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APPENDIX: ADEQUATE SUBGROUPS

ROBERT GURALNICK, FLORIAN HERZIG, RICHARD TAYLOR,
AND JACK THORNE

Let l be a prime, and let Γ be a finite subgroup of GLn(Fl) = GL(V ).
With these assumptions we say that Condition (C) holds if for every
irreducible Γ-submodule W ⊂ ad0 V there exists an element g ∈ Γ
with an eigenvalue α such that tr eg,αW 6= 0. Here, eg,α denotes the
projection to the generalised α-eigenspace of g. This condition arises
in the definition of adequacy in section 2.

Let Γss denote the subset of Γ consisting of the elements that are
semisimple (i.e. of order prime to l).

Lemma 1. Suppose that Γ acts irreducibly on V . The following are
equivalent.

(i) Condition (C).
(ii) For every irreducible submodule W ⊂ ad0 V there exists g ∈ Γss

and α ∈ Fl such that tr eg,αW 6= 0.

(iii) The set Γss spans adV as an Fl-vector space.

Proof. Note that for any g ∈ Γ, Γ contains both its semisimple and
unipotent parts gs and gu, respectively. (They are powers of g, as we
work over Fl.) Since eg,α = egs,α for all g ∈ Γ, the first two conditions
are equivalent.

To show that the last two conditions are equivalent, let Z ⊂ adV be
the span of the semisimple elements in Γ. Let U denote the annihilator
of Z under the (non-degenerate, Γ-invariant) trace pairing:

U = {w ∈ adV : tr(gw) = 0 ∀g ∈ Γss}(1)

= {w ∈ adV : tr(eg,αw) = 0 ∀g ∈ Γss, α ∈ Fl},(2)

where we used that eg,α is a polynomial in g and that g =
∑
αeg,α for

g semisimple.
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Note that U ⊂ ad0 V by taking g = 1 in (1). From (2) it thus
follows that the second condition is equivalent to U = 0. Equivalently,
Z = adV , which is the third condition. �

Lemma 2.

(i) Suppose that Γ acts irreducibly on V . Condition (C) holds
whenever Γ has order prime to l.

(ii) Suppose that V , V ′ are finite-dimensional vector spaces over Fl
and that Γ ⊂ GL(V ), Γ′ ⊂ GL(V ′) are finite subgroups that act
irreducibly. If they both satisfy (C), then the image of Γ×Γ′ in
GL(V ⊗ V ′) also satisfies (C).

Proof. By Burnside’s theorem, Γ spans adV . If Γ has order prime to l,
then every element is semisimple, so the lemma above applies.

The second part of the proposition follows on noting that if g, h are
semisimple elements then g ⊗ h is semisimple, and appealing to the
third characterization of condition (C) in the lemma above. �

Next we establish some preliminary results to prepare for our main
theorem.

Lemma 3. Suppose that T is a torus over Fl. Let X∗ = X∗(T/Fl)

and X∗ = X∗(T/Fl). There is a natural action of Frobenius Fr as an
automorphism of X∗ and X∗. Suppose that ∆∗ ⊂ X∗ is a finite subset
that is stable under the action of Fr and spans X∗ ⊗Q.

(i) If µ ∈ X∗ with |〈µ, δ〉| < l − 1 for all δ ∈ ∆∗ then µ(T (Fl)) is
trivial iff µ = 0.

(ii) If V is a T/Fl-module and all the weights µ of T/Fl on V satisfy

|〈µ, δ〉| < (l − 1)/2 for all δ ∈ ∆∗ then the Fl-span of T (Fl) in
adV equals the Fl-span of T (Fl).

Proof. We can identify Hom(T (Fl),F
×
l ) with X∗/(l− Fr)X∗. To prove

the first part, suppose that |〈µ, δ〉| < l−1 for δ ∈ ∆∗ and that µ(T (Fl))
is trivial, so µ = (l − Fr)λ. Choose δ1 in ∆∗ with |〈λ, δ1〉| maximal. If
〈λ, δ1〉 6= 0 then

l − 1 > |〈µ, δ1〉| ≥ l|〈λ, δ1〉| − |〈λ,Fr−1 δ1〉| ≥ (l − 1)|〈λ, δ1〉| ≥ l − 1,

a contradiction. Therefore 〈λ, δ1〉 = 0, so λ = 0 and µ = 0. In partic-
ular we see that if µ1 and µ2 are two elements of X∗ with |〈µi, δ〉| <
(l − 1)/2 for δ ∈ ∆∗ and i = 1, 2 then µ1|T (Fl) = µ2|T (Fl) iff µ1 = µ2.
The second part now follows since both subspaces of adV equal the
Fl-linear span of the T/Fl-equivariant projectors onto the weight spaces
of T/Fl in V . �
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Lemma 4. Suppose that G is a connected simply connected semisim-
ple algebraic group over Fl and φ : G → GL(V ) a finite-dimensional
representation. Let G ⊃ B ⊃ T denote a Borel and maximal torus,
and suppose that |〈µ1 − µ2, α

∨〉| < l for all weights µ1, µ2 of T on V
and all simple roots α. Then there exist connected simply connected
semisimple algebraic subgroups I and J of G such that G = I × J ,
φ(J) = 1, and φ induces a central isogeny of I onto its image I, which
is a semisimple algebraic group.

Proof. Let J denote the connected component of the kernel of φ with
its reduced scheme structure. Then J is smooth ([Mil], Proposition
I.5.18). By Theorem 8.1.5 of [Spr09] and its proof, J is semisimple and
there is a second semisimple algebraic group I ⊂ G which commutes
with J and such that I × J → G is a central isogeny. It follows from
the simply-connectedness of G that it is an isomorphism of I × J onto
G. In particular, I and J are simply connected. Note that T = TI×TJ
and that B = BI × BJ where (BI , TI) (resp. (BJ , TJ)) is a Borel and
maximal torus in I (resp. J). (This follows from the fact that any
smooth connected soluble subgroup of (resp. torus in) G is conjugate
to a subgroup of B (resp. T ).) Moreover U = UI×UJ , where U denotes
the unipotent radical of B. Let I denote the image of I under φ. Then
I is again reduced and connected and hence also smooth. In fact it
is semisimple. (See Proposition 14.10(1)(c) of [Bor91].) The map φ
factors through an isogeny I → I ⊂ GL(V ). Let B, T , U denote the
images of BI , TI , UI in I. Then these are all reduced and hence smooth.
Moreover T is a torus, B is connected and soluble, U is connected
unipotent and B = TU . As dim I = dim I = dimTI + 2 dimUI =
dimT + 2 dimU we see that B must be a Borel subgroup of I with
unipotent radical U and that T is a maximal torus in I. The isogeny
I → I induces an l-morphism from the root datum of I to the root
datum of I. (See section 9.6.3 of [Spr09].) Then I → I is a central
isogeny, as otherwise T would have a weight occurring in Lie I ⊂ adV of
the form lµ with µ non-zero and this would contradict our assumption
on the weights of T on V . �

Suppose that we are given Fl-vector spaces Wi with dimWi ≤ l for
i = 1, . . . , r. Then the maps

exp : X 7→ 1 +X +
X2

2!
+ · · ·+ X l−1

(l − 1)!

log : 1 + u 7→ u− u2

2
+
u3

3
± · · · − ul−1

l − 1



APPENDIX: ADEQUATE SUBGROUPS 63

define inverse bijections between the set of nilpotent elements in
∏

End(Wi)
and the set of unipotent elements in

∏
GL(Wi).

Lemma 5. Suppose that G ⊂
∏

GL(Wi) is a connected reductive group
over Fl with dimWi ≤ l for all i. Let T be a maximal torus and U be
the unipotent radical of a Borel subgroup of G that contains T . Suppose
that |〈µ1 − µ2, α

∨〉| < l for all weights µ1, µ2 of T on V =
⊕

Wi and
all simple roots α.

(i) The maps exp and log induce inverse isomorphisms of varieties
between LieU ⊂ End(V ) and U ⊂ GL(V ).

(ii) For any positive root α we have exp(LieUα) = Uα.
(iii) The map exp : LieU → U depends only on G and U , but not

on V , Wi, or the representation G ↪→ GL(V ).
(iv) If θ is an automorphism of G that preserves T and U , then we

have a commutative diagram:

LieU
dθ

//

exp

��

LieU

exp

��

U
θ

// U

Proof. By the Lie–Kolchin theorem we may suppose U is contained
in the group U ′ =

∏
U ′i , where U ′i denotes the unipotent radical of a

Borel subgroup of GL(Wi). The maps exp and log provide mutually
inverse isomorphisms of varieties between U ′ and LieU ′. It remains
to show that exp LieU = U . Note that the product of any l elements
of LieU ′ is zero. Thus the Zassenhaus formula (see [Mag54], section
IV) tells us that to check that exp LieU ⊂ U it suffices to check that
for any root α we have exp(LieUα) ⊂ U . Let xα : Ga → Uα be the
root homomorphism corresponding to α and let Xα = dxα(1) ∈ LieUα.
Then formula II.1.19(6) of [Jan03] shows that for a ∈ Fl,

(3) xα(a) =
l−1∑
n=0

an
Xn
α

n!
= exp(aXα)

in GL(V ), on noting that for n < l we have Xα,n = Xn
α/n! while

Xα,n acts trivially on V for n ≥ l. (This latter assertion follows from
formula II.1.19(5) of [Jan03] because Vλ and Vλ+nα cannot both be
non-zero.) Now by the Baker–Campbell–Hausdorff formula (see sec-
tion IV.8 in part I of [Ser92]) and the fact that the product of any l
elements of LieU ′ is zero we see that exp LieU is a subgroup of U . As
U is connected and smooth and dim LieU ≥ dimU we deduce that
exp LieU = U . This proves the first two parts.
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The third part follows inductively from equation (3) and the Zassen-
haus formula: fix a total order < on the set of positive roots such that
if α, β, α + β are positive roots, then max(α, β) < α + β. We induct
on the positive root γ. Suppose that we know that exp depends only
on G and U on the subspace

⊕
α>γ LieUα. Then the same is true for

exp(X + Y ) for any X ∈ LieUγ and Y ∈
⊕

α>γ LieUα by the Zassen-

haus formula. (Note that [LieUα,LieUβ] ⊂ LieUα+β whenever α, β are
positive roots.) This completes the proof of the third part.

The last part follows from the third part, by considering the repre-

sentation G
θ−→ G ↪→ GL(V ). �

Lemma 6. Suppose that G is a connected simply connected semisim-
ple algebraic group over Fl. Suppose that l > 3 and that G has no
simple factor isomorphic to SLn with l|n. Let g denote the Lie algebra
of G. Then g contains no non-trivial abelian ideal, and the natural
map Aut(G) → Aut(g) is a bijection. Moreover, a connected normal
subgroup of G is preserved by an automorphism θ ∈ Aut(G) if and only
if its Lie algebra is preserved by dθ ∈ Aut(g).

Here, Aut(G) (resp., Aut(g)) denotes the abstract group of automor-
phisms of the algebraic group G (resp., its Lie algebra g). In the proof
we use Chevalley groups in the sense of Steinberg’s Yale notes [Ste68b].

Proof. The universal Chevalley group over Fl constructed using the
complex semisimple Lie algebra L of the same root system as G is an
algebraic group isomorphic to G (see [Ste68b], §5). (In the notation of
[Ste68b], we can let V be any representation whose weights span the
weight lattice, so that LZ ⊂ L is the Z-lattice spanned by the fixed
Chevalley basis Hi, Xα; see Cor. 2 on p. 18 of [Ste68b].) In particular,
g ∼= LZ ⊗ Fl (by the remark on p. 64 of [Ste68b]). Write G =

∏
Gi

as a product of almost simple simply connected algebraic groups and
correspondingly g =

⊕
gi. Then Z(gi) = 0 by our assumption on l and

G (see Theorem 2.3 in [Hur82]) and hence all gi are simple ([Ste61],
2.6(5)). Moreover gi ∼= gj implies Gi

∼= Gj ([Ste61], 8.1). The Gi (resp.,
gi) are uniquely characterised as the minimal non-trivial connected
normal subgroups of G (resp., minimal non-trivial ideals of g), so they
are permuted by automorphisms. Therefore if Aut(Gi)→ Aut(gi) is a
bijection for all i, then so is Aut(G)→ Aut(g), and also the final claim
of the proposition follows. (Note that any connected normal subgroup
is a product of some of the Gi.) We can thus assume, without loss of
generality, that G is almost simple.

Let Gad denote the adjoint form of G. As G is the universal cover of
Gad and as Gad = G/Z(G), we have Aut(G) = Aut(Gad). As Z(g) = 0
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we see that the natural map g → LieGad is an isomorphism. Thus it
suffices to show that Aut(G) = Aut(g) whenever G is simple of adjoint
type and g = LieG. Thus we write G for Gad from now on.

As an algebraic group G is isomorphic to the adjoint Chevalley group
over Fl (again by [Ste68b], §5). (In the notation of [Ste68b], we take V
to be the adjoint representation g.) Thus we can identify G(Fl) with the
subgroup of GL(g) generated by the elements xα(t) := exp(ad(tXα)),
where t ∈ Fl and α is any root. As each ad(tXα) is a derivation of g,
the group G(Fl) is actually contained in Aut(g). For any η ∈ Aut(g),
we have η ◦ adX ◦ η−1 = ad(ηX) in GL(g). It follows that the natural
action of G(Fl) ⊂ GL(g) on g agrees with the adjoint action of G(Fl)
on g ⊂ End(g).

The choice of Chevalley basis gives rise to a maximal torus T and a
Borel B that contains it ([Ste68b], §5). From Theorem 9.6.2 in [Spr09]
we deduce the following, using that G is adjoint. For each symmetry π
of the Dynkin diagram D there is a unique π′ ∈ Aut(G) that preserves
(B, T ) and that permutes the xαi(1) ∈ B according to π (where αi are
the simple roots). Moreover, Aut(G) is the semidirect product of G
(acting by inner automorphisms) and Aut(D). Also, the elements of
Aut(D) biject with the “graph automorphisms” of g ([Ste61], §3).

The result now follows from ([Ste61], 4.2 and 4.5), as the group H in
[Ste61] is actually contained in G(Fl) since Fl is algebraically closed (see
Lemma 19 on p. 27 of [Ste68b]). (Note that the uniqueness statement
in ([Ste61], 4.2) is incorrect and seems to be a typo.) �

The following proposition may be of independent interest. The proof
uses the classification of finite simple groups. Without it, the proof still
goes through for l sufficiently large (depending on d and ineffective) by
appealing to [LP] instead of [Gur99].

Proposition 7. Suppose that V is a finite-dimensional Fl-vector space
and that Γ ⊂ GL(V ) is a finite subgroup that acts semisimply on V . Let
Γ0 ⊂ Γ be the subgroup generated by elements of l-power order. Then V
is a semisimple Γ0-module. Let d ≥ 1 be the maximal dimension of an
irreducible Γ0-submodule of V . Suppose that l ≥ 2(d + 1). Then there
exists an algebraic group G over Fl and a semisimple representation
r : G/Fl → GL(V ) with the following properties:

(i) The connected component G0 is semisimple, simply connected.
(ii) G ∼= G0 oH, where H is a finite group of order prime to l.
(iii) r(G(Fl)) = Γ.
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Moreover, if T ⊂ G0 is a maximal torus and if µ is a weight of T/Fl on

V then
∑
|〈µ, α∨〉| < 2d, where α ranges over the roots of G0

/Fl
. Also,

Γ does not have any composition factor of order l.

Proof. Write V =
⊕

iWi as a direct sum of irreducible Γ0-modules.
Since dimWi ≤ l for all i, we see that every element of l-power order
in the image of Γ0 → GL(Wi) actually has order dividing l. Since
Γ0 ↪→

∏
GL(Wi), we deduce that every element of Γ0 of l-power order

actually has order dividing l. Note that Γ/Γ0 has order prime to l.
Step 1. We show that there exists a connected simply connected

semisimple algebraic group G0 over Fl and a finite central subgroup
Z0 ⊂ G0(Fl) with G0(Fl)/Z0

∼= Γ0. Let Γi denote the image of Γ0 in
GL(Wi). Note that Γi has no non-trivial normal subgroup of l-power
order (since Γi acts faithfully on Wi, and an l-group acting on a non-
zero Fl-vector space has non-zero fixed points). So by Theorem B of
[Gur99], Γi is a central product of quasisimple Chevalley groups. (Note
that if l = 11 then dimWi < 7.) Now Γ0 is a subgroup of

∏
Γi that

surjects onto each factor, so Z(Γ0) = Γ0 ∩
∏
Z(Γi). Thus Γ0/Z(Γ0) is

a subgroup of
∏

Γi/Z(Γi), a product of simple Chevalley groups, that
surjects onto each factor. By a theorem of Hall (Lemma 3.5 in [Kup]),
Γ0/Z(Γ0) is itself isomorphic to a direct product of simple Chevalley
groups. It follows that Γ0 = [Γ0,Γ0]Z(Γ0). Since Γ0 is generated by
elements of order l and Z(Γ0) is of order prime to l, it follows moreover
that Γ0 is perfect. Therefore Γ0 is a perfect central extension of a prod-
uct

∏
Hj of simple Chevalley groups Hj, so there exists a surjective

homomorphism π :
∏
H̃j → Γ0 with central kernel, where H̃j is the

universal perfect central extension of Hj.
As l > 3 (to rule out Suzuki and Ree groups) there exist con-

nected simply connected algebraic groups Gj over Fl such that Hj
∼=

Gj(Fl)/Z(Gj(Fl)). (Note that Gj is the restriction of scalars of an ab-
solutely almost simple algebraic group over a finite extension of Fl.)
Since l > 3 it is known that H̃j

∼= Gj(Fl) (see section 6.1 in [GLS98],
particularly table 6.1.3). So we can take G0 =

∏
Gj and Z0 = kerπ.

Since Γ0/Z(Γ0) is a product of nonabelian simple groups and since
Z(Γ0) and Γ/Γ0 are of order prime to l, it follows that Γ does not have
any composition factor of order l.

Let G0 ⊃ B ⊃ T denote a Borel and maximal torus defined over Fl.
Step 2. We lift V to a G0

/Fl
-module and compare the actions of T (Fl)

and T (Fl) on V . Let U denote the unipotent radical of B and set N =
NG0(T ). Let Bop denote the opposite Borel subgroup to B containing T
and let Uop denote its unipotent radical. (See Theorem 14.1 of [Bor91].
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By uniqueness we see it is defined over Fl.) Let X = X∗(T/Fl) with its

subset Φ of roots and Φ+ (resp. ∆) the set of positive (resp. simple)
roots corresponding to B. Let X+ ⊂ X be the subset of dominant
weights. There is a semisimple algebraic action of G0

/Fl
on V , say

φ : G0
/Fl
→ GL(V ), such that:

(i) the highest weight λ of a simple submodule is restricted (i.e.
0 ≤ 〈λ, α∨〉 < l for all α ∈ ∆),

(ii) the action of G0(Fl) is the one induced by the map G0(Fl)→ Γ0,
(iii) the subspaces Wi are G0

/Fl
-stable.

(This follows from a result of Steinberg: see Theorem 2.11 in [Hum06].
Note that [Hum06] works with an algebraic group G that is simple, but
the proof given does not depend on that assumption.) By Proposition
3 of [Ser94] we see that if λ in X+ is a weight of T/Fl on V then∑

α∈Φ+〈λ, α∨〉 < d; in particular, 〈λ, α∨〉 < (l − 1)/2 for all α ∈ Φ+.
(Note that dimWi ≤ (l − 1)/2 and that the proof of that proposition
does not require that G0

/Fl
be almost simple.) If µ is a weight of T/Fl

on V then we see that there is w in the Weyl group with wµ ∈ X+

and 0 ≤ 〈wµ, α∨〉 < (l − 1)/2 for all α ∈ Φ+, and we deduce that
|〈µ, α∨〉| < (l− 1)/2 for all α ∈ Φ. We also deduce that if µ is a weight
of T/Fl on adV then |〈µ, α∨〉| < l − 1 for all α ∈ ∆.

Step 3. The semisimple group I ⊂ GL(V ) and its simply connected
cover I ⊂ G0

/Fl
. Since |〈µ, α∨〉| < l/2 for all weights µ of T/Fl on V

and all α ∈ ∆ we may apply Lemma 4 to φ : G0
/Fl
→ GL(V ). We

obtain connected simply connected semisimple algebraic subgroups I,
J of G0

/Fl
such that G0

/Fl
= I × J , φ(J) = 1, and φ induces a central

isogeny of I onto its image I, which is a semisimple algebraic group.
Note that T/Fl = TI × TJ and that B/Fl = BI × BJ where (BI , TI)

(resp. (BJ , TJ)) is a Borel and maximal torus in I (resp. J). Moreover
U/Fl = UI×UJ . Let B, T , U , B

op
, U

op
denote the images of BI , TI , UI ,

Bop
I , Uop

I in I. Then T is a maximal torus of I, and B, B
op

are opposite

Borel subgroups containing it. Also U , U
op

are the unipotent radicals
of B, B

op
. Since I → I is a central isogeny, UI → U and Uop

I → U
op

are isomorphisms.
Step 4. The maps log and exp provide inverse isomorphisms of va-

rieties between U ⊂ GL(V ) and LieU ⊂ adV . This follows from
Lemma 5 applied to I ⊂ GL(V ) since dimWi ≤ l for all i and |〈µ, α∨〉| <
l/2 for all weights µ of T/Fl on V and all α ∈ ∆. (Note that TI → T
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induces a bijection on coroots since I → I is a central isogeny; thus
T → T induces a surjection on coroots.)

Step 5. The Fl-span of logU(Fl) is LieU . Since dφ : LieU → LieU
is surjective, it suffices to show that there is an isomorphism log : U →
LieU defined over Fl such that dφ ◦ log = log ◦φ. Pick an Fl-structure
on V . The map G0

/Fl
→ GL(V ) can be defined over some Fls and so

taking restrictions of scalars from Fls to Fl we get an Fl-vector space
V ′ and a map ψ : G0 → GL(V ′). The map G0

/Fl
→ GL(V ) is obtained

from ψ by extending scalars to Fl and projecting to a direct summand
V of V ′ ⊗ Fl. The dimension of all irreducible factors of V ′ ⊗ Fl is
at most l. Moreover for any weight λ of T/Fl on V ′ ⊗ Fl we have

|〈λ, α∨〉| < (l − 1)/2 for all α ∈ Φ+.
By Lemma 4 we see that ψ : G0 → GL(V ′) is a central isogeny onto

its image. (By construction we have (kerψ)(Fl) = Z0. Suppose that
kerψ is not finite. Then it has to contain one of the Fl-almost simple
factors of G0 =

∏
Gj. But Gj(Fl) is nonabelian.)

In particular, ψ induces an isomorphism U → ψ(U). Then Lemma 5
(applied to the image of ψ/Fl) gives the desired map log : U → LieU ⊂
adV ′.

Step 6: Some properties of G0(Fl). The pair (B(Fl), N(Fl)) is a split
BN pair in G0(Fl) (see section 1.18 of [Car93]). Also U(Fl) is a Sylow
l-subgroup of G0(Fl) and B(Fl) = NG0(Fl)(U(Fl)) = NG0(Fl)(B(Fl)) (see
Proposition 2.5.1 of [Car93]).

Moreover T (Fl) is a Sylow l-complement in B(Fl). Note that Uop(Fl)
is N(Fl)-conjugate to U(Fl). (The longest Weyl element w0 is stable
under Frobenius, hence represented by an element n0 ∈ N(Fl). Then
use that Uop = n0Un

−1
0 .) Moreover the second-last displayed equation

on page 74 (section 2.9) of [Car93] shows that Uop(Fl) is the unique
N(Fl)-conjugate of U(Fl) with trivial intersection with U(Fl).

Step 7. We have N(Fl) = NG0(Fl)(T (Fl)) so that NG0(Fl)(T (Fl)) ∩
NG0(Fl)(B(Fl)) = T (Fl) and Z0 ⊂ Z(G0(Fl)) ⊂ T (Fl).

Suppose that g is in NG0(Fl)(T (Fl)). One can write g uniquely as
unu′ where u ∈ U(Fl), n ∈ N(Fl) maps to wn in the Weyl group and
u′ ∈ Uwn in the notation of Theorem 2.5.14 of [Car93]. Then for any h
in T (Fl) we can find h′ and h′′ in T (Fl) such that

hunu′ = unu′h′ and h′′unu′ = unu′h,

i.e.,
(huh−1)(hn)u′ = u(nh′)(h′−1u′h′)

and
(h′′uh′′−1)(h′′n)u′ = u(nh)(h−1u′h).
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As T (Fl) normalizes U(Fl) and Uwn and as wnh = wn = whn the unique-
ness assertion of Theorem 2.5.14 of [Car93] tells us that huh−1 = u
and u′ = h−1u′h. Thus u ∈ ZU(Fl)(T (Fl)) and u′ ∈ ZUwn (T (Fl)) ⊂
ZU(Fl)(T (Fl)). So it suffices to prove that ZU(Fl)(T (Fl)) = 1. By Propo-

sition 8.2.1 in [Spr09]
it suffices to show that ZUα(Fl)(T (Fl)) = 1 for all α ∈ Φ+. By Propo-

sition 8.1.1(i) in [Spr09]
it suffices that α is non-trivial on T (Fl) for all α ∈ Φ+. As l ≥ 5, this

follows from Lemma 3(i) (applied with ∆∗ the set of simple coroots).
Step 8. We find a subgroup H of order prime to l such that Γ = Γ0H.

Let H denote the subgroup of h ∈ Γ which normalize both the image
of B(Fl) and the image of T (Fl) in Γ0. Then by the previous paragraph
we see that H ∩ Γ0 is T (Fl)/Z0. Thus H has order prime to l.

Moreover if γ ∈ Γ we see that γ(B(Fl)/Z0)γ−1 is the normalizer
of a Sylow l-subgroup of G0(Fl)/Z0 and hence G0(Fl)-conjugate to
B(Fl)/Z0, say γ(B(Fl)/Z0)γ−1 = k(B(Fl)/Z0)k−1 with k ∈ G0(Fl).
Then k−1γ(T (Fl)/Z0)γ−1k is a Sylow l-complement in B(Fl)/Z0 and
hence (by Hall’s theorem) B(Fl)/Z0-conjugate to T (Fl)/Z0, say

k−1γ(T (Fl)/Z0)γ−1k = k′(T (Fl)/Z0)k′−1

for some k′ ∈ B(Fl). Then (kk′)−1γ lies in H and we deduce that Γ is
generated by H and G0(Fl)/Z0 = Γ0.

Step 9. Lifting the conjugation action of H on Γ0 to G0. We first
show that G0

/Fl
has no simple factor SLn with l|n by showing that

any such factor would act trivially on V =
⊕

Wi, contradicting that
G0(Fl)/Z0 acts faithfully. So suppose that SLn/Fl has an irreducible

module of dimension less than l − 1. Then by Proposition 3 in [Ser94]
its highest weight λ would satisfy

∑
〈λ, α∨〉 < l − 1, where α runs

through the set of positive roots. A calculation shows that the left-
hand side is at least n− 1 if λ is non-zero. So if n ≥ l, then λ = 0.

Next we claim that dφ : (LieG0)(Fl)→ adV is injective on the sub-
space (LieG0)(Fl). Note first that it is injective on (LieU)(Fl) as φ is in-
jective on U(Fl). (Consider the isomorphism log : U(Fl)→ (LieU)(Fl)
constructed in Step 5.) Similarly dφ is injective on (LieUop)(Fl). Since
φ maps U to U , T to T , Uop to U

op
, and since LieG0 = LieU⊕LieT ⊕

LieUop, Lie I = LieU ⊕LieT ⊕LieU
op

it follows that the kernel of dφ
on (LieG0)(Fl) is contained in (LieT )(Fl). But (LieG0)(Fl) contains
no non-trivial abelian ideal by Lemma 6. This proves the claim.

Note that H acts by conjugation on GL(V ) and adV , in partic-
ular it preserves the Lie algebra structure of adV . By definition H
stabilises the image of U(Fl) in GL(V ) and hence by Step 5 it also
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stabilises logU(Fl) = dφ((LieU)(Fl)). Because Uop(Fl) is the unique
NG0(Fl)(T (Fl))-conjugate of U(Fl) that has trivial intersection with
U(Fl), it is also stabilised by H. The previous argument then shows
that H stabilises dφ((LieUop)(Fl)). Since [LieU,LieUop] = LieG0

(as we may check over Fl), it follows that H stabilises the image of
(LieG0)(Fl) in adV . By extending scalars, we get a natural action of
H on (LieG0)(Fl). This action lifts uniquely to an action on G0

/Fl
by

Lemma 6.
We claim that with respect to the H-action on G0

/Fl
just constructed,

φ : G0
/Fl
→ GL(V ) is H-equivariant. We first show that the conjugation

action of H on GL(V ) stabilises I. If h ∈ H then h sends U(Fl) to
itself and hence logU(Fl) to itself and hence LieU to itself and hence
U to itself. Similarly h stabilises U

op
. As the root subgroups generate

I (by Theorem 8.1.5 in [Spr09]), we see that h indeed stabilises I. This
action of H on I lifts uniquely to an action on the simply connected
cover I of I. (For existence use Theorem 9.6.5 of [Spr09] and the
conjugation action of TI . For uniqueness use the semisimplicity of I.)
On the other hand, Lemma 6 shows that the H-action on G0

/Fl
respects

the decomposition G0
/Fl

= I × J . Since J is killed by φ it suffices to

show that the two H-actions on I (one coming from I and one from
G0
/Fl

) agree. By Lemma 6 we can check this on the Lie algebra. The

same lemma shows that dφ : Lie I → Lie I is an isomorphism, since
Lie I contains no non-trivial abelian ideal. By construction both H-
actions on Lie I are compatible with the H-action on Lie I, so the two
H-actions on I indeed agree. Therefore φ is H-equivariant. A fortiori,
it extends to a homomorphism G0

/Fl
oH → GL(V ).

Finally we show that the H-action on G0
/Fl

descends to G0. Suppose

that h ∈ H and σ ∈ Gal(Fl/Fl). The automorphism σhσ−1h−1 is trivial
on (LieG0)(Fl), hence trivial on (LieG0)(Fl), hence trivial on G0

/Fl
by

Lemma 6. Therefore the H-action indeed descends to G0.
By construction, the image of G0(Fl) oH is Γ. Let G = G0 oH and

r : G/Fl → GL(V ) the homomorphism we just obtained. It remains to

show that r is semisimple. But this follows from Lemma 5(b) in [Ser94]
since the restriction of r to G0

/Fl
is semisimple and (G : G0) is prime

to l. �

We remark that for the purpose of proving Theorem 9 we do not
need an H-action on G0, we only need an H-action on G0

/Fl
that is

compatible with the H-action on GL(V ). Since G0
/Fl

= I × J , we can
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lift the H-action on I to I as above and let H act arbitrarily on J ; for
this it is not necessary to appeal to Lemma 6.

Lemma 8. Suppose that G is a linear algebraic group over Fl such
that the connected component G0 is semi-simple and simply connected
and such that l does not divide (G : G0). Let G0 ⊃ B ⊃ T denote a
Borel subgroup and a maximal torus and let T denote the normalizer
of the pair (B, T ) in G. Then the G0(Fl)-conjugates of T (Fl) equal
the semisimple elements of G(Fl) and they are Zariski dense in G. In
particular, if V is an irreducible representation of G then the G0(Fl)-
conjugates of T (Fl) span adV over Fl.

Proof. By Theorem 7.5 in [Ste68a] every semisimple element of G(Fl)
is G0(Fl)-conjugate to an element of T (Fl). The converse is clear as
T ∩ G0 = T , an element g ∈ G(Fl) is semisimple iff g is of order
prime to l, and l does not divide (G : G0). Next we have G = G0T
since Borel subgroups in G0 are conjugate and maximal tori in B are
conjugate. Consider a fixed coset G0h with h ∈ T (Fl). By Lemma 4
of [Spr06] the elements g(th)g−1 = [gt(hgh−1)−1]h of G0h, where t
runs over T (Fl) and g runs over G0(Fl), are Zariski dense in G0h.
(Lemma 4 of [Spr06] does not immediately apply to h as h is not a
diagram automorphism. However for some s ∈ T (Fl) the automor-
phism g 7→ shgh−1s−1 is a diagram automorphism and hence the ele-
ments gt(hgh−1)−1 = gts−1(shgh−1s−1)−1s as t runs over T (Fl) and g
runs over G0(Fl) are Zariski dense in G0.) Thus the G0(Fl)-conjugates
of T (Fl) are Zariski dense in G(Fl). For the last claim note that
if tr(gw) = 0 for some w ∈ adV and some Zariski dense subset of
g ∈ G(Fl), then w = 0. �

The proof of our main theorem relies on Proposition 7 and thus on
the classification of finite simple groups. (It still holds without it for l
sufficiently large, depending on d and ineffective, due to the results of
Larsen and Pink [LP].)

Theorem 9. Suppose that V is a finite-dimensional Fl-vector space
and that Γ ⊂ GL(V ) is a finite subgroup that acts irreducibly on V . Let
Γ0 ⊂ Γ be the subgroup generated by elements of l-power order. Then
V is a semisimple Γ0-module. Let d ≥ 1 be the maximal dimension of
an irreducible Γ0-submodule of V . Suppose that l ≥ 2(d+ 1). Then:

(i) H0(Γ, ad0 V ) = H1(Γ, ad0 V ) = H1(Γ,Fl) = 0.
(ii) The set Γss spans adV as an Fl-vector space.

In particular, for any finite subfield k of Fl containing the eigenvalues
of all elements of Γ and such that Γ ⊂ GLn(k), Γ is adequate.
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Proof. Write V =
⊕

iWi as a direct sum of irreducible Γ0-modules.
Note that Γ/Γ0 has order prime to l.

We claim that dimV is prime to l. Let U be an irreducible con-
stituent of V as a Γ0-module and let V ′ be the U -isotypic direct sum-
mand of V . Since Γ acts transitively on the set of isotypic components
and as (Γ : Γ0) is prime to l, it suffices to show that dimV ′ is prime
to l. Let Γ′ ⊃ Γ0 be the stabiliser of V ′. Then V ′ is an irreducible
Γ′-module. By Theorem 51.7 in [CR62], U extends to a projective rep-
resentation of Γ′ and there is an irreducible projective representation
U ′ of Γ′/Γ0 such that V ′ ∼= U ⊗ U ′ (as projective Γ′-representation).
The claim follows as dimU < l and Γ′/Γ0 is of order prime to l.

By Proposition 7 there exists an algebraic group G = G0 oH over Fl
and a semisimple representation r : G/Fl → GL(V ), where G0 is con-
nected simply connected semisimple, H is a finite group of order prime
to l, and r(G(Fl)) = Γ. Moreover Γ has no composition factor of or-
der l, which implies that no quotient of Γ0 contains a non-trivial normal
l-subgroup.

We have

H1(Γ, adV ) =
⊕
i,j

H1(Γ0,Hom(Wi,Wj))
Γ

and

H1(Γ0,Hom(Wi,Wj)) = Ext1
Γ0(Wi,Wj),

which vanishes by [Gur99], Theorem A, since dimWi+ dimWj ≤ l−2.
(We apply that theorem to the quotient of Γ0 that acts faithfully. Note
that we saw above that this quotient does not have a non-trivial normal
l-subgroup.) Similarly, 2 ≤ l − 2 implies that H1(Γ,Fl) = 0. Since
dimV is prime to l it follows that H0(Γ, ad0 V ) = 0 and that ad0 V is
a direct summand of adV , so H1(Γ, ad0 V ) = 0. This proves the first
part above.

Let G0 ⊃ B ⊃ T denote a Borel and maximal torus defined over Fl.
Proposition 7 also shows that |〈µ, α∨〉| < (l − 1)/2 for all weights µ
of T/Fl on V and all α ∈ ∆. In particular, all dominant weights of

T/Fl on V and adV are restricted. Note that if W is a semisimple G0
/Fl

-

module such that all dominant weights of T/Fl on W are restricted, then

every G0(Fl)-submodule of W is also a G0
/Fl

-submodule. We apply this

first to V (which is semisimple as G0
/Fl

-module, since r is semisimple),

so the Wi are G0
/Fl

-submodules. By Proposition 8 of [Ser94] we see

that adV =
⊕

i,j Hom(Wi,Wj) is a semisimple G0
/Fl

-module. (Note
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that dimWi + dimWj < l + 2.) Thus every G0(Fl)-submodule of adV
is also a G0

/Fl
-submodule.

By Lemma 3 (applied with ∆∗ the set of simple coroots), the Fl-
linear span of the image of T (Fl) in adV equals the Fl-linear span of
the image of T (Fl). Thus the G0(Fl)-submodule of adV generated by
the Fl-linear span of r(H) equals the G0(Fl)-submodule generated by
r(T (Fl)H). By Lemma 8 (noting that T (Fl) = T (Fl)H) it follows that
r(H) spans adV . As r(H) ⊂ Γss, this completes the proof. �
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