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Introduction

General purpose

Given a density π known up to a normalizing constant, and an
integrable function h, compute

Π(h) =

∫
h(x)π(x)µ(dx) =

∫
h(x)π̃(x)µ(dx)∫

π̃(x)µ(dx)

when
∫

h(x)π̃(x)µ(dx) is intractable.
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Introduction

Monte Carlo basics

Monte Carlo basics

Generate an iid sample x1, . . . , xN from π and estimate Π(h) by

Π̂MC
N (h) = N−1

N∑

i=1

h(xi).

LLN: Π̂MC
N (h)

as−→ Π(h)

If Π(h2) =
∫

h2(x)π(x)µ(dx) < ∞,

CLT:
√

N
(
Π̂MC

N (h) − Π(h)
)

L
 N

(
0, Π

{
[h − Π(h)]2

})
.
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Monte Carlo basics

Monte Carlo basics

Generate an iid sample x1, . . . , xN from π and estimate Π(h) by

Π̂MC
N (h) = N−1

N∑

i=1

h(xi).

LLN: Π̂MC
N (h)

as−→ Π(h)

If Π(h2) =
∫

h2(x)π(x)µ(dx) < ∞,

CLT:
√

N
(
Π̂MC

N (h) − Π(h)
)

L
 N

(
0, Π

{
[h − Π(h)]2

})
.

Caveat

Often impossible or inefficient to simulate directly from Π
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Importance Sampling

Importance Sampling

For Q proposal distribution such that Q(dx) = q(x)µ(dx),
alternative representation

Π(h) =

∫
h(x){π/q}(x)q(x)µ(dx).
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Introduction

Importance Sampling

Importance Sampling

For Q proposal distribution such that Q(dx) = q(x)µ(dx),
alternative representation

Π(h) =

∫
h(x){π/q}(x)q(x)µ(dx).

Principle

Generate an iid sample x1, . . . , xN ∼ Q and estimate Π(h) by

Π̂IS
Q,N (h) = N−1

N∑

i=1

h(xi){π/q}(xi).
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Importance Sampling

Then
LLN: Π̂IS

Q,N (h)
as−→ Π(h) and if Q((hπ/q)2) < ∞,

CLT:
√

N(Π̂IS
Q,N (h) − Π(h))

L
 N

(
0, Q{(hπ/q − Π(h))2}

)
.
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Importance Sampling

Then
LLN: Π̂IS

Q,N (h)
as−→ Π(h) and if Q((hπ/q)2) < ∞,

CLT:
√

N(Π̂IS
Q,N (h) − Π(h))

L
 N

(
0, Q{(hπ/q − Π(h))2}

)
.

Caveat

If normalizing constant unknown, impossible to use Π̂IS
Q,N

Generic problem in Bayesian Statistics: π(θ|x) ∝ f(x|θ)π(θ).
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Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

Π̂SNIS
Q,N (h) =

(
N∑

i=1

{π/q}(xi)

)−1 N∑

i=1

h(xi){π/q}(xi).
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Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

Π̂SNIS
Q,N (h) =

(
N∑

i=1

{π/q}(xi)

)−1 N∑

i=1

h(xi){π/q}(xi).

LLN : Π̂SNIS
Q,N (h)

as−→ Π(h)

and if Π((1 + h2)(π/q)) < ∞,

CLT :
√

N(Π̂SNIS
Q,N (h) − Π(h))

L
 N

(
0, π {(π/q)(h − Π(h)}2)

)
.
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Importance Sampling

Self-Normalised Importance Sampling

Self normalized version

Π̂SNIS
Q,N (h) =

(
N∑

i=1

{π/q}(xi)

)−1 N∑

i=1

h(xi){π/q}(xi).

LLN : Π̂SNIS
Q,N (h)

as−→ Π(h)

and if Π((1 + h2)(π/q)) < ∞,

CLT :
√

N(Π̂SNIS
Q,N (h) − Π(h))

L
 N

(
0, π {(π/q)(h − Π(h)}2)

)
.

c© The quality of the SNIS approximation depends on the

choice of Q
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Importance Sampling

Iterated importance sampling

Introduction of an algorithmic temporal dimension :

x
(t)
i ∼ qt(x|x(t−1)

i ) i = 1, . . . , n, t = 1, . . .

and

Ît =
1

n

n∑

i=1

̺
(t)
i h(x

(t)
i )

is still unbiased for

̺
(t)
i =

πt(x
(t)
i )

qt(x
(t)
i |x(t−1)

i )
, i = 1, . . . , n
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Population Monte Carlo

PMC: Population Monte Carlo Algorithm

At time t = 0

Generate (xi,0)1≤i≤N
iid∼ Q0

Set ωi,0 = {π/q0}(xi,0)

Generate (Ji,0)1≤i≤N
iid∼ M(1, (ω̄i,0)1≤i≤N )

Set x̃i,0 = xJi,0
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Population Monte Carlo

PMC: Population Monte Carlo Algorithm

At time t = 0

Generate (xi,0)1≤i≤N
iid∼ Q0

Set ωi,0 = {π/q0}(xi,0)

Generate (Ji,0)1≤i≤N
iid∼ M(1, (ω̄i,0)1≤i≤N )

Set x̃i,0 = xJi,0

At time t (t = 1, . . . , T ),

Generate xi,t
ind∼ Qi,t(x̃i,t−1, ·)

Set ωi,t = {π(xi,t)/qi,t(x̃i,t−1, xi,t)}
Generate (Ji,t)1≤i≤N

iid∼ M(1, (ω̄i,t)1≤i≤N )
Set x̃i,t = xJi,t,t.

[Cappé, Douc, Guillin, Marin, & CPR, 2009, Stat.& Comput.]
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Population Monte Carlo

Notes on PMC

After T iterations of PMC, PMC estimator of Π(h) given by

Π̄PMC
N,T (h) =

1

T

T∑

t=1

N∑

i=1

¯̄ωi,th(xi,t).
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Population Monte Carlo

Notes on PMC

After T iterations of PMC, PMC estimator of Π(h) given by

Π̄PMC
N,T (h) =

1

T

T∑

t=1

N∑

i=1

¯̄ωi,th(xi,t).

1 ¯̄ωi,t means normalising over whole sequence of simulations

2 Qi,t’s chosen arbitrarily under support constraint

3 Qi,t’s may depend on whole sequence of simulations



Approximative Bayesian Computation (ABC) Methods

Population Monte Carlo

Improving quality
The efficiency of the SNIS approximation depends on the choice of
Q, ranging from optimal

q(x) ∝ |h(x) − Π(h)|π(x)

to useless
var Π̂SNIS

Q,N (h) = +∞
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Population Monte Carlo

Improving quality
The efficiency of the SNIS approximation depends on the choice of
Q, ranging from optimal

q(x) ∝ |h(x) − Π(h)|π(x)

to useless
var Π̂SNIS

Q,N (h) = +∞

Example (PMC=adaptive importance sampling)

Population Monte Carlo is producing a sequence of proposals Qt

aiming at improving efficiency

Kull(π, qt) ≤ Kull(π, qt−1) or var Π̂SNIS
Qt,∞ (h) ≤ var Π̂SNIS

Qt−1,∞(h)

[Cappé, Douc, Guillin, Marin, Robert, 04, 07a, 07b, 08]
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Population Monte Carlo

AMIS

Multiple Importance Sampling

Reycling: given several proposals Q1, . . . , QT , for 1 ≤ t ≤ T
generate an iid sample

xt
1, . . . , x

t
N ∼ Qt

and estimate Π(h) by

Π̂MIS
Q,N (h) = T−1

T∑

t=1

N−1
N∑

i=1

h(xt
i)ω

t
i

where

ωt
i 6=

π(xt
i)

qt(xt
i)

correct...
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Population Monte Carlo

AMIS

Multiple Importance Sampling

Reycling: given several proposals Q1, . . . , QT , for 1 ≤ t ≤ T
generate an iid sample

xt
1, . . . , x

t
N ∼ Qt

and estimate Π(h) by

Π̂MIS
Q,N (h) = T−1

T∑

t=1

N−1
N∑

i=1

h(xt
i)ω

t
i

where

ωt
i =

π(xt
i)

T−1
∑T

ℓ=1 qℓ(x
t
i)

still correct!
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Population Monte Carlo

AMIS

Mixture representation

Deterministic mixture correction of the weights proposed by Owen
and Zhou (JASA, 2000)

The corresponding estimator is still unbiased [if not
self-normalised]

All particles are on the same weighting scale rather than their
own

Large variance proposals Qt do not take over

Variance reduction thanks to weight stabilization & recycling

[K.o.] removes the randomness in the component choice
[=Rao-Blackwellisation]
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Population Monte Carlo

AMIS

Global adaptation

Global Adaptation

At iteration t = 1, · · · , T ,

1 For 1 ≤ i ≤ N1, generate xt
i ∼ T3(µ̂

t−1, Σ̂t−1)

2 Calculate the mixture importance weight of particle xt
i

ωt
i = π

(
xt

i

) /
δt
i

where

δt
i =

t−1∑

l=0

qT (3)

(
xt

i; µ̂
l, Σ̂l

)
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Population Monte Carlo

AMIS

Backward reweighting

3 If t ≥ 2, actualize the weights of all past particles, xl
i

1 ≤ l ≤ t − 1
ωl

i = π
(
xt

i

) /
δl
i

where
δl
i = δl

i + qT (3)

(
xl

i; µ̂
t−1, Σ̂t−1

)

4 Compute IS estimates of target mean and variance µ̂t and Σ̂t,
where

µ̂t
j =

t∑

l=1

N1∑

i=1

ωl
i(xj)

l
i

/ t∑

l=1

N1∑

i=1

ωl
i . . .
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Population Monte Carlo

AMIS

A toy example
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Banana shape benchmark: marginal distribution of (x1, x2) for the
parameters σ2

1 = 100 and b = 0.03. Contours represent 60% (red),
90% (black) and 99.9% (blue) confidence regions in the marginal
space.
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Population Monte Carlo

AMIS

A toy example
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Banana shape example: boxplots of 10 replicate ESSs for the AMIS
scheme (left) and the NOT-AMIS scheme (right) for p = 5, 10, 20.
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Population Monte Carlo

Convergence of the estimator

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward
structure: the weight of xt

i at stage T depends on future as well as
past xℓ

j ’...
Regular Population Monte Carlo argument does not work for T
asymptotics...
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Population Monte Carlo

Convergence of the estimator

Convergence of the AMIS estimator

Difficulty in establishing the convergence because of the backward
structure: the weight of xt

i at stage T depends on future as well as
past xℓ

j ’...
Regular Population Monte Carlo argument does not work for T
asymptotics...

[ c© Amiss estimator?!]
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Population Monte Carlo

Convergence of the estimator

A modified version of the algorithm

Only consider AMIS with p = 1, N = 1 and h(x) = x.

Set the variances of the t distributions to be equal to 1 after
rescaling, i.e. no learning process on the covariance matrix
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Population Monte Carlo

Convergence of the estimator

Algorithmic setup

Our simplified algorithm then runs as follows:

x0 ∼ q0(·) , x1 ∼ T3(u1(x0), 1) where u1(x0) =
π(x0)x0

q0(x0)
= µ̂0 ,

x2 ∼ T3(u2(x0:1), 1) where u2(x0:1) =

π(x0)x0

q0(x0) + t3(x0; u1(x0), 1)
+

π(x1)x1

q0(x1) + t3(x1; u1(x0), 1)
= µ̂1 ,
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Population Monte Carlo

Convergence of the estimator

Algorithmic setup (2)

xt ∼ T3(ut(x0:t−1), 1)

where ut(x0:t−1) =
t−1∑

k=0

π(xk)xk

q0(xk) +
∑t−1

i=1 t3(xk; ui(x0:i−1), 1)
, . . .



Approximative Bayesian Computation (ABC) Methods

Population Monte Carlo

Convergence of the estimator

Stumbling block

Establishing that

µ̂T =
T∑

k=0

π(xk)xk

q0(xk) +
∑T

i=1 t3(xk; ui(x0:i−1), 1)

L2−→
T→∞

µ =

∫
xπ(x)dx .

proves to be surprisingly difficult (note that E(µ̂T ) 6= µ)

 Impossible to use PMC convergence theorems on triangular
arrays of random variables.
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Population Monte Carlo

An unbiased estimator

Unbiased version of the estimator

Modified version of previous algorithm with two sequences:

x0 ∼ q0(·) and x̃0 ∼ q0(·) ,

x1 ∼ T3(u1(x̃0), 1) and x̃1 ∼ T3(u1(x̃0), 1)

where u1(x̃0) =
π(x̃0)x̃0

q0(x̃0)
= µ̂0 ,

x2 ∼ T3(u2(x̃0:1), 1) and x̃2 ∼ T3(u2(x̃0:1), 1) where u2(x̃0:1) =
π(x̃0)x̃0

q0(x̃0) + t3(x̃0; u1(x̃0), 1)
+

π(x̃1)x̃1

q0(x̃1) + t3(x̃1; u1(x̃0), 1)
= µ̂1 ,
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Population Monte Carlo

An unbiased estimator

Unbiased version of the estimator (2)

xt ∼ T3(ut(x0:t−1), 1) and x̃t ∼ T3(ut(x̃0:t−1), 1)

where ut(x̃0:t−1) =
t−1∑

k=0

π(x̃k)x̃k

q0(x̃k) +
∑t−1

i=1 t3(x̃k; ui(x̃0:i−1), 1)
, . . .

Let

µ̂T
U =

T∑

k=0

π(xk)xk

q0(xk) +
∑T

i=1 t3(xk; ui(x̃0:i−1), 1)
.
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Population Monte Carlo

An unbiased estimator

My questions

Clearly, we have
E(µ̂T

U ) = µ

and under mild conditions we should have

µ̂T
U

L2−→
T→∞

µ
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Population Monte Carlo

An unbiased estimator

My questions

Clearly, we have
E(µ̂T

U ) = µ

and under mild conditions we should have

µ̂T
U

L2−→
T→∞

µ

Except for the compact case, i.e. when supp(π) is compact, this
also proves impossible to establish...
The only indication we have is that var(µ̂T

U ) is decreasing at each
iteration
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The ABC method

Bayesian setting: target is π(θ)f(x|θ)
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The ABC method

Bayesian setting: target is π(θ)f(x|θ)
When likelihood f(x|θ) not in closed form, likelihood-free rejection
technique:
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The ABC method

Bayesian setting: target is π(θ)f(x|θ)
When likelihood f(x|θ) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointly
simulating

θ′ ∼ π(θ) , x ∼ f(x|θ′) ,

until the auxiliary variable x is equal to the observed value, x = y.

[Pritchard et al., 1999]
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ABC

A as approximative

When y is a continuous random variable, equality x = y is replaced
with a tolerance condition,

̺(x, y) ≤ ǫ

where ̺ is a distance between summary statistics
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ABC

A as approximative

When y is a continuous random variable, equality x = y is replaced
with a tolerance condition,

̺(x, y) ≤ ǫ

where ̺ is a distance between summary statistics
Output distributed from

π(θ)Pθ{̺(x, y) < ǫ} ∝ π(θ|̺(x, y) < ǫ)
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ABC improvements

Simulating from the prior is often poor in efficiency
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ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]
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ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger ǫ

[Beaumont et al., 2002]
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ABC

ABC improvements

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x’s within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation
and by developing techniques to allow for larger ǫ

[Beaumont et al., 2002]

...or even by including ǫ in the inferential framework [ABCµ]
[Ratmann et al., 2009]
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ABC

ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =





θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)

π(θ(t))K(θ′|θ(t))
,

θ(t) otherwise,
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ABC

ABC-MCMC

Markov chain (θ(t)) created via the transition function

θ(t+1) =





θ′ ∼ K(θ′|θ(t)) if x ∼ f(x|θ′) is such that x = y

and u ∼ U(0, 1) ≤ π(θ′)K(θ(t)|θ′)

π(θ(t))K(θ′|θ(t))
,

θ(t) otherwise,

has the posterior π(θ|y) as stationary distribution
[Marjoram et al, 2003]
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ABC

ABCµ

[Ratmann, Andrieu, Wiuf and Richardson, 2009, PNAS]

Use of a joint density

f(θ, ǫ|x0) ∝ ξ(ǫ|x0, θ) × πθ(θ) × πǫ(ǫ)

where x0 is the data, and ξ(ǫ|x0, θ) is the prior predictive density
of ρ(S(x), S(x0)) given θ and x0 when x ∼ f(x|θ)
Replacement of ξ(ǫ|x0, θ) with a non-parametric kernel
approximation.
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ABC

Questions about ABCµ

For each model under comparison, marginal posterior on ǫ used to
assess the fit of the model (HPD includes 0 or not).
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ABC

Questions about ABCµ

For each model under comparison, marginal posterior on ǫ used to
assess the fit of the model (HPD includes 0 or not).

Is the data informative about ǫ? [Identifiability]

How is the prior π(ǫ) impacting the comparison?

How is using both ξ(ǫ|x0, θ) and πǫ(ǫ) compatible with a
standard probability model?

Where is there a penalisation for complexity in the model
comparison?
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ABC

ABC-PRC

Another sequential version producing a sequence of Markov

transition kernels Kt and of samples (θ
(t)
1 , . . . , θ

(t)
N ) (1 ≤ t ≤ T )
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ABC

ABC-PRC

Another sequential version producing a sequence of Markov

transition kernels Kt and of samples (θ
(t)
1 , . . . , θ

(t)
N ) (1 ≤ t ≤ T )

ABC-PRC Algorithm

1 Pick a θ⋆ is selected at random among the previous θ
(t−1)
i ’s

with probabilities ω
(t−1)
i (1 ≤ i ≤ N).

2 Generate
θ
(t)
i ∼ Kt(θ|θ⋆) , x ∼ f(x|θ(t)

i ) ,

3 Check that ̺(x, y) < ǫ, otherwise start again.

[Sisson et al., 2007]
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ABC

ABC-PRC weight

Probability ω
(t)
i computed as

ω
(t)
i ∝ π(θ

(t)
i )Lt−1(θ

⋆|θ(t)
i ){π(θ⋆)Kt(θ

(t)
i |θ⋆)}−1 ,

where Lt−1 is an arbitrary transition kernel.
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ABC

ABC-PRC weight

Probability ω
(t)
i computed as

ω
(t)
i ∝ π(θ

(t)
i )Lt−1(θ

⋆|θ(t)
i ){π(θ⋆)Kt(θ

(t)
i |θ⋆)}−1 ,

where Lt−1 is an arbitrary transition kernel.
In case

Lt−1(θ
′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.



Approximative Bayesian Computation (ABC) Methods

ABC

ABC-PRC weight

Probability ω
(t)
i computed as

ω
(t)
i ∝ π(θ

(t)
i )Lt−1(θ

⋆|θ(t)
i ){π(θ⋆)Kt(θ

(t)
i |θ⋆)}−1 ,

where Lt−1 is an arbitrary transition kernel.
In case

Lt−1(θ
′|θ) = Kt(θ|θ′) ,

all weights are equal under a uniform prior.
Inspired from Del Moral et al. (2006), who use backward kernels
Lt−1 in SMC to achieve unbiasedness
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ABC

ABC-PRC bias

Lack of unbiasedness of the method
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ABC

ABC-PRC bias

Lack of unbiasedness of the method

Joint density of the accepted pair (θ(t−1), θ(t)) proportional to

π(θ
(t−1)

|y)Kt(θ
(t)

|θ
(t−1)

)f(y|θ
(t)

) ,

For an arbitrary function h(θ), E[ωth(θ(t))] proportional to

ZZ

h(θ
(t)

)
π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))
π(θ

(t−1)
|y)Kt(θ

(t)
|θ

(t−1)
)f(y|θ

(t)
)dθ

(t−1)
dθ

(t)

∝

ZZ

h(θ
(t)

)
π(θ(t))Lt−1(θ(t−1)|θ(t))

π(θ(t−1))Kt(θ(t)|θ(t−1))
π(θ

(t−1)
)f(y|θ

(t−1)
)

× Kt(θ
(t)

|θ
(t−1)

)f(y|θ
(t)

)dθ
(t−1)

dθ
(t)

∝

Z

h(θ
(t)

)π(θ
(t)

|y)

Z

Lt−1(θ
(t−1)

|θ
(t)

)f(y|θ
(t−1)

)dθ
(t−1)

ff

dθ
(t)

.
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ABC

A mixture example
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ABC-PMC

A PMC version

Use of the same kernel idea as ABC-PRC but with IS correction
Generate a sample at iteration t by

π̂t(θ
(t)) ∝

N∑

j=1

ω
(t−1)
j Kt(θ

(t)|θ(t−1)
j )

modulo acceptance of the associated xt, and use an importance

weight associated with an accepted simulation θ
(t)
i

ω
(t)
i ∝ π(θ

(t)
i )
/
π̂t(θ

(t)
i ) .

c© Still likelihood free

[Beaumont et al., 2008, arXiv:0805.2256]



Approximative Bayesian Computation (ABC) Methods

ABC-PMC

The ABC-PMC algorithm
Given a decreasing sequence of approximation levels ǫ1 ≥ . . . ≥ ǫT ,

1. At iteration t = 1,

For i = 1, ..., N

Simulate θ
(1)
i ∼ π(θ) and x ∼ f(x|θ(1)

i ) until ̺(x, y) < ǫ1

Set ω
(1)
i = 1/N

Take τ2 as twice the empirical variance of the θ
(1)
i ’s

2. At iteration 2 ≤ t ≤ T ,

For i = 1, ..., N , repeat

Pick θ⋆
i from the θ

(t−1)
j ’s with probabilities ω

(t−1)
j

generate θ
(t)
i |θ⋆

i ∼ N (θ⋆
i , σ2

t ) and x ∼ f(x|θ(t)
i )

until ̺(x, y) < ǫt

Set ω
(t)
i ∝ π(θ

(t)
i )/

∑N

j=1 ω
(t−1)
j ϕ

(
σ−1

t

{
θ
(t)
i − θ

(t−1)
j )

})

Take τ2
t+1 as twice the weighted empirical variance of the θ

(t)
i ’s
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ABC-PMC

ABC-SMC

[Del Moral, Doucet & Jasra, 2009]

True derivation of an SMC-ABC algorithm
Use of a kernel Kn associated with target πǫn and derivation of the
backward kernel

Ln−1(z, z′) =
πǫn(z′)Kn(z′, z)

πn(z)

Update of the weights

win ∝i(n−1)

∑M
m=1 Aǫ⋉

(xm
in∑M

m=1 Aǫ⋉−1
(xm

i(n−1)

when xm
in ∼ K(xi(n−1), ·)
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ABC-PMC

A mixture example (0)

Toy model of Sisson et al. (2007): if

θ ∼ U(−10, 10) , x|θ ∼ 0.5N (θ, 1) + 0.5N (θ, 1/100) ,

then the posterior distribution associated with y = 0 is the normal
mixture

θ|y = 0 ∼ 0.5N (0, 1) + 0.5N (0, 1/100)

restricted to [−10, 10].
Furthermore, true target available as

π(θ||x| < ǫ) ∝ Φ(ǫ−θ)−Φ(−ǫ−θ)+Φ(10(ǫ−θ))−Φ(−10(ǫ+θ)) .
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ABC-PMC

A mixture example (2)

Recovery of the target, whether using a fixed standard deviation of
τ = 0.15 or τ = 1/0.15, or a sequence of adaptive τt’s.
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ABC for model choice in GRFs

ABC for model choice

1 Introduction

2 Population Monte Carlo

3 ABC

4 ABC-PMC

5 ABC for model choice in GRFs
Gibbs random fields
Model choice via ABC
Illustrations
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ABC for model choice in GRFs

Gibbs random fields

Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated with
the graph G if

f(y) =
1

Z
exp

{
−
∑

c∈C

Vc(yc)

}
,

where Z is the normalising constant, C is the set of cliques of G

and Vc is any function also called potential

U(y) =
∑

c∈C
Vc(yc) is the energy function
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ABC for model choice in GRFs

Gibbs random fields

Gibbs random fields

Gibbs distribution

The rv y = (y1, . . . , yn) is a Gibbs random field associated with
the graph G if

f(y) =
1

Z
exp

{
−
∑

c∈C

Vc(yc)

}
,

where Z is the normalising constant, C is the set of cliques of G

and Vc is any function also called potential

U(y) =
∑

c∈C
Vc(yc) is the energy function

c© Z is usually unavailable in closed form



Approximative Bayesian Computation (ABC) Methods

ABC for model choice in GRFs

Gibbs random fields

Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ
∑

l∼i

δyl=yi

where l∼i denotes a neighbourhood structure
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ABC for model choice in GRFs

Gibbs random fields

Potts model

Potts model

Vc(y) is of the form

Vc(y) = θS(y) = θ
∑

l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑

x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted

[Cucala, Marin, CPR & Titterington, 2009]
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ABC for model choice in GRFs

Model choice via ABC

Bayesian Model Choice

Comparing a model with potential S0 taking values in R
p0 versus a

model with potential S1 taking values in R
p1 can be done through

the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫
exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)
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ABC for model choice in GRFs

Model choice via ABC

Bayesian Model Choice

Comparing a model with potential S0 taking values in R
p0 versus a

model with potential S1 taking values in R
p1 can be done through

the Bayes factor corresponding to the priors π0 and π1 on each
parameter space

Bm0/m1
(x) =

∫
exp{θT

0 S0(x)}/Zθ0,0π0(dθ0)∫
exp{θT

1 S1(x)}/Zθ1,1π1(dθ1)

Use of Jeffreys’ scale to select most appropriate model
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ABC for model choice in GRFs

Model choice via ABC

Neighbourhood relations

Choice to be made between M neighbourhood relations

i
m∼ i′ (0 ≤ m ≤ M − 1)

with
Sm(x) =

∑

i
m
∼i′

I{xi=xi′}

driven by the posterior probabilities of the models.
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ABC for model choice in GRFs

Model choice via ABC

Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution π(M = m) and
π(θ|M = m) = πm(θm)
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ABC for model choice in GRFs

Model choice via ABC

Model index

Formalisation via a model index M that appears as a new
parameter with prior distribution π(M = m) and
π(θ|M = m) = πm(θm)
Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,
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ABC for model choice in GRFs

Model choice via ABC

Sufficient statistics
By definition, if S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .
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Model choice via ABC

Sufficient statistics
By definition, if S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) also sufficient.
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Model choice via ABC

Sufficient statistics
By definition, if S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

For each model m, own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) also sufficient.
For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1
m(x|S(x))f2

m(S(x)|θm)

=
1

n(S(x))
f2

m(S(x)|θm)

where
n(S(x)) = ♯ {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is therefore also sufficient for the joint parameters

[Specific to Gibbs random fields!]
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ABC for model choice in GRFs

Model choice via ABC

ABC model choice Algorithm

ABC-MC

Generate m∗ from the prior π(M = m).

Generate θ∗m∗ from the prior πm∗(·).
Generate x∗ from the model fm∗(·|θ∗m∗).

Compute the distance ρ(S(x0), S(x∗)).

Accept (θ∗m∗ , m∗) if ρ(S(x0), S(x∗)) < ǫ.

Note When ǫ = 0 the algorithm is exact
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ABC for model choice in GRFs

Model choice via ABC

ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1
(x0) =

P̂(M = m0|x0)

P̂(M = m1|x0)
× π(M = m1)

π(M = m0)

=
♯{mi∗ = m0}
♯{mi∗ = m1}

× π(M = m1)

π(M = m0)
,
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Model choice via ABC

ABC approximation to the Bayes factor

Frequency ratio:

BFm0/m1
(x0) =

P̂(M = m0|x0)

P̂(M = m1|x0)
× π(M = m1)

π(M = m0)

=
♯{mi∗ = m0}
♯{mi∗ = m1}

× π(M = m1)

π(M = m0)
,

replaced with

B̂Fm0/m1
(x0) =

1 + ♯{mi∗ = m0}
1 + ♯{mi∗ = m1}

× π(M = m1)

π(M = m0)

to avoid indeterminacy (also Bayes estimate).
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ABC for model choice in GRFs

Illustrations

Toy example

iid Bernoulli model versus two-state first-order Markov chain, i.e.

f0(x|θ0) = exp

(
θ0

n∑

i=1

I{xi=1}

)
/
{1 + exp(θ0)}n ,

versus

f1(x|θ1) =
1

2
exp

(
θ1

n∑

i=2

I{xi=xi−1}

)
/
{1 + exp(θ1)}n−1 ,

with priors θ0 ∼ U(−5, 5) and θ1 ∼ U(0, 6) (inspired by “phase
transition” boundaries).
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ABC for model choice in GRFs

Illustrations

Toy example (2)
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B
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B
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(left) Comparison of the true BFm0/m1
(x0) with B̂Fm0/m1

(x0)
(in logs) over 2, 000 simulations and 4.106 proposals from the
prior. (right) Same when using tolerance ǫ corresponding to the
1% quantile on the distances.
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ABC for model choice in GRFs

Illustrations

Protein folding

Superposition of the native structure (grey) with the ST1

structure (red.), the ST2 structure (orange), the ST3 structure
(green), and the DT structure (blue).
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ABC for model choice in GRFs

Illustrations

Protein folding (2)

% seq . Id. TM-score FROST score

1i5nA (ST1) 32 0.86 75.3

1ls1A1 (ST2) 5 0.42 8.9

1jr8A (ST3) 4 0.24 8.9

1s7oA (DT) 10 0.08 7.8

Characteristics of dataset. % seq. Id.: percentage of identity with
the query sequence. TM-score.: similarity between predicted and
native structure (uncertainty between 0.17 and 0.4) FROST score:
quality of alignment of the query onto the candidate structure
(uncertainty between 7 and 9).



Approximative Bayesian Computation (ABC) Methods

ABC for model choice in GRFs

Illustrations

Protein folding (3)

NS/ST1 NS/ST2 NS/ST3 NS/DT

B̂F 1.34 1.22 2.42 2.76

P̂(M = NS|x0) 0.573 0.551 0.708 0.734

Estimates of the Bayes factors between model NS and models
ST1, ST2, ST3, and DT, and corresponding posterior
probabilities of model NS based on an ABC-MC algorithm using
1.2 106 simulations and a tolerance ǫ equal to the 1% quantile of
the distances.
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