof. As in the proof of Theorem 7.1, we can reduce to the case where
χ = µ = δnF/F+ , except that after twisting π may be ramified outside

S. Choose an imaginary CM extension L/F such that

(i) L/F is Galois and soluble.
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(ii) L is linearly disjoint with F
ker ρ

(ζl) over F .
(iii) 4 divides [L : F ].
(iv) L/L+ is unramified at all finite places.
(v) Each place of S splits completely in L+.

(vi) π is unramified outside the places of L above S, and has an
Iwahori fixed vector at all finite places of L.

(vii) For each place v of L lying above S, r|GLv is trivial.
(viii) If v - l is a place of L above S then Nv ≡ 1 mod l, and if

lN‖Nv − 1 then lN > n.

Let SL denote the set of places of L+ lying above a place of S, and define

S̃L analogously. For each place v - l in SL there exists a finite extension
Mev of Lev such that for any lift τ of r|GLev , τ |GIMev acts unipotently. We

can find a soluble CM extension M/L such that M satisfies all the
properties above, and the following:

• Let w̃ be a place of M above a place ṽ of S̃L. Then M ew ⊃Mev.
Choose an auxiliary prime v1 of M+, split in M , such that Iw(v1)
contains no elements of order l. Let SM be the set of places of M+

above S, and let T = S ∪ {v1}. Choose a place ṽ1 of M above v1,

and define S̃M and T̃ similarly. We now define two global deformation
problems

SMλ =
(
M/M+, T, T̃ ,O, r|GM+ , ε

1−nδκ+n
M/M+ ,

{R1ev}v∈SM ,v-l ∪ {RλM ,ss-ordev }v∈SM ,v|l ∪Rurev1
)
.

and

SM =
(
M/M+, T, T̃ ,Λ, r|GM+ , ε

1−nδκ+n
M/M+ ,

{R1ev}v∈SM ,v-l ∪ {R4,arΛev }v∈SM ,v|l ∪Rurev1
)
.

By construction, there is a map Runiv
SMλ
→ Runiv

S , given by restriction of

the universal deformation, and the argument of Lemma 3.2.5 of [GG]
shows that it is finite. Thus it suffices to show that Runiv

SMλ
is a finite

O-algebra.
Let χλM : Λ → O be the O-algebra homomorphism induced by the

tuple of characters (χ1, . . . , χn) given by

χi : u 7→
∏

τ :M↪→K

τ(u)1−i+λM,τ,n−i+1 .
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Let ℘λ denote the kernel of χλM . Then Runiv
SMλ

is a quotient of Runiv
SM ⊗Λ

Λ/℘λ. But Corollary 8.7 shows that Runiv
SM is a finite Λ-module, and the

result follows. �
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