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iid case

Control variates in simple (i.i.d.) Monte Carlo
Goal: Compute the expected value of some function F evaluated on i.i.d.samples X1,X2, . . .

Idea: Variance of the standard ergodic averages 1
n

∑ n
i=1 F(Xi ) can be reduced by exploiting

available zero-mean statistics

Modified estimators: If there is one or more functions U1,U2, . . . ,Uk – the control variates –

for which it is known that E [U(Xi)] = 0, then subtracting any linear combination

1

n

n∑
i=1

[
F(Xi ) − θ1U1(Xi ) − θ2U2(Xi ) − · · · − θk Uk (Xi )

]

does not change the asymptotic mean

Practice: For the optimal choice of {θj}, the variance is no larger than before and often much

smaller. The optimal {θ∗j } are usually estimated adaptively, based on the same samples
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iid case

Control Variates for Markov chains
Extension of the above methodology to estimators based on MCMC samples is limited

Extensions include: Green and Han (1992), Barone and Frigessi (1989), Andradottir

et al.(1993), Brooks & Gelman (1998), Robert & Casella (2004), Philippe & Robert (2001,

2004), Fan et al.(2006), Atchade & Perron (2005), Mira et al.(2003), Hammer and Hakon

(2008), Henderson (1997), Henderson et al.(2003), Kim and Henderson (2007), Meyn (2006)

Two fundamental difficulties:

� {Uj}? hard to find (nontrivial and useful) functions with known expectation wrt the

stationary distribution of the chain

� {θj}? even in cases where control variates are available, no effective way to obtain

useful estimates for the optimal coefficients {θ∗j }

Reason: This is a fundamentally difficult problem, because the MCMC variance of ergodic

averages is intrinsically an infinite-dimensional object: It cannot be written in closed form

as a function of the transition kernel and the stationary distribution
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Summary of ideas

What we do [1/2]
Starting point: For any real-valued function Gj defined on the state space of a Markov chain

{Xn}, the functions

Uj (x) := Gj (x) − E [Gj(Xn+1)|Xn = x]

have zero mean with respect to the stationary distribution of the chain (Henderson,1997)

Estimating {θj}: We use control variates of this form conjunction with a new, efficiently

implementable and provably optimal estimator for the coefficients {θ∗j } for reversible chains

Our estimator for {θ∗j } is adaptive, in the sense that is based on the same MCMC output

Unlike the case of independent sampling where control variates need to be found in an ad

hoc manner depending on the specific problem at hand, here the control variates (as well

as the estimates of the corresponding optimal coefficients) come for free!
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Summary of ideas

What we do [2/2]
Choice of G: Identifying particular choices for the functions {Gj} that lead to effective control

variates {Uj} in specific MCMC scenarios that arise from some of the most common families

of Bayesian inference problems.

Basic methodology: For an MCMC algorithm which simulates from

π(x) = π(x(1), x(2), . . . , x(k))), use Gj = x(j), j = 1, . . . , k ; Control variates are constructed

without any cost for nearly ALL random scan Gibbs samplers

Extension 1: Use of a subset of {Gj} functions

Extension 2: General classes of basis functions G

Extension 3: general statistics F
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The setting [1/2]
{Xn} is a discrete-time Markov chain with initial state X0 = x , and transition kernel P:

P(x,A) := Pr{Xk+1 ∈ A | Xk = x}, all x, A

Typical application: Construct an easy-to-simulate Markov chain {Xn} which has a target

distribution π as its unique invariant measure

Ergodicity: If we write PF(x) := E [F(X1) | X0 = x], then for appropriate F ’s:

PnF(x) := E [F(Xn) | X0 = x] → π(F) := Eπ [F(X)], as n → ∞

Moreover, F̂(x) =
∑∞

n=0

[
PnF(x) − π(F)

]
where F̂ satisfies the Poisson equation for F :

PF̂ − F̂ = −F + π(F)
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The setting [2/2]

Ergodic averages: Estimate π(F) by μn(F) := 1
n

∑ n−1
i=0 F(Xi)

Ergodic theorem: μn(F) → π(F), a.s., as n → ∞, for appropriate F ’s

Central limit theorem:

√
n[μn(F) − π(F)] =

1√
n

n−1∑
i=0

[F(Xi) − π(F)]
D−→ N(0, σ2

F ), as n → ∞

where σ2
F , the asymptotic variance of F , is given by

σ2
F := lim

n→∞ Varπ(
√

nμn(F)) = lim
n→∞ Varπ

( 1√
n

n−1∑
i=0

F(Xi )
)

=
∞∑

n=−∞
Covπ(F(X0), F(Xn))

Asymptotic variance: An alternative and more useful representation is in terms of the solution

F̂ to Poisson’s equation:

σ2
F = π

(
F̂ 2 − (PF̂)2

)
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Construction of control variates for Markov chains
Suppose the chain {Xn} takes values in some space S, typically S ⊂ R

d

Construction of U: Given any G : S → R with π(|G|) < ∞, if we let

U(x) := G(x) − PG(x) = G(x) − E [G(X1)|X0 = x]

then π(U) := Eπ [U(X)] = 0

Modified Estimators: Given such a function U with π(U) = 0 and θ ∈ R, define

Fθ = F − θU

μn(Fθ) = μn(F) − θμn(U)

Goals: Search for particular choices for: (i) G (with corresponding U = G − PG);

(ii) θ, so that the asymptotic variance σ2
Fθ

of the modified estimators is significantly smaller

than the variance σ2
F of the standard ergodic averages μn(F)
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Ideal U? Zero Variance?
First suppose we have complete freedom in the choice of G. Set θ = 1 without loss of generality.

We wish to make the asymptotic variance of

F − U = F − G + PG

as small as possible. But, in view of the Poisson equation

PF̂ − F̂ = −F + π(F)

the choice G = F̂ yields

F − U = F − F̂ + PF̂ = π(F)

which has zero variance! Therefore, our first rule of thumb for choosing G is:

Choose a control variate U = G − PG with G ≈ F̂
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After choosing G

With a choice G that (we hope) approximates F̂ , we form the modified estimators μn(Fθ)

with respect to the function Fθ = F − θU = F − θG + θPG

Next task: Choose θ: Minimize the resulting variance

σ2
θ := σ2

Fθ
= π

(
F̂ 2

θ − (PF̂θ)2
)

From the definitions, Û = G and F̂θ = F̂ − θG. Therefore,

σ2
θ = π

(
(F̂ − θG)2

)
− π

(
(PF̂ − θPG)2

)

Expanding the above quadratic in θ, the optimal value is

θ∗ =
π

(
F̂G − (PF̂)(PG)

)

π(G2 − (PG)2)

Hard to estimate θ∗ – it depends on F̂
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Interpretation of θ∗

σ2
θ = lim

n→∞ Varπ
( 1√

n

n−1∑
i=0

[F(Xi ) − θU(Xi)]
)
,

σ2
θ = σ2

F + θ2σ2
U − 2θ

∞∑
n=−∞

Covπ(F(X0),U(Xn)),

so that θ∗ can also be expressed as

θ
∗

=
1

σ2
U

∞∑
n=−∞

Covπ(F(X0),U(Xn))

leading to the optimal asymptotic variance

σ2
θ∗ = σ2

F − 1

σ2
U

[ ∞∑
n=−∞

Covπ(F(X0),U(Xn))
]2

This leads to our second rule of thumb for selecting control variates:

Choose a control variate U = G − PG so that U and F are highly correlated
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A different representation of θ∗

θ∗ =
π

(
F̂G − (PF̂)(PG)

)
π(G2 − (PG)2)

.

Since Û = G, the denominator is simply σ2
U , and the fact that σ2

U is always nonnegative suggests

that there should be a way to rewrite the expression π(G2 − (PG)2) in the denominator of θ∗ in a

way which makes this nonnegativity obvious. Indeed:

Proposition.
σ2

U = π(G2 − (PG)2) = Eπ

[(
G(X1) − PG(X0)

)2]

and θ∗ =
π

(
F̂G − (PF̂)(PG)

)

Eπ

[(
G(X1) − PG(X0)

)2]
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Optimal empirical estimates
Theorem. If the chain {Xn} is reversible, then the optimal coefficient θ∗ for the control variate

U = G − PG can be expressed as

θ∗ = θ∗rev :=
π

(
(F − π(F))(G + PG)

)

Eπ

[(
G(X1) − PG(X0)

)2]

Therefore, we can estimate:

θ∗ as θ̂n,rev =
μn(F(G + PG)) − μn(F)μn(G + PG)

1
n

∑ n−1
i=0 (G(Xi) − PG(Xi−1))2

π(F) as μn,rev(F) := μn(Fθ̂n,rev
) = μn(F − θ̂n,revU)

Key: Expressions do not involve the solution F̂ to Poisson’s equation
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Proof
Let Δ = P − I denote the generator of a discrete time Markov chain {Xn} with transition kernel P.

Reversibility ⇐⇒ Δ is a self-adjoint linear operator on the space L2(π):

π(F ΔG) = π(ΔF G), for any two functions F ,G ∈ L2(π)

Let F̄ = F − π(F) denote the centered version of F , and recall that F̂ solves Poisson’s equation for

F , so PF̂ = F̂ − F̄ . Therefore, the numerator in the expression for θ∗ can be expressed as

π
(
F̂G − (PF̂)(PG)

)
= π

(
F̂G − (F̂ − F̄)(PG)

)

= π
(
F̄PG − F̂ΔG

)

= π
(
F̄PG − ΔF̂G

)

= π
(
F̄PG + F̄G

)

= π
(
F̄(G + PG)

)

�
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Generalisation
Let K(G) denote the covariance matrix of the random variables

Yj := Gj (X1) − PGj (X0), j = 1, 2, . . . , k ,

where X0 ∼ π. Then the optimal coefficient vector θ∗ can also be expressed as,

θ∗ = K(G)−1π(F̂G − (PF̂)(PG)).

and assuming that the chain {Xn} is reversible,

θ∗ = θ∗rev := K(G)−1π
(
(F − π(F))(G + PG)

)
,

θ̂n,K = Kn(G)−1[μn(F(G + PG)) − μn(F)μn(G + PG)],

where the k × k matrix Kn(G) is defined by

(Kn(G))ij =
1

n

n−1∑
t=0

(Gi (Xt ) − PGi (Xt−1))(Gj (Xt ) − PGj (Xt−1)).
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Solution for the Poisson equation for random-scan Gibbs and normal posterior

Normal posterior, random scan Gibbs
Theorem: Let {Xn} denote the Markov chain constructed from the random-scan Gibbs sampler

used to simulate from an arbitrary multivariate normal distribution π ∼ N(μ,Σ) in R
k . If the goal is

to estimate the mean of the first component of π, then letting F(x) = x(1) for each

x = (x(1), x(2), . . . , x(k))t ∈ R
k , the solution F̂ of the Poisson equation for F can be expressed as

linear combination of the basis functions Gj (x) := x(j), x ∈ R
k , 1 ≤ j ≤ k ,

F̂ =
k∑

j=1

θj Gj .

Moreover, writing Q = Σ−1, the coefficient vector θ is given by the first row of the matrix k(I −A)−1

where A has entries Aij = −Qij/Qii , 1 ≤ i �= j ≤ k , Aii = 0 for all i , and (I − A) is always invertible.
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Solution for the Poisson equation for random-scan Gibbs and normal posterior

Outline of the Basic Methodology

(i) Given:

• A multivariate posterior distribution π(x) = π(x(1), x(2), . . . , x(d)))

• A reversible Markov chain {Xn} with stationary distribution π
• A sample of length n from the chain {Xn}

(ii) Goal:

• Estimate the posterior mean μ(i) of x(i)

(iii) Define:

• F(x) = x (i)

• Basis functions Gj (x) = x(j) for all components j

for which PGj (x) = E [X (j)
n+1 | Xn = x] is computable in closed form

• The corresponding control variates Uj = Gj − PGj

(iv) Estimate:

• The optimal coefficient vector θ∗ by θ̂n,K

• The quantity of interest μ(i) by the adaptive estimators μn,K(F)
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Examples

Example: bivariate Gaussian [1/2]
Let (X ,Y ) ∼ π(x, y) be an arbitrary bivariate normal distribution, with E(X) = E(Y ) = 0,

Var(X) = 1, Var(Y ) = 10 and Corr(X ,Y ) = .99.

Random-scan Gibbs sampler, initial values x0 = y0 = 0.5

F(x, y) = x , G1(x, y) = x and G2(x, y) = y .

PG1(x, y) = 1
2

[
x + .99y

10

]
and PG2(x, y) = 1

2 (y + .99 × 10x),
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Examples

Example: bivariate Gaussian [2/2]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Variance reduction factors

Simulation steps

Estimator n = 103 n = 104 n = 5 × 104 n = 105 n = 2 × 105 n = 5 × 105

μn,K(F) 4.13 27.91 122.4 262.5 445.0 1196.6
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Examples

Example: hierarchical normal [1/2]
N = 5 weekly weight measurements of k = 30 young rats whose weight is assumed to

increase linearly in time (Gelfand, Smith and Hills, 1990, JASA)

Yij ∼ N
(
αi + βi xij , σ

2
c

)
, 1 ≤ i ≤ k , 1 ≤ j ≤ N,

φi =

⎛
⎜⎝

αi

βi

⎞
⎟⎠ ∼ N(μc ,Σc)

μc =

⎛
⎜⎝

αc

βc

⎞
⎟⎠ ∼ N (η,C)

Σ−1
c ∼ W((ρR)−1, ρ)

σ2
c ∼ IG

( ν0

2
,
ν0τ

2
0

2

)
,

with known values for η,C, ν0, ρ,R and τ0.

The posterior has 2k + 2 + 3 + 1 = 66 parameters

random scan Gibbs samples from ((φi ), μc ,Σc , σ
2
c )
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Examples

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
106.4

106.5

106.6

106.7

106.8

106.9

107

107.1

107.2

Variance reduction factors

Parameter n = 1000 n = 10000 n = 20000 n = 50000 n = 100000 n = 200000

(φi ) 1.59-3.58 9.12-31.02 11.73-61.08 10.04-81.36 12.44-85.99 9.38-109.2

αc 2.99 15.49 32.28 31.14 28.82 36.48

βc 3.05 19.96 34.05 39.22 32.33 36.04

Σc 1.15-1.38 4.92-5.74 5.36-7.60 3.88-5.12 4.91-5.34 3.65-6.50

σ2
c 2.01 5.06 5.23 5.17 4.75 5.79
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Examples

Example: Metropolis-within-Gibbs, heavy-tailed posterior
Roberts and Rosenthal (2006, Can. J. of Stats, with discussion)

N i.i.d. observations x = (x1, x2, . . . , xN) are drawn from a N(φ,V )

φ ∼ Cauchy(0, 1), V ∼ IG(1, 1)

π(φ|V , x) ∝
( 1

1 + φ2

)
exp

{
− 1

2V

∑
i

(φ− xi )
2
}
,

and π(V |φ, x) ∼ IG
(

1 +
N

2
, 1 +

1

2

∑
i

(φ− xi )
2
)
.

Random scan: update V from its conditional (Gibbs step), or update φ in a random

walk-Metropolis step with a φ′ ∼ N(φ, 1) proposal, each case chosen with probability 1/2.

Simulate data of N = 100 i.i.d. N(2, 4) observations, initial values φ0 = 0 and V0 = 1.

F(φ,V ) = V , G(φ, V ) = V .

Variance reduction factors, estimated from T = 100 repetitions of the same experiment, are

7.89, 7.48, 10.46 and 8.54, after n = 10000, 50000, 100000 and 200000 MCMC steps.
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Use of a subset of variates G

Non-conjugate Normal-Gamma
In the iid case, it is well known that the use of many control variates may be problematic since the

variance increases due to the use of estimated coefficients; (see the notion of loss factors).

Body temperature data, Mackowiak et al.(1992), JASA.

x = (x1, x2, . . . , xN) ∼ i.i.d. N(μ, σ2), N = 130.

Priors μ ∼ N(0, 100) and σ2 ∼ IG(0.001, 0.001)

F(μ, γ) = μ, random-scan Gibbs sampler
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Use of a subset of variates G

Example: Gaussian-Gamma posterior

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
98.238

98.240

98.242

98.244

98.246

98.248

98.250

98.252

Variance reduction factors

Simulation steps

μn,K(F) n = 103 n = 104 n = 5 × 104 n = 105 n = 2 × 105 n = 5 × 105

G1 1.40 18.15 49.06 1578.6 4474.6 69659

G1,G2 0.02 0.05 0.06 0.33 0.47 0.68
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General statistics of interest F

Model space search with Metropolis
Two-threshold AR model, Data U.S. 3-month treasury bill rates 1962 – 1999

Δrt =

⎧⎪⎨
⎪⎩

α10 + α11rt−1 rt−1 < c1

α20 + α21rt−1 rt−1 ≥ c1

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩

σεt rt−1 < c2

σ(1 + γ)1/2εt rt−1 ≥ c2

⎫⎪⎬
⎪⎭
, (1)

where γ ≥ −1 characterizes the jump in σ2 between the two volatility regimes.

Sampling: 6-dim’al integration, and a discrete Metropolis-Hastings algorithm over (c1, c2)

(we replace the 8-dimensional Gibbs sampler of Pfann et al.(1996, J of Econometrics) by a

five-dimensional analytical integration over α and σ, a numerical integration over γ, and a

Metropolis-Hastings algorithm over (c1, c2)).

Control variates: Indicator functions of the three most likely models (c1, c2)

Variance reduction factors: In estimating the posterior prob of MAP model, around 30-120
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General G

A log-linear model
Data: 2 × 3 × 4 table of Knuiman and Speed (1988): 491 subjects classified according to

hypertension (yes, no), obesity (low, average, high) and alcohol consumption (0, 1-2, 3-5, or

6+ drinks/day)

“Best” (main effects) model: yi ∼ Poisson(μi ), log(μi ) = xt
i β, i = 1, 2 . . . , 24

Prior: Flat improper prior on β ∈ R
7

Sampling: Standard Bayesian inference via MCMC performed either by a Gibbs sampler (full

conditional densities are log-concave) or by a multivariate random walk Metropolis-Hastings

sampler
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General G

Coplex Gj: A log-linear model

Sampling: Here we use a simple random-scan Gibbs sampler, noting that a sample from the

full conditional density of each βj can be obtained directly as the logarithm of a

Gamma
(∑

i yi xij ,
∑

i :xij =1 exp
{ ∑

� �=j β�xi�

})
random variable

Estimation: To estimate the posterior means of the βj , set Fj (β) = βj for each

j = 1, 2, . . . , 7 and use the same seven control variates U1,U2, . . . ,U7 for each Fj , where

each U� = G� − PG� is defined in terms of G�(β) = exp(β�)

Computing PG: The computation of PG� is straightforward, since the mean of exp(βj) under

the full conditional density of βj is

∑
i yi xij∑

i :xij =1 exp
(∑

� �=j β�xi�

)
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General G

A log-linear model
The variance reduction factors obtained by our estimator μn,rev(F) for different parameters βj are in

the range 3.55–5.57, 38.2–57.69, 66.20–135.51, 57.16–170.34 and 85.41–179.11, after

n = 1000, 10000, 50000, 100000 and 200000 simulation steps, respectively

0 0.5 1 1.5 2

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
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General G

Coplex Gj: Gaussian mixtures

Still numerous unresolved issues in inference for finite mixtures. Such models are often

ill-posed or non-identifiable. Difficulties reflect important problems in prior specifications and

label switching

Improper priors are hard to use, and proper mixing over all (many!) posterior modes may

require enforcing label-switching moves through Metropolis steps

We begin with N = 500 data points x = (x1, x2, . . . , xN) generated from the mixture

7
10 N(0, 1

4 ) + 3
10 (0.1, 9)

Assume the means, variances and mixing proportions are all unknown. Usual conjugate prior

setting with non-informative priors based on Richardson and Green (1997)

Impose a priori restriction μ1 < μ2

To facilitate sampling from the posterior, introduce latent indicator variables Z1, Z2, . . . , ZN

Problem: Estimate the two means μ1, μ2
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General G

Gaussian mixtures: Sampling
Standard random-scan Gibbs sampler that selects one of the four parameter blocks (μ1, μ2),

(σ1, σ2), Z or p, each with probability 1/4

Preferable to first obtain draws from the unconstrained posterior distribution and then to

impose the identifiability (ordering) constraint at the post-processing stage

The data x have been generated so that the two means are very close, which results in

frequent label switching throughout the MCMC run and in near-identical (unordered)

marginal densities of μ1 and μ2

We perform a post-processing relabelling of the sampled values according to the above

restriction, and we denote the ordered sampled vector by (μo
1, μ

o
2 , σ

o
1 , σ

o
2 , Z

o, po)
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General G

Gaussian mixtures: Estimation
In order to estimate the posterior mean of the smaller of the two means, we let,

F(μ1, μ2, σ1, σ2, Z , p) := μo
1 = min{μ1, μ2}

To reduce the variance of μn(F) we use a bivariate control variate U = G − PG, where

G = (G1,G2) = (μo
1 , σ

o
1 )

PG1(μ1, μ2, σ1, σ2, Z , p) is the one-step expected value of min{μ1, μ2}

3

4
μo

1 +
ν1

4
Φ

( ν2 − ν1√
τ 2

1 + τ 2
2

)
+
ν2

4
Φ

( ν1 − ν2√
τ 2

1 + τ 2
2

)
− 1

4

√
τ 2

1 + τ 2
2φ

( ν2 − ν1√
τ 2

1 + τ 2
2

)

where νj and τ2
j are the means and variances of μj , respectively, for j = 1, 2, under the

corresponding full conditional densities



Motivation and Summary Theory Basic methodology Extensions Discussion

General G

Gaussian mixtures: PG2

First calculate the probability p(order) that μ1 < μ2:

p(order) =
Φ

(
E(μ2|·) − E(μ1|·)

)
√

E(σ2
1 |·) + E(σ2

2 |·)
,

where all four expectations above are taken under the corresponding full conditional densities, and,

since the full conditional of each σ−2
j is a Gamma density, the expectations of σ1, σ2, σ2

1 , and σ2
2 ,

are all available in closed form. Therefore, p(order) can be computed explicitly, and, PG2 is:

σo
1

2
+

1

4

[
I{μ1<μ2}E(σ1|·) + I{μ1>μ2}E(σ2|·)

]
+

1

4

[
p(order)σ1 + (1 − p(order))σ2

]

where all expectations are taken under the corresponding full conditional densities
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General G

Gaussian mixtures: Variance reduction
With this choice for G1,G2 and corresponding control variates U1,U2, the variance reduction

factors obtained by μn,rev(F) are 16.17, 25.36, 38.99, 44.5 and 36.16, after

n = 1000, 10000, 50000, 100000 and 200000 simulation steps, respectively
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Discussion: Applicability
1 The methodology presented applies immediately to any reversible MCMC sampler, as long

as it is possible to compute the one-step expectation of some function G of the parameters,

in closed form

2 These estimators can be used in a “black-box” fashion to various state-of-the-art samplers

used in Bayesian inference via MCMC:

� all conjugate Gibbs samplers

� all random-walk Metropolis-Hastings samplers with a discrete proposal

� many hybrid, Metropolis-within-Gibbs samplers

3 As in the iid case, blind use of all available control variates is not a good idea -standard

hypothesis testing for zero-mean θj can be used

4 Beyond black-box: Rules of thumb should be used to derive good control variates in broad

families of models as demonstrated in log-linear and finite mixture models

5 See next talk for some interesting ongoing research with many open problems
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Theorem: “Under minimal assumptions, it all works”
Suppose {Xn} is ψ-irreducible, aperiodic, reversible and satisfies the Lyapunov drift condition (V3),

PV ≤ V − W + bIC . If F ,G ∈ LW
∞ and they are non-degenerate, then:

(i) [ERGODICITY] The chain is positive Harris recurrent, it has a unique invariant measure π,

and it converges in distribution to π in a strong sense

(ii) [LLN] The ergodic averages μn(F), as well as the adaptive averages μn,rev(F), both

converge to π(F) a.s., as n → ∞.

(iii) [POISSON EQUATION] There is an essentially unique solution F̂ ∈ LV+1
∞ to the Poisson eqn

(iv) [CLT FOR μn(F)] The normalized ergodic averages
√

n[μn(F) − π(F)] converge in

distribution to N(0, σ2
F )

(v) [CLT FOR μn,rev(F)] The normalized adaptive averages
√

n[μn,rev(F) − π(F)] converge in

distribution to N(0, σ2
Fθ∗ ), where the variance σ2

Fθ∗ is minimal among all estimators based

on the control variate U = G − PG


	Main Part
	Motivation and Summary
	iid case
	Control variates for Markov chains
	Summary of ideas

	Theory
	Basic methodology
	Solution for the Poisson equation for random-scan Gibbs and normal posterior 
	Examples

	Extensions
	Use of a subset of variates G
	General statistics of interest F
	General G

	Discussion


