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Chapter 1

Lebesgue Integration Theory

1.1 Introduction

This course can be thought of as “putting the function into functional analysis”1. The
course Linear Analysis builds on earlier material in the Tripos to describe how a vector
space structure (the linear part) interacts with a topological structure (the analysis part).
This leads to a very beautiful abstract theory of Banach and Hilbert spaces, as well as
other more general topological vector spaces. In this course, we shall see how many of
these abstract results relate to more concrete spaces, in particular spaces of functions.

You are (hopefully) familiar from Part IB with the space C0([a, b]) of continuous
functions f : [a, b]→ C, equipped with the norm:

‖f‖C0 = sup
a6x6b

|f(x)| .

The completeness of this space follows from standard results concerning the uniform
convergence of sequences of uniformly continuous functions, hence this is a Banach space.
This space and its generalisations are important in many applications (for example in the
proof of the Picard-Lindelöf Theorem, and the Schauder Theory for elliptic PDE).

Other spaces of functions naturally arise in many settings. For example, when studying
Fourier series defined on [a, b], it is natural to consider the space of continuous functions
f : [a, b]→ C equipped with the norm:

‖f‖L2 =

(∫ b

a
|f(x)|2 dx

) 1
2

.

This norm comes from an inner product in a natural way. This space is not complete:
we can construct a sequence of continuous functions fi such that (fi)i∈N is Cauchy with
respect to the L2 norm, but for which there is no continuous function f such that fi → f
in L2. One might hope to fix this by considering the space R([a, b]) of Riemann integrable
functions, however, we encounter two issues. Firstly, there are non-zero f ∈ R([a, b]) such
that ‖f‖L2 = 0, so ‖·‖L2 ceases to be a norm. In order to avoid this we can work instead

1More ambitiously, one could attempt to “put the fun into putting the function into functional
analysis”, but we do not aim so high.

1



2 Chapter 1 Lebesgue Integration Theory

with the space R([a, b]) = R([a, b])/ ∼ where we quotient by the equivalence relation
f ∼ g if ‖f − g‖L2 = 0. The second issue is more serious: even working with the space
R([a, b]), we do not find completeness with respect to the L2 norm.

Exercise(∗). a) Find a sequence of continuous functions fi : [a, b] → C such
that (fi)i∈N is Cauchy with respect to the L2 norm, but for which there is
no continuous function f : [a, b]→ C such that fi → f in L2.

b) Find a sequence fi ∈ R([a, b]) such that (fi)i∈N is Cauchy with respect to
the L2 norm, but for which there is no f ∈ R([a, b]) such that fi → f in L2.

The solution to this problem is hopefully familiar to you. We should abandon the
Riemann integral and work instead with the Lebesgue integral. This brings in our second
pre-requisite course, Probability and Measure. The construction of the theory of measures
and the Lebesgue integral is considerably more involved than that of the Riemann integral,
however the pay-off is that the resulting theory of integration is much more powerful. In
this course, we shall briefly review the theory of Lebesgue integration that you should
have learned last term, before moving on to make use of measure theory, in combination
with functional analysis, to understand various function spaces with importance in many
branches of analysis.

1.2 Spaces of differentiable functions

Before reviewing integration, we briefly state some facts about the spaces of smooth
functions. Let Ω ⊂ Rn be an open set. We denote by Ck(Ω) the space of all k-times
continuously differentiable complex valued functions on Ω, and by

C∞(Ω) =
∞⋂
k=0

Ck(Ω),

the set of smooth functions on Ω.
When dealing with partial derivatives of high orders, the notation can get rather messy.

To mitigate this, it’s convenient to introduce multi-indices . We define a multi-index α to
be an element of (Z>0)n, i.e. a n−vector of non-negative integers α = (α1, . . . , αn). We
define |α| = α1 + . . .+ αn and

∂|α|f

∂xα
=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn
f,

in other words, we differentiate α1 times with respect to x1, α2 times with respect to x2

and so on. When it’s unambiguous on which variables the derivative acts, we will also
use the more compact notation:

Di :=
∂

∂xi
,

and

Dα :=
∂|α|

∂xα
.
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For a vector x ∈ Rn, we will also use the notation:

xα := (x1)α1(x2)α2 · · · (xn)αn ,

finally, we define
α! = α1!α2! · · ·αn!.

The spaces Ck(Ω) and C∞(Ω) are vector spaces over C, where addition and scalar
multiplication are defined pointwise. If φ1, φ2 ∈ Ck(Ω) and λ ∈ C, we define the maps
φ1 + φ2, λφ1 by

φ1 + φ2 : Ω→ C,
x 7→ φ1(x) + φ2(x),

λφ1 : Ω→ C,
x 7→ λφ1(x).

(1.1)

Exercise(∗). Show that with the definitions (1.1) the space Ck(Ω) is a vector
space over C, and that C l(Ω) is a vector subspace of Ck(Ω) provided k 6 l 6∞.

Definition 1.1. If φ ∈ C0(Ω), the support of φ is the set:

suppφ = {x ∈ Ω : φ(x) 6= 0},

where the closure is understood to be relative2 to Ω. That is suppφ is the closure of the
set on which φ is not zero. We say that φ has compact support if suppφ is compact.

For 0 6 k 6 ∞, we define Ckc (Ω) to be the subset of Ck(Ω) consisting of functions
with compact support. Ckc (Ω) is a vector subspace of Ck(Ω).

Theorem 1.1. There exists a function ψ ∈ C∞c (Rn) such that

i) ψ > 0

ii) ψ(0) 6= 0

iii) suppψ ⊂ B1(0) := {x ∈ Rn : |x| < 1}

iv) We have: ∫
Rn
ψ(x)dx = 1.

Proof. First, we note that the function:

χ(t) =

{
0 t 6 0

e−
1
t t > 0

is smooth, i.e. χ ∈ C∞(R). Moreover, χ > 0 and χ(1) 6= 0. We define ψ0(x) =

χ
(

1− 2 |x|2
)
. Since the map x 7→ |x|2 is smooth, ψ0 ∈ C∞(Rn). We set:

ψ(x) =
ψ0(x)∫

Rn ψ0(x)dx
.

It is easy to verify that ψ satisfies conditions i)− iv).
2If Ω ⊂ Rn is open, and A ⊂ Ω, then the closure of A relative to Ω is the intersection of Ω with the

closure of A as a subset of Rn. Note that the closure of A relative to Ω may not be closed as a subset of
Rn.
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Corollary 1.2. For Ω ⊂ Rn open, C∞c (Ω) is not the trivial subspace {0} ⊂ C∞(Ω).

Proof. Since Ω is open, there exists ε, x such that the ball Bε(x) = {y ∈ Rn : |y − x| < ε}
is contained in Ω. The function y 7→ ψ

[
ε−1(y − x)

]
is easily seen to belong to C∞c (Ω).

Exercise(∗). Construct explicitly a function ψ ∈ C∞c (Rn) such that

i) 0 6 ψ 6 1

ii) suppψ ⊂ B2(0)

iii) ψ(x) = 1 for |x| 6 1.

Suppose Ω ⊂ Ω′, where both are open subsets of Rn. If φ ∈ Ckc (Ω), then we can
extend φ to a function on Ω′ by setting φ = 0 on Ω′ \ Ω. This extended function will
be smooth in Ω′ and we do not alter the support, so in this way we see that Ckc (Ω) is a
vector subspace of Ckc (Ω′).

The following result is useful:

Lemma 1.3. Suppose Ω ⊂ Rn is open and K ⊂ Ω is compact. Then d(K, ∂Ω) > 0,
where:

d(K, ∂Ω) := inf
x∈K,y∈∂Ω

|x− y| .

Proof. K is compact, so K ⊂ BR(0) for some R > 0. Let ΩR = Ω ∩ BR(0). ΩR is
open and bounded, with K ⊂ ΩR. It suffices to show that d(K, ∂ΩR) > 0. Since ΩR is
bounded, ∂ΩR is compact. Therefore the map:

f : K × ∂ΩR → R≥0,
(x, y) 7→ |x− y| ,

is a continuous map on a compact set, hence it achieves its minimum d at (x0, y0). Suppose
that d = 0, then x0 = y0, but x0 ∈ K ⊂ ΩR and y0 ∈ ∂ΩR ⊂ Ωc

R a contradiction. Thus
d > 0 and we’re done.

Corollary 1.4. If φ ∈ Ckc (Ω), extend φ to Rn by φ = 0 on Ωc. Define τxφ by:

τxφ : Ω→ C,
y 7→ φ(y − x).

(1.2)

Then there exists ε > 0 such that τxφ ∈ Ckc (Ω) for all x ∈ Bε(0).

Proof. We have
supp τxφ = suppφ+ x

Since suppφ is compact, supp τxφ is just a translate of a compact set, so is compact as a
subset of Rn. We need to check that supp τxφ ⊂ Ω. We have d(suppφ, ∂Ω) = δ > 0. Set
ε = δ/2. Then we have, by Lemma 1.3

suppφ+Bε(0) ⊂ Ω

but if x ∈ Bε(0), then supp τxφ ⊂ suppφ+Bε(0) and we’re done.
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1.3 Review of integration

In this section we will briefly recall the main definitions and theorems of the theory
of measure and Lebesgue integration. We shall focus on the Lebesgue measure on Rn.
Appendix B gives a much fuller account of the theory, and in particular contains proofs
of the results claimed below.

We start with the basic definition of a measure space.

Definition 1.2. Given a set E, a collection of subsets E of E is called a σ-algebra if:

i) ∅ ∈ E

ii) A ∈ E implies Ac = {x ∈ E : x 6∈ A} ∈ E

iii) An ∈ E for n ∈ N implies ∪nAn ∈ E.

The pair (E, E) is called a measurable space and elements of E are called measurable sets.
A measure on (E, E) is a function µ : E → [0,∞] such that:

i) µ(∅) = 0

ii) If An ∈ E for n ∈ N are disjoint, then µ (∪nAn) =
∑

n µ(An).

A triple (E, E , µ) is called a measure space.

A simple example of a measure space is given by taking E = 2E and µ(A) = #A.
This is the counting measure. Given any collection A of subsets of E, we can define σ(A),
the σ-algebra generated by A to be the intersection of all σ-algebras containing A. If E
is a topological space, the Borel algebra is the σ-algebra generated by the open sets of E,
written B(E).

A particular case of interest is E = Rn, on which we can define a σ-algebraM, and
measure λ with the following properties:

i) B(Rn) ⊂M

ii) If A is a rectangle, i.e. A = (a1, b1]×· · ·× (an, bn], then λ(A) = (b1−a1) · · · (bn−an).

iii) A ∈M if and only for any ε > 0 there exists an open set O and a closed set C such
that C ⊂ A ⊂ O and

λ(O \ C) < ε.

Since any open set in Rn is the countable union of disjoint rectangles these conditions
determineM, λ uniquely. We note that if λ(A) <∞, then the set C in iii) above may
be assumed to be compact. Property iii) is sometimes referred to as Borel regularity. We
callM the σ-algebra of Lebesgue measurable sets, and λ is the Lebesgue measure. For
the Lebesgue measure, we often denote λ(A) by |A|, and µ by dx.

Definition 1.3. A function f : E → G which maps between two measurable spaces (E, E),
(G,G) is measurable if f−1(A) ∈ E for all A ∈ G. Special cases include:
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a) If (G,G) = (R,B(R)), we simply say f is a measurable function on (E, E).

b) If (G,G) = ([0,∞],B([0,∞])) we say f is a non-negative measurable function on
(E, E).

c) If E,G are topological spaces with their Borel algebras then we say f is a Borel function
on E.

The class of measurable functions is closed under vector space operations, products
and limits.

A simple function is a function of the form

f =

N∑
k=1

ak1Ak

for Ak ∈ E and ak constant (typically in [0,∞], R or C). All simple functions are
measurable. For a non-negative simple function we define the integral

µ(f) =

∫
E
fdµ :=

N∑
k=1

akµ(Ak),

where 0 · ∞ = 0 by convention. For a non-negative measurable function we define

µ(f) =

∫
E
fdµ := sup {µ(g) : g simple and 0 6 g 6 f} .

A measurable function is integrable if µ(|f |) <∞, in which case we can write f = f+−f−
with f± non-negative and µ(f±) <∞. Then

µ(f) =

∫
E
fdµ := µ(f+)− µ(f−).

The integral satisfies all the usual basic properties (linearity, additivity etc.), and agrees
with the Riemann integral when both are defined. We can also state two important
theorems for interchanging limits and integrals.

Theorem 1.5 (Monotone convergence). Let (fn)∞n=1 be an increasing sequence of non-
negative measurable functions on a measure space (E, E , µ) which converge to f . Then

lim
n→∞

∫
E
fndµ =

∫
E
fdµ

Theorem 1.6 (Dominated convergence). Let (fn)∞n=1 be a sequence of measurable func-
tions on a measure space (E, E , µ) such that

i) fn → f pointwise ae.

ii) |fn| 6 g ae for some integrable g.
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Then:

lim
n→∞

∫
E
fndµ =

∫
E
fdµ

Associated to each measure space (E, E , µ) are scale of Banach spaces.

Definition 1.4. For 1 6 p <∞, and f : E → C measurable, we define:

‖f‖Lp =

(∫
E
|f |p dµ

) 1
p

.

while for p =∞ we set

‖f‖L∞ = ess sup
E
|f | = inf{C : |f | 6 C ae}.

The space Lp(E,µ) is then defined to be

Lp(E,µ) = {f : E → C measurable : ‖f‖Lp <∞} / ∼

where we quotient by the equivalence relation f ∼ g if f = g ae.
If E is a topological space and B(E) ⊂ E, we define Lploc.(E,µ) to consist of measurable

functions (modulo ∼) such that f1K ∈ Lp(E,µ) for all compact K.

When our measure space is (Rn,M, λ) we will often write Lp(Rn) := Lp(Rn, λ).

Theorem 1.7. The space Lp(E,µ) equipped with the norm ‖·‖Lp is a Banach space for
1 6 p 6∞.

It is useful also to note that the set S of complex valued simple functions on E such
that

µ({x : s(x) 6= 0}) <∞

is dense in Lp(E,µ) for 1 6 p <∞.

Exercise 1.1. Suppose f, g : E → C are measurable functions on some measure
space (E, E , µ). Show that:

a) ‖fg‖Lr 6 ‖f‖Lp ‖g‖Lq where 1 6 p, q, r 6∞ satisfy p−1 + q−1 = r−1

[You may wish to first establish the special case r = 1.]

b) ‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp for 1 6 p 6∞.

Exercise 1.2. a) Suppose that µ(E) < ∞. Show that if f ∈ Lp(E,µ), then
f ∈ Lq(E,µ) for any 1 6 q 6 p, with

‖f‖Lq 6 µ(E)
p−q
qp ‖f‖Lp .
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b) Suppose that f ∈ Lp0(E,µ) ∩ Lp1(E,µ) with p0 < p1 6 ∞. For 0 6 θ 6 1,
define pθ by

1

pθ
=

1− θ
p0

+
θ

p1
.

Show that f ∈ Lpθ(E,µ) with

‖f‖Lpθ 6 ‖f‖
1−θ
Lp0 ‖f‖

θ
Lp1 .

c) Show that for p1 6= p2 we have Lp1(Rn) 6⊂ Lp2(Rn). For which p1, p2 do we
have Lp1loc.(R

n) ⊂ Lp2loc.(R
n)?

Exercise 1.3. Let RQ be the set of rectangles of the form (a1, b1]×· · ·×(an, bn]
with ai, bi ∈ Q, and let SQ be the set of functions of the form

s(x) =
N∑
k=1

(αk + iβk)1Rk

for Rk ∈ RQ and αk, βk ∈ Q. For 1 6 p <∞ show that SQ is dense in Lp(Rn)
and deduce that Lp(Rn) is separable. Show that L∞(Rn) is not separable.
[Hint: for the last part exhibit an uncountable subset X ⊂ L∞(Rn) such that
‖f − g‖L∞(Rn) > 1 for any f, g ∈ X, f 6= g] .

1.4 Convolution and mollification

In this section, we are going to establish some results concerning mollification of functions
in Lp(Rn). The final result will be to establish the density of C∞c (Rn) in Lp(Rn) for
1 6 p <∞. We first establish an important fact about the spaces Lp(Rn): namely that
the translation operator is continuous on these spaces. More concretely, for any z ∈ Rn
we set τzf(x) = f(x− z). We then show:

Lemma 1.8. Suppose p ∈ [1,∞) and g ∈ Lp(Rn). Let {zj}∞j=1 ⊂ Rn be a sequence of
points such that zj → 0 as j →∞. Then:∥∥τzjg − g∥∥Lp(Rn)

→ 0.

Proof. 1. First, suppose g = 1R, where R = (a1, b1] × (a2, b2] × . . . × (an, bn] is a
rectangle, with side-lengths Im = bm − am for m = 1, . . . , n. Now, since when a
box is translated by a vector zj each side is translated by a distance of at most |zj |,
and has area at most In−1

max., where Imax is the longest side-length we can crudely
estimate ∥∥τzjg − g∥∥pLp(Rn)

6 2n |zj | In−1
max .

Note that this estimate requires p <∞: it does not hold for p =∞. We conclude
that:

lim
j→∞

∥∥τzjg − g∥∥Lp(Rn)
= 0.
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2. Now suppose g = 1A, where A is a measurable set of finite measure. Fix ε > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K ⊂ A and an
open U ⊃ A such that |U \K| < εp. Since U is open, we can write U as a union of
open rectangles:

U =
⋃
α∈A

R◦α

Since K is compact, it is covered by a finite subset of these:

K ⊂
N⋃
i=1

Ri := B.

Now, note that K ⊂ B ⊂ U , so the symmetric difference A∆B ⊂ U \K. Thus3

‖1A − 1B‖Lp(Rn) = |A∆B|1/p < ε. By the paragraph 1 above, we know that there
exists J such that for all j > J we have:∥∥τzj1B − 1B∥∥Lp(Rn)

< ε

Therefore:∥∥τzj1A − 1A∥∥Lp(Rn)
=
∥∥τzj1A − τzj1B + τzj1B − 1B + 1B − 1A

∥∥
Lp(Rn)

6
∥∥τzj1A − τzj1B∥∥Lp(Rn)

+
∥∥τzj1B − 1B∥∥Lp(Rn)

+ ‖1B − 1A‖Lp(Rn)

= 2 ‖1A − 1B‖Lp(Rn) +
∥∥τzj1B − 1B∥∥Lp(Rn)

< 3ε

for all j > J . Thus
lim
j→∞

∥∥τzjg − g∥∥Lp(Rn)
= 0.

3. Now suppose g is a simple function, g =
∑N

i=1 gi1Ai , where gi ∈ C and Ai are
measurable sets of finite measure. Then we have:∥∥τzjg − g∥∥Lp(Rn)

6
N∑
i=1

|gi|
∥∥τzj1Ai − 1Ai∥∥Lp(Rn)

so as j →∞ we have:
lim
j→∞

∥∥τzjg − g∥∥Lp(Rn)
= 0.

4. Now suppose that g ∈ Lp(Rn). Fix ε > 0. Recall that there exists a simple function
g̃ =

∑n
i=1 g̃i1Ai with g̃i ∈ C, |Ai| <∞ such that ‖g − g̃‖Lp(Rn) < ε. By the previous

part, we can find J such that
∥∥τzj g̃ − g̃∥∥Lp(Rn)

< ε for all j > J . Now:∥∥τzjg − g∥∥Lp(Rn)
=
∥∥τzjg − τzj g̃ + τzj g̃ − g̃ + g̃ − g

∥∥
Lp(Rn)

6
∥∥τzjg − τzj g̃∥∥Lp(Rn)

+
∥∥τzj g̃ − g̃∥∥Lp(Rn)

+ ‖g̃ − g‖Lp(Rn)

= 2 ‖g − g̃‖Lp(Rn) +
∥∥τzj g̃ − g∥∥Lp(Rn)

< 3ε

3This is another point at which p 6=∞ is crucial.
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Thus, we conclude that

lim
j→∞

∥∥τzjg − g∥∥Lp(Rn)
= 0.

and we’re done.

If f , g are functions mapping Rn to C, then we define the convolution of f and g to
be:

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy,

provided the integral exists. This will happen if (for example) f ∈ L1(Rn) and g ∈
L∞(Rn).

Lemma 1.9. Suppose f, g, h ∈ C∞c (Rn). Then:

f ? g = g ? f, f ? (g ? h) = (f ? g) ? h.

and ∫
Rn

(f ? g)(x)dx =

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Proof. With the change of variables y = x− z, we have4

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy =

∫
Rn
f(x− z)g(z)dz = (g ? f)(x)

Next, we calculate:

[f ? (g ? h)] (x) =

∫
Rn
f(y)

(∫
Rn
g(z)h(x− y − z)dz

)
dy

=

∫
Rn
f(y)

(∫
Rn
g(w − y)h(x− w)dw

)
dy

=

∫
Rn

(∫
Rn
f(y)g(w − y)dy

)
h(x− w)dw

= [(f ? g) ? h] (x)

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f, g, h ∈ C∞c (Rn) to invoke Fubini’s theorem (Theorem B.30)

4If you’re worried about a missing minus sign from the change of variables when n is odd, observe:∫ ∞
−∞

k(x)dx =

∫ −∞
∞

k(−y)d(−y) = −
∫ −∞
∞

k(−y)dy =

∫ ∞
−∞

k(−y)dy.
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when passing from the second to third line. Finally, we calculate:∫
Rn

(f ? g)(x)dx =

∫
Rn

(∫
Rn
f(y)g(x− y)dy

)
dx

=

∫
Rn

(∫
Rn
f(y)g(x− y)dx

)
dy

=

∫
Rn

(
f(y)

∫
Rn
g(z)dz

)
dy

=

∫
Rn
f(x)dx

∫
Rn
g(z)dy.

where again, the fact that f, g ∈ C∞c (Rn) allows us to invoke Fubini.

The assumption that the functions are smooth and compactly supported is certainly
overkill in this theorem. It would be enough, for example, to consider functions in C0

c (Rn),
or even weaker spaces, provided we can justify the application of Fubini’s theorem.

Exercise(∗). Suppose that f, g, h ∈ C∞c (Rn).

a) Show that for any multi-index α, we have that Dαf ∈ Lp(Rn) for 1 6 p <∞,
i.e. that

‖Dαf‖Lp(Rn) =

(∫
Rn
|Dαf(x)|p dx

) 1
p

<∞.

b) Define
F : Rn × Rn,

(x, y) 7→ f(x)g(y − x).

Show that F ∈ L1(Rn × Rn).

c) For each x ∈ Rn, set

Gx : Rn × Rn,
(y, z) 7→ f(y)g(z)h(x− y − z).

Show that Gx ∈ L1(Rn × Rn).

1.4.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f ? g is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 1.10. Suppose f ∈ L1
loc.(Rn) and g ∈ Ckc (Rn) for some k > 0. Then f ? g ∈

Ck(Rn) and
Dα(f ? g) = f ? Dαg,

for any multiindex with |α| 6 k.
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Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof. We introduce the difference quotient

∆h
i f(x) =

f(x+ hei)− f(x)

h
.

Lemma 1.11. a) Suppose f ∈ C0
c (Rn) and {zi}∞i=1 ⊂ Rn is a sequence with zi → 0 as

i→∞. Then for any x ∈ Rn:

i) τzjf(x)→ f(x) as j →∞.
ii)
∣∣τzjf(x)

∣∣ 6 (supRn |f |)1BR(0)(x), for some R > 0 and all j.

b) Suppose f ∈ C1
c (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) ∆
hj
i f(x)→ Dif(x) as j →∞.

ii)
∣∣∣∆hj

i f(x)
∣∣∣ 6 (supRn |Dif |)1BR(0)(x), for some R > 0 and all j.

Proof. a) i) Recall τzjf(x) = f(x − zj). Clearly since zj → 0, f(x − zj) → f(x) as
j →∞ by the continuity of f .

ii) Since zj → 0, there exists some ρ > 0 such that zj ∈ Bρ(0) for all j. Now

supp τzjf = supp f + zj ⊂ supp f +Bρ(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp τzjf ⊂ BR(0). Thus τzjf = τzjf1BR(0) and we estimate:∣∣τzjf(x)

∣∣ =
∣∣τzjf(x)

∣∣1BR(0)(x) 6 sup
Rn
|f |1BR(0)(x).

b) Suppose f ∈ C1
c (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) From the definition of the difference quotient and of the partial derivative:

∆
hj
i f(x) =

f(x+ hjei)− f(x)

h
→ Dif(x), as j →∞.

ii) Since hj → 0, there is some ρ > 0 such that |hj | 6 ρ for all j. We have:

supp ∆
hj
i f ⊂ supp τ−hjeif ∪ supp f = (supp f − hjei) ∪ supp f

⊂
(

supp f +Bρ(0)
)
∪ supp f

⊂ BR(0)

for some R > 0 since the union of two bounded sets is bounded. Thus ∆
hj
i f =

∆
hj
i f1BR(0). We also observe that by the mean value theorem, for any h ∈ R,

there exists s ∈ R with |s| < |h| such that

f(x+ hei)− f(x)

h
= Dif(x+ sei)
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thus ∣∣∣∆hj
i f(x)

∣∣∣ 6 sup
Rn
|Dif | .

Putting these two facts together, we readily find:∣∣∣∆hj
i f(x)

∣∣∣ =
∣∣∣∆hj

i f(x)
∣∣∣1BR(0)(x) 6 sup

Rn
|Dif |1BR(0)(x).

Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 1.10. 1. First we establish the result for k = 0. We need to show
that if f ∈ L1

loc.(Rn) and g ∈ C0
c (Rn) then f ? g is continuous. To show this, it

suffices to show that f ? g(x − zj) → f ? g(x) for any x ∈ Rn and any sequence
{zj}∞j=1 with zj → 0. Now, note that

f ? g(x− zj) =

∫
Rn
f(y)g(x− zj − y)dy =

∫
Rn
f(y)τzjg(x− y)dy.

Now, sending j →∞, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:∣∣f(y)τzjg(x− y)

∣∣ 6 sup
Rn
|g|1BR(0)(x− y) |f(y)|

for some R by the previous Lemma. Since f ∈ L1
loc.(Rn) the right hand side is

integrable, and so by the dominated convergence theorem:

lim
j→∞

f ? g(x− zj) =

∫
Rn

lim
j→∞

f(y)τzjg(x− y)dy =

∫
Rn
f(y)g(x− y)dy = f ? g(x).

2. Now suppose that f ∈ L1
loc.(Rn) and g ∈ C1

c (Rn). Clearly f ? Dig is continuous by
the previous argument. To show f ? g ∈ C1(Rn), it suffices to show that for any
x ∈ Rn and any sequence {hj}∞j=1 ⊂ R with hj → 0 we have:

lim
j→∞

∆
hj
i f ? g(x) = f ? Dig(x).

Note that

∆
hj
i f ? g(x) =

f ? g(x+ hjei)− f ? g(x)

h

=

∫
Rn
f(y)

(
g(x+ hjei − y)− g(x− y)

h

)
dy

=

∫
Rn
f(y)∆

hj
i g(x− y)dy

so that again we are done provided we can send j →∞ and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim
j→∞

∆
hj
i f ? g(x) =

∫
Rn

lim
j→∞

f(y)∆
hj
i g(x− y)dy = f ? Dig(x).
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3. The case where g ∈ Ckc (Rn) with k > 1 now follows by a simple induction.

Exercise(∗). Show that f ? g ∈ Ck(Rn) under the hypotheses:

a) f ∈ L1(Rn), g ∈ Ck(Rn) with supRn |Dαg| <∞ for all |α| 6 k.

b) f ∈ L1(Rn) with supp f compact, g ∈ Ck(Rn).

We have shown that when two functions are convolved, loosely speaking the resulting
function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.

Lemma 1.12. Suppose f ∈ L1
loc.(Rn) and g ∈ Ckc (Rn) for some k > 0. Then5

supp (f ? g) ⊂ supp f + supp g.

Proof. Recall:

f ? g(x) =

∫
Rn
f(y)g(x− y)dy.

Clearly, if f ? g(x) 6= 0, then there must exist y ∈ Rn such that y ∈ supp f and
x− y = z ∈ supp g. Thus x = y + z with y ∈ supp f and z ∈ supp g. This tells us that:

{x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g.

Since supp f is closed and supp g is compact, we know that supp f + supp g is closed, thus

supp f ? g = {x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g,

which is the result we require.

Exercise(∗). a) Prove the following identities for r, s > 0 and x ∈ Rn:

i) Br(x) +Bs(0) = Br+s(x)

ii) Br(x) +Bs(0) = Br+s(x)

iii) Br(x) +Bs(0) = Br+s(x)

Suppose that A,B ⊂ Rn. Show that:

b) If one of A or B is open, then so is A+B.

c) If A and B are both bounded, then so is A+B.

d) If A is closed and B is compact, then A+B is closed.

e) If A and B are both compact, then so is A+B.

Exercise(∗). Show that if f ∈ Ckc (Rn) and g ∈ C lc(Rn) then f ? g ∈ Ck+l
c (Rn).

Conclude that C∞c (Rn) is closed under convolution.
5Strictly speaking, we haven’t defined the support of a measurable function. We can do this in several

ways, but the simplest is to define:

supp f =
⋂
{E ⊂ Rn : E is closed, and f = 0 a.e. on Ec}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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1.4.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 1.13. Suppose φ ∈ C∞c (Rn) satisfies:

i) φ > 0

ii) suppφ ⊂ B1(0)

iii)
∫
Rn φ(x)dx = 1

Such a φ exists by Theorem 1.1. Define:

φε(y) =
1

εn
φ
(y
ε

)
.

Then:

a) If f ∈ Ckc (Rn), then φε ? f is smooth, and

Dα (φε ? f)→ Dαf as ε→ 0,

uniformly on Rn for any multi-index with |α| 6 k.

b) If g ∈ Lp(Rn) with 1 6 p <∞, then φε ? g is smooth, and

φε ? g → g in Lp(Rn) as ε→ 0.

c) Suppose f ∈ Ck(Rn) with supRn |Dαf | <∞ for |α| 6 k, and suppose g ∈ L1(Rn) with
g > 0,

∫
Rn g(x)dx = 1. Set gε(y) = ε−ng

(
ε−1y

)
. Then f ? gε ∈ Ck(Rn), and

Dα (f ? gε) (x)→ Dαf(x) as ε→ 0,

for any x ∈ Rn and any multi-index with |α| 6 k.

Proof. a) Note that the rescaling of φ to produce φε is such that a change of variables
gives: ∫

Rn
φε(y)dy = 1.

By Theorem 1.10, we have that Dα(φε ? f) = φε ? D
αf for any |α| 6 k. Using these

two facts, we calculate:

Dα(φε ? f)(x)−Dαf(x) =

∫
Rn
φε(y)Dαf(x− y)dy −Dαf(x)

∫
Rn
φε(y)dy

=

∫
Rn
φε(y) [Dαf(x− y)−Dαf(x)] dy

=

∫
B1(0)

φ(z) [Dαf(x− εz)−Dαf(x)] dz
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where in the last line we made the substitution y = εz, and noted that φ has support in
B1(0), so we can restrict the range of integration. Now, since φ > 0, we can estimate:

|Dα(φε ? f)(x)−Dαf(x)| 6
∫
B1(0)

φ(z) |Dαf(x− εz)−Dαf(x)| dz

6 sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)| ×
∫
B1(0)

φ(z)dz

= sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)|

since
∫
Rn φ = 1. Now, since Dαf is continuous and of compact support, it is uniformly

continuous on Rn. Fix ε̃ > 0. There exists δ such that for any v, w ∈ Rn with
|x− y| < δ, we have

|Dαf(v)−Dαf(w)| < ε̃

For any x ∈ Rn, taking ε < δ, and v = x − εz, w = x with z ∈ B1(0) we have
|v − w| < δ, so:

|Dαf(x− εz)−Dαf(x)| < ε̃

holds for any x ∈ Rn, z ∈ B1(0). We have therefore shown that for any ε̃ > 0, there
exists δ such that for any ε < δ we have:

sup
x∈Rn

|Dα(φε ? f)(x)−Dαf(x)| < ε̃.

This is the statement of uniform convergence on Rn.

b) Noting that Lp(Rn) ⊂ L1
loc.(Rn) by an application of Hölder’s inequality (see Exercise

1.2), Theorem 1.10 immediately establishes the smoothness of φε ? g. To establish
convergence as ε → 0, we shall require certain measure theoretic results. First
we require Minkowski’s Integral Identity (see Exercise 1.4). This states6 that for
F : Rn × Rn → C a measurable function, we have the estimate:

[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

6
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

Now, following the calculation in the previous proof, we readily have that:

|(φε ? g)(x)− g(x)| 6
∫
Rn
φ(z) |g(x− εz)− g(x)| dz

6There is more general statement for a map F : X × Y → C, which is measurable with respect to the
product measure µ× ν where (X,µ) and (Y, ν) are measure spaces.
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Integrating and applying Minkowski’s integral inequality, we have:

‖φε ? g − g‖Lp(Rn) =

[∫
Rn
|(φε ? g)(x)− g(x)|p dx

] 1
p

6

[∫
Rn

∣∣∣∣∫
Rn
φ(z) |g(x− εz)− g(x)| dz

∣∣∣∣p dx] 1
p

6
∫
Rn

[∫
Rn
φ(z)p |g(x− εz)− g(x)|p dx

] 1
p

dz

=

∫
Rn
φ(z) ‖τεzg − g‖Lp(Rn) dz (1.3)

To establish our result it will suffice to set ε = εj , where {εj}∞j=1 ⊂ R is any sequence
with εj → 0, and show that

∥∥φεj ? g − g∥∥Lp(Rn)
→ 0. Note that since

∥∥τεjzg∥∥Lp(Rn)
=

‖g‖Lp(Rn) we have:

φ(z)
∥∥τεjzg − g∥∥Lp(Rn)

6 2φ(z) ‖g‖Lp(Rn)

so the integrand is dominated uniformly in j by an integrable function. Now by
Lemma 1.8, as y varies, τy : Lp(Rn) → Lp(Rn) is a continuous family of bounded
linear operators. This means that for each z ∈ Rn we have:

lim
j→∞

∥∥τεjzg − g∥∥Lp(Rn)
= 0.

Thus we can apply the Dominated Convergence Theorem (Theorem B.26) to the
integral on the right hand side of 1.3, and conclude that

lim
j→∞

∥∥φεj ? g − g∥∥Lp(Rn)
= 0.

c) Again, by Theorem 1.10, we have that Dα(f ? gε) = Dαf ? gε for any |α| 6 k. By a
change of variables, we calculate:

Dα(f ? gε)(x) =

∫
Rn
gε(y)Dαf(x− y)dy =

∫
Rn
g(z)Dαf(x− εz)dz

Now, clearly for each fixed x ∈ Rn:

g(z)Dαf(x− εz)→ g(z)Dαf(x)

for z ∈ Rn as ε→ 0. Furthermore,

|g(z)Dαf(x− εz)| 6 g(z) sup
Rn
|Dαf |

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

Dα(f ? gε)(x)→ Dαf(x)

∫
Rn
g(z)dz = Dαf(x)

as ε→ 0.
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The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 1.14. Suppose Ω ⊂ Rn is open, and K ⊂ Ω is compact. Then there exists
χ ∈ C∞c (Ω) such that χ = 1 in a neighbourhood of K.

Proof. By Lemma 1.3, there exists ε > 0 such that d(K, ∂Ω) > 4ε. We define Kε =
K+B2ε(0). As the sum of two compact sets, Kε is compact. Moreover, Kε ⊂ Ω. Suppose
φε is as in Theorem 1.13. Consider:

χ := φε ? 1Kε .

We have by Theorem 1.10 that χ ∈ C∞(Rn) and from Lemma 1.12 we deduce:

suppχ = Kε + suppφε ⊂ K +B2ε(0) +Bε(0) = K +B3ε(0) ⊂ Ω.

Thus χ ∈ C∞c (Ω). Now, suppose x ∈ K +Bε(0). Then x+Bε(0) ⊂ Kε and so:

χ(x) =

∫
Rn
φε(y)1Kε(x− y)dy

=

∫
Bε(0)

φε(y)1Kε(x− y)dy

=

∫
Bε(0)

φε(y)dy = 1.

Thus χ(x) = 1 for x ∈ K +Bε(0), which is a neighbourhood of K.

The following exercise establishes results required for the proof of Theorem 1.13.

Exercise 1.4. a) Suppose 1 6 p 6 ∞ and let q satisfy p−1 + q−1 = 1. Show
that for a measurable function f : Rn → C:

‖f‖Lp = sup

{∫
Rn
|f(x)g(x)| dx : g ∈ Lq(Rn), ‖g‖Lq 6 1

}
.

b) Now suppose p < ∞ and assume F : Rn × Rn → C is integrable. Set
G(y) =

∫
Rn F (x, y)dx. Show that if ‖g‖Lq 6 1 then∫

Rn
|G(y)g(y)| dy 6

∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx.

Deduce Minkowski’s integral inequality[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

6
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx.

Exercise 1.5. Let I = (0, 1) and 1 ≤ p <∞. Exhibit a sequence (fj)
∞
j=1 with

fj ∈ Lp(I) such that fj → 0 in Lp(I), but fj(x) does not converge for any x.
Does such a sequence exist if p =∞?
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1.5 Lebesgue differentiation theorem

The fundamental theorem of calculus is a fundamental result in the theory of Riemann
integration. It comes in two (related) flavours.

Theorem 1.15 (Fundamental Theorem of Calculus). Suppose that f : [a, b] → R is
continuous, and define the function F : [a, b]→ R by:

F (x) =

∫ x

a
f(t)dt.

Then F is differentiable on (a, b), and:

F ′(x) = f(x).

From this one can deduce the alternative form of the Fundamental Theorem of
Calculus, relating the integral of a function to its anti-derivative.

Corollary 1.16. Suppose that f : [a, b] → R is continuous and that F : [a, b] → R is
continuous on [a, b], differentiable on (a, b) and satisfies F ′(x) = f(x) for all x ∈ (a, b).
Then: ∫ b

a
f(t)dt = F (b)− F (a).

We seek to generalise Theorem 1.15 in the setting of the Lebesgue integral. First, we
note that the result implies

f(x) = lim
r→0

F (x+ r)− F (x− r)
2r

= lim
r→0

1

2r

∫ x+r

x−r
f(t)dt

= lim
r→0

1

|Br(x)|

∫
Br(x)

f(t)dt

where we have used that the ball of radius r about x is simply Br(x) = (x− r, x+ r) in
one dimension. Rearranging, we can further conclude

lim
r→0

1

|Br(x)|

∫
Br(x)

(f(t)− f(x)) dt = 0.

This statement is meaningful in dimensions higher that one. In fact we shall prove
something slightly stronger

Theorem 1.17 (Lebesgue differentiation theorem). Let f : Rn → C be integrable. Then
for almost every x ∈ Rn we have

lim
r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy = 0. (1.4)

Note that it suffices for f to be defined on an open set Ω ⊂ Rn, and we obtain the
same differentiability result at almost every x ∈ Ω by considering f1Ω. We say that a
point x such that (1.4) holds is a Lebesgue point of f . In order to establish this result, we
first introduce a related quantity for which we are able to prove an estimate.
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Definition 1.5. Given an integrable function f : Rn → C, the Hardy–Littlewood Maximal
function Mf is defined to be

Mf(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)| dy.

The Hardy–Littlewood Maximal function and its generalisations are of use in many
contexts in mathematics, in particular in harmonic anaysis. For our purposes, a key result
is that it satisfies a weak L1-bound.

Lemma 1.18 (Weak L1-bound for Mf). Suppose f ∈ L1(Rn) for n > 1. Then Mf is
measurable, finite almost everywhere, and there exists a constant Cn, depending only on n
such that:

|{x : Mf(x) > λ}| 6 Cn
λ
‖f‖L1 (1.5)

for all λ > 0.

Proof. Let Aλ = {x : Mf(x) > λ}. Then for each x ∈ Aλ there exists a radius rx such
that

1

|Brx(x)|

∫
Brx (x)

|f(y)| dy > λ. (1.6)

We claim Aλ is open, which implies Mf is measurable. To see this, suppose x ∈ Aλ with
corresponding rx and let (xm)∞m=1 be a sequence with xm → x and xm 6∈ Aλ. Then by
the dominated convergence theorem we have

1

|Brx(x)|

∫
Brx (xm)

|f(y)| dy → 1

|Brx(x)|

∫
Brx (x)

|f(y)| dy,

however, by assumption

1

|Brx(x)|

∫
Brx (xm)

|f(y)| dy 6 λ, 1

|Brx(x)|

∫
Brx (x)

|f(y)| dy > λ,

a contradiction.
Fix K ⊂ Aλ a compact set. Since K is covered by ∪x∈AλBrx(x), we can pick a finite

subcover of K, say K ⊂ ∪Ni=1Bi, where Bi = Brx(x) for some x. By Wiener’s covering
Lemma (see Exercise 1.8) there is a disjoint subcollection Bi1 , . . . , Bik such that

|K| 6

∣∣∣∣∣
N⋃
i=1

Bi

∣∣∣∣∣ 6 3n
n∑
j=1

∣∣Bij ∣∣ .
Now, each Bij satisfies (1.6), so we have

|K| 6 3n

λ

n∑
j=1

∫
Bij

|f(y)| dy 6 3n

λ
‖f‖L1

Where in the final inequality we use that the Bij are disjoint. Since this holds for all
compact K ⊂ Aλ, (1.5) follows. Finally, note that {Mf = ∞} ⊂ {Mf > λ}, which
implies |{Mf =∞}| < C/λ for all λ, thus |{Mf =∞}| = 0.
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With this result in hand, we are now ready to establish the Lebesgue differentiation
theorem.

Proof of Theorem 1.17. For each λ > 0 define:

Aλ =

{
x ∈ Rn : lim sup

r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy > 2λ

}

If we can show that |Aλ| = 0 for all λ, then we will be done, as the set of x ∈ Rn which
are not Lebesgue points for f is precisely ∪∞n=1A 1

n
.

Fix ε > 0. We can find g ∈ C∞c (Rn) such that ‖f − g‖L1 < ε. We estimate:

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy 6 1

|Br(x)|

∫
Br(x)

|f(y)− g(y)| dy

+
1

|Br(x)|

∫
Br(x)

|g(y)− g(x)| dy + |g(x)− f(x)|

We can bound the first term by

1

|Br(x)|

∫
Br(x)

|f(y)− g(y)| dy 6 sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)− g(y)| dy

= M [f − g](x)

Now, since g is continuous, we have

lim sup
r→0

1

|Br(x)|

∫
Br(x)

|g(y)− g(x)| dy = 0,

hence

lim sup
r→0

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)| dy 6M [f − g](x) + |f(x)− g(x)| .

Now, if x ∈ Aλ, then we must either have M [f − g](x) > λ or |f(x)− g(x)| > λ. By
Lemma 1.18 we know

|{x : M [f − g](x) > λ}| 6 Cn
λ
‖f − g‖L1 6

Cnε

λ
,

and by Tchebychev’s inequality we know

|{x : |f(x)− g(x)| > λ}| 6
‖f − g‖L1

λ
6
ε

λ

we conclude that
|Aλ| 6

1 + Cn
λ

ε.

Since ε was arbitrary, we conclude |Aλ| = 0, and we’re done.

Exercise 1.6. Suppose 1 6 p <∞.
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a) Suppose f ∈ Lp(Rn). Show that

|{x : |f(x)| > λ}| 6
‖f‖pLp
λp

.

This is known as Tchebychev’s inequality, the p = 1 case is Markov’s inequal-
ity.

b) We say that a measurable f : Rn → C is in weak-Lp(Rn), written f ∈
Lp,w(Rn) if there exists a constant C such that

|{x : |f(x)| > λ}| 6 Cp

λp
.

Show that Lp(Rn) ⊂ Lp,w(Rn), and that the inclusion is proper.

Exercise 1.7. Suppose that f ∈ Lr(Rn) for some 1 6 r < ∞. Show that
‖f‖L∞ = limp→∞ ‖f‖Lp .
[Hint: you may find the estimates in Exercises 1.2 b), 1.6 a) useful.]

Exercise 1.8. a) Let B1, . . . , BN be a finite collection of open balls in Rn.
Show that there exists a subcollection Bi1 , . . . , Bik of disjoint balls such that

N⋃
i=1

Bi ⊂
k⋃
j=1

(3Bij ),

where 3B is the ball with the same centre as B but three times the radius.
Deduce ∣∣∣∣∣

N⋃
i=1

Bi

∣∣∣∣∣ 6 3n
k∑
j=1

∣∣Bij ∣∣ .
b) (*) Suppose {Bj : j ∈ J} is an arbitrary collection of balls in Rn such

that each ball has radius at most R. Show that there exists a countable
subcollection {Bj : j ∈ J ′}, J ′ ⊂ J of disjoint balls such that⋃

i∈J
Bi ⊂

⋃
i∈J ′

(5Bi).

These are Wiener and Vitali’s covering Lemmas, respectively.

Exercise 1.9. Suppose f : R → C is integrable and let F (x) =
∫ x
−∞ f(t)dt.

Show that F is differentiable with F ′(x) = f(x) at each Lebesgue point x ∈ R.
Deduce that F is differentiable almost everywhere.

Exercise 1.10. Suppose φ ∈ L∞(Rn) satisfies φ > 0, supp φ ⊂ B1(0), and∫
Rn φdx = 1. Set φε(x) = ε−nφ(ε−1x). Show that if f ∈ L1(Rn), and x is a
Lebesgue point of f ,

φε ? f(x)→ f(x), as ε→ 0.
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1.6 Littlewood’s principles: Egorov’s Theorem and Lusin’s Theorem

In his 1944 “Lectures on the Theory of Functions”, J. E. Littlewood stated three principles:

“Every (measurable) set is nearly a finite sum of intervals; every function
(of class Lp) is nearly continuous; every convergent sequence of functions is
nearly uniformly convergent.”

The first of these results may be stated more precisely in our language as follows:

Lemma 1.19. Suppose |A| < ∞. Then for any ε > 0 there exists a set B, which is a
finite union of rectangles, such that

|A∆B| < ε.

This follows straightforwardly from the basic properties of Lebesgue measurable sets.
The third of Littlewood’s principles follows from

Theorem 1.20 (Egorov’s Theorem). Suppose (fk)
∞
k=1 is a sequence of functions defined

on a set E ⊂ Rn with |E| <∞, and suppose that fk → f almost everywhere on E. Then
given ε > 0 we can find a closed set Aε ⊂ E such that |E −Aε| 6 ε and fk → f uniformly
on Aε.

Proof. By discarding a set of measure zero if necessary, we can assume without loss of
generality that fk(x)→ f(x) for all x ∈ E. For each n, k ∈ N let

Enk =

{
x ∈ E : |fj(x)− f(x)| < 1

n
, for all j > k

}
.

Fixing n, we note that Enk ⊂ Enk+1 and that ∪∞k=1E
n
k = E. By countable additivity, we

have |Enk | is an increasing sequence, with |Enk | → |E| as k → ∞. Pick kn such that∣∣E \ Enkn∣∣ < 2−n. By construction we have:

|fj(x)− f(x)| < 1

n
, for all j > kn and x ∈ Enkn .

Now pick N such that
∑∞

n=N 2−n < ε/2 and let

A′ε =
∞⋂
n=N

Enkn .

Now we observe ∣∣E \A′ε∣∣ 6 ∞∑
n=N

∣∣E \ Enkn∣∣ < ε/2.

Next. suppose that δ > 0. Pick n > N such that 1/n < δ, and note that x ∈ A′ε implies
x ∈ Enkn . We deduce that |fj(x)− f(x)| < δ for all j > kn and hence fj → f uniformly
on A′ε. Finally, we can pick a closed set Aε ⊂ A′ε such that |A′ε \Aε| < ε/2 and hence
|E −Aε| 6 ε.
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The final of Littlewood’s principles is given flesh by

Theorem 1.21 (Lusin’s Theorem). Suppose f is measurable and finite valued on E,
where E ⊂ Rn with |E| < ∞. Then given ε > 0 we can find a closed set Fε ⊂ E with
|E \ Fε| < ε such that f |Fε is continuous.

Proof. Suppose first f is a simple function

f =
m∑
k=1

ak1Ak ,

where |Ak| <∞ and the Ak are disjoint with E = ∪mk=1Ak (if necessary, we add the term
01f−1(0) to arrange this). For any ε > 0, we can pick compact sets Kk ⊂ Ak with

|Ak \Kk| <
ε

m
.

Let B = ∪mk=1Kk. Then |E \B| < ε. Since the sets Kk are compact and disjoint (hence
mini,j dist(Ki,Kj) > 0), and f is constant on each Kk, we have that f is continuous on
B.

Now let fn be a sequence of simple functions such that fn → f ae. Then we can
find Cn such that |C| < 2−n and fn is continuous outside Cn. By Egorov’s theorem, we
can find a set Aε/3 such that fn → f uniformly on Aε/3 and

∣∣E \Aε/3∣∣ < ε/3. Let N be
sufficiently large that

∑∞
n=N 2−n < ε/3.

F ′ε = Aε/3 \
∞⋃
n=N

Cn

Now, |E \ F ′ε| < 2ε/3 and moreover, for n > N the functions fn are continuous on F ′ε, so
since they converge uniformly to f , we have that f is continuous on F ′ε. Finally, picking
Fε ⊂ F ′ε closed with |F ′ε \ Fε| < ε/3 we’re done.

Remark. Note that Lusin’s Theorem asserts that f |Fε is continuous, which means that f
is continuous if we think of it as defined only at points of Fε. This is not the same as the
statement that f (defined on E) is continuous at points of Fε. For example if f = 1Q,
then f |R\Q = 0 is continuous, however f is nowhere continuous.



Chapter 2

Banach and Hilbert space analysis

2.1 Hilbert Spaces

2.1.1 Review of Hilbert space theory

We will briefly review the theory of Hilbert spaces in order to fix conventions. A (complex)
inner product space is a complex vector space H, equipped with an inner product
(·, ·) : H ×H → C such that

i) (·, ·) is sesquilinear1:

(x+ y, z) = (x, z) + (y, z) (x, y + z) = (x, y) + (x, z)

(αx, y) = α(x, y) (x, α, y) = α(x, y).

for all x, y, z ∈ H,α ∈ C

ii) (·, ·) is hermitian and positive:

(x, y) = (y, x), (x, x) > 0

for all x, y ∈ H, with equality in the second expression iff x = 0.

We define ‖·‖ : x 7→
√

(x, x).

Lemma 2.1. The map ‖·‖ : H → [0,∞) is a norm on H, which satisfies the Cauchy-
Schwarz inequality:

|(x, y)| 6 ‖x‖ ‖y‖ , for all x, y ∈ H, with ‘=’ iff x = αy, for some α ∈ C,

and the parallelogram identity:

2 ‖x‖2 + 2 ‖y‖2 = ‖x+ y‖2 + ‖x− y‖2

1There is a choice of convention over whether the first or second entry is anti-linear. Our choice here
is that typically used in quantum mechanics, in pure maths the opposite convention is often used. What
matters, however, is to be consistent!

25
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Proof. Positivity and homogeneity of ‖·‖ are immediate from the definition. Fix x, y ∈ H.
For any t ∈ R we have that ‖x+ ty‖2 > 0, so expanding using we see

‖x‖2 + 2t<(x, y) + t2 ‖y‖2 > 0.

A non-negative definite quadratic must have non-positive discriminant, hence we must have
(<(x, y))2 6 ‖x‖2 ‖y‖2. Replacing x→ eiθx for suitable θ, we deduce the Cauchy-Schwarz
inequality. Now, we compute:

‖x+ y‖2 = ‖x‖2 + 2<(x, y) + ‖y‖2 6 ‖x‖2 + 2 ‖x‖2 ‖y‖2 + ‖y‖2 = (‖x‖ + ‖y‖)2

so taking square roots the triangle inequality follows. The parallelogram law can be easily
verified by expanding the right-hand side.

Definition 2.1. A Hilbert space is a complex inner product space (H, (·, ·)), such that
the associated metric ‖·‖ is complete.

Thus a Hilbert space is a special case of a Banach space, however the presence of
the inner product gives the space a more geometric character. In particular, we have a
natural notion of ‘orthogonality’. If K ⊂ H, we write

K⊥ = {x ∈ H : (z, x) = 0, for all z ∈ K}.

Note that K ∩K⊥ ⊂ {0} and K ⊂M =⇒ M⊥ ⊂ K⊥.

Lemma 2.2. For any K ⊂ H, K⊥ is a closed subspace.

Proof. For any z ∈ H, the map Λz : H → C given by x 7→ (z, x) is a bounded linear map.
The linearity follows from properties of the inner product, and boundedness follows as:

|Λzx| = |(z, x)| 6 ‖z‖ ‖x‖

by Cauchy-Schwarz. Thus Ker Λz is a closed subspace of H for any z ∈ H. By definition

K⊥ =
⋂
z∈K

Ker Λz,

so K⊥ is a closed subspace.

An important result concerns closed, convex sets in a Hilbert space (see Definition
A.3)

Theorem 2.3. Let K be a nonempty, closed, convex set in a Hilbert space (H, (·, ·)).
Then K contains a unique element of least norm.

Proof. Let d = inf{‖x‖ : x ∈ K}. For any x, y ∈ K the parallelogram identity applied to
x/2, y/2 gives:

1

4
‖x− y‖2 =

1

2
‖x‖2 +

1

2
‖y‖2 −

∥∥∥∥x+ y

2

∥∥∥∥2
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The convexity of K implies (x+ y)/2 ∈ K, so

‖x− y‖2 6 2 ‖x‖2 + 2 ‖y‖2 − 4d2. (2.1)

We immediately deduce that if ‖x‖ = ‖y‖ = d, then x = y, so the infimum of the distance
can be attained by at most one point. Now suppose (xn)∞n=1 is a sequence with xn ∈ K
and ‖xn‖ → d. By (2.1) we have:

‖xn − xm‖2 6 2 ‖xn‖2 + 2 ‖xm‖2 − 4d2

which implies (xn) is Cauchy, hence xn → x for some x ∈ H. Since K is closed, x ∈ K,
and since the norm is continuous ‖x‖ = d and we’re done.

Noting that K is closed and convex if and only if K + y is closed and convex, we
immediately deduce

Corollary 2.4. Let K be a nonempty, closed, convex set and let x ∈ H. There is a
unique y ∈ K which minimises ‖x− y‖.

A more important corollary of this result concerns orthogonal projection onto closed
linear subspaces.

Lemma 2.5. Let L be a closed linear subspace of H. There exists a bounded linear
operator P : H → L such that

i) Px = x if x ∈ L,

ii) x− Px ∈ L⊥,

iii) Px = 0 if x ∈ L⊥,

iv) ‖Px‖ 6 ‖x‖.

Proof. For any x ∈ H, let Px be the unique point in L which minimises ‖x− Px‖. It is
immediate that Px = x if x ∈ L. Now, suppose y ∈ L and consider ‖x− Px− tαy‖ for
t ∈ R, where α is chosen to satisfy <(αy, x− Px) = |(y, x− Px)|, |α| = 1. We find

‖x− Px− tαy‖2 = ‖x− Px‖2 + 2t |(y, x− Px)|+ t2 ‖y‖2 > ‖x− Px‖2

so |(y, x− Px)| = 0, and hence x− Px ∈ L⊥. This immediately implies that if x ∈ L⊥,
then Px ∈ L ∩ L⊥ = {0}. Next, we note that

‖x‖2 = ‖x− Px+ Px‖2 = ‖x− Px‖2 + ‖Px‖2 ,

from which the bound on ‖Px‖ follows. Finally, to see that L is linear, for λ ∈ C, x, y ∈ H
write P (x+ λy) = P (x) + λP (y) + z for some z ∈ L. We observe:

‖(x+ λy)− P (x+ λy)‖2 = ‖x− P (x) + λ(y − P (y))− z‖2

= ‖x− P (x) + λ(y − P (y))‖ + ‖z‖2

which is clearly minimised for z = 0, hence P (x+ λy) = P (x) + λP (y).
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An immediate corollary of the result is

Corollary 2.6. If L is a closed linear subspace of H, then

H = L⊕ L⊥.

Proof. Given x ∈ H we can write x = Px+ (x− Px) with Px ∈ L, (x− Px) ∈ L⊥, and
certainly x ∈ L ∩ L⊥ if and only if x = 0.

We also have the following useful characterisation of K⊥⊥ := (K⊥)⊥

Corollary 2.7. If L is a closed linear subspace of H then L⊥⊥ = L. If K ⊂ H is any
set, we have K⊥⊥ = span K. In particular, K is dense in H if and only if K⊥ = {0}.

Proof. Clearly L ⊂ L⊥⊥. Suppose z ∈ L⊥⊥, then z = x+ y with x ∈ L, y ∈ L⊥ by the
previous Corollary. Thus 0 = (z, y) = (x+ y, y) = ‖y‖2, so y = 0 and z = x ∈ L, thus
L⊥⊥ ⊂ L.

Now consider an arbitrary K ⊂ H. It is clear from the definition of the orthogonal
complement that span K ⊂ K⊥⊥. Since K ⊂ span K, we deduce span K⊥ ⊂ K⊥ and
K⊥⊥ ⊂ span K⊥⊥ = span K, making use of the fact that span K is a closed subspace.

The final result of this section shows that for a Hilbert space H, we can describe the
dual space H ′ in a straightforward fashion. Recall that for a topological vector space X,
the dual space X ′ is defined to be the set of continuous linear maps Λ : X → C, sometimes
known as the continuous linear functionals on X. We saw in the proof of Lemma 2.2 that
to any z ∈ H we can associate a continuous linear map Λz : x 7→ (z, x). The following
result, known as Riesz representation theorem shows that in fact any element of H ′ must
be of this form.

Theorem 2.8 (Riesz representation theorem for Hilbert spaces). If Λ : H → C is a
continuous linear functional on H, then there is a unique z ∈ H such that Λ = Λz.

Proof. If Λx = 0 for all x, take z = 0, otherwise let

L = {x : Λx = 0}.

L is a subspace by the linearity of Λ, and it is closed by the continuity of Λ. Moreover,
since Λx 6= 0 for some x, L⊥ cannot be trivial, as H = L⊕ L⊥ and L 6= H.

Pick y ∈ L⊥ such that ‖y‖ = 1 and for any x ∈ H let

w = (Λx)y − (Λy)x.

Clearly Λw = 0, so w ∈ L, and as a result (y, w) = 0, which implies

Λx = (Λy)(y, x) =
(
(Λy)y, x

)
so taking z = (Λy)y we have established Λ = Λz. To see that z is unique, suppose
Λz = Λz′ , then for any x ∈ H we have:

(z − z′, x) = 0,

in particular this holds for x = z − z′, so that z = z′.
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2.1.2 The Hilbert space L2

Given any measure space (E, E , µ), the space L2(E,µ) is naturally a Hilbert space, with
inner product given by:

(f, g)L2 :=

∫
E
fgdµ.

We will mostly focus on the cases where E is Rn (or a subset) equipped with Lebesgue
measure, although for some purposes it is convenient to keep the discussion more general.

Orthogonal systems of functions and their completeness

Suppose S = {uj}j∈J is a subset of a Hilbert space H indexed by some (not necessarily
countable) set J . We say S is orthogonal if (uj , uk) = 0 for all j, k ∈ J with j 6= k. We
say S is orthonormal if additionally ‖uj‖ = 1 for all j ∈ J . We say that S is complete
if Span S = H, where Span S is the set of finite linear combinations of elements of S.
An orthonormal set which is complete, we refer to as an orthonormal basis. For many
purposes, we can take the set J to be N, thanks to the following result

Theorem 2.9. A Hilbert space H is separable if and only if it admits a countable set S
which is orthonormal and complete.

Proof. If S is countable and complete, then the set

{(α1 + iβ1)s1 + · · ·+ (αn + iβn)sn|sj ∈ S, αj , βj ∈ Q}

is countable and can be seen to be dense by the completeness of S, hence H is separable.
Conversely, if H is separable, then it has a countable dense subset D. By applying the
Gram-Schmidt process to this set we can find a countable orthonormal set S such that
Span S = Span D, and thus Span S = H.

A useful result concerning orthonormal sets is the following

Lemma 2.10. Suppose {uj}∞j=1 is an orthonormal set. Then for any x ∈ H:

∞∑
j=1

|(uj , x)|2 6 ‖x‖2

Proof. For each j pick θj such that (eiθjuj , x) = |(uj , x)|. Consider

0 6

∥∥∥∥∥∥x−
n∑
j=1

(eiθjuj , x)eiθjuj

∥∥∥∥∥∥
2

= ‖x‖2 − 2

n∑
j=1

|(uj , x)|2 +
n∑
j=1

|(uj , x)|2

so
n∑
j=1

|(x, uj)|2 6 ‖x‖2

and taking the supremum over n we’re done.
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Since we know that L2(U) is separable for U any subset of Rn, we deduce that L2(U)
admits a complete countable orthonormal basis. We give some examples of orthogonal
sets of functions.

Example 1. Consider L2([0, 1]) equipped with Lebesgue measure. The set S = {e−2πinx}n∈Z
is an orthonormal set. By the Stone–Weiserstrass theorem, any function f ∈ C0([0, 1])
can be approximated uniformly by a finite linear combination of elements of S. Since we
can approximate any element of L2([0, 1]) by a continuous function by Theorem 1.13, we
deduce that S is complete. We will see another proof of the completeness of the set S later
in the course.

Example 2. Let ψ be the function given by:

ψ(x) :=


1 0 6 x < 1

2
−1 1

2 6 x < 1
0 otherwise

and define ψn,k by
ψn,k(x) := 2

n
2 ψ(2nx− k)

Then {ψn,k}n,k∈Z is a complete orthonormal basis for L2(R) (see Exercise 1.11). This is
known as the Haar system. It is the simplest example of a wavelet basis, which give an
(imperfect) localisation of a function in both space and frequency. Such bases are widely
used in signal processing.

Example 3. Consider the space L2(R, e−x2dx), which is a Hilbert space equipped with
the Gaussian-weighted inner product

(f, g) =

∫
R
f(x)g(x)e−x

2
dx.

Applying the Gram-Schmidt process to the linearly independent set {1, x, x2, x3, . . .} we
can construct a sequence of polynomials Hk(x) of degree k such that∫

R
Hk(x)Hl(x)e−x

2
dx = 0

for all l < k. For historical reasons, the normalisation is usually chosen such that the
coefficient of xk in Hk(x) is 2k, but this is purely a convention. The set {Hk}∞k=0 is a
complete orthogonal set for L2(R, e−x2dx), known as the Hermite polynomials. We will
justify this assertion later in the course.

Exercise 1.11. Let S = {ψn,k}n,k∈Z be the Haar system, as defined in lectures.

a) Show that ∫
R
ψn1,k1(x)ψn2,k2(x)dx = δn1n2δk1k2 .

b) Show that 1I ∈ Span S for any finite interval I, where the closure is under-
stood with respect to the L2 norm.

c) Deduce that S is an orthonormal basis for L2(R).
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2.1.3 The Radon–Nikodym Theorem

An important application of the Riesz representation theorem for Hilbert spaces in the
context of measure theory is the Radon–Nikodym theorem, which is important in its own
right and will moreover will be valuable when we come to study the dual spaces to the
Lp spaces. We first introduce some nomenclature.

Definition 2.2. Suppose (E, E) is a measurable space, equipped with measures µ, ν. We
say ν is absolutely continuous with respect to µ, written ν � µ, if for any measurable set
A

µ(A) = 0 =⇒ ν(A) = 0.

We say µ, ν are mutually singular, written µ ⊥ ν if there exists a measurable set A such
that

µ(A) = 0 = ν(Ac)

With this definition in hand, we can state

Theorem 2.11 (Radon–Nikodym Theorem). Suppose (E, E) is a measurable space, with
finite measures µ, ν such that ν � µ. Then there exists a non-negative w ∈ L1(E,µ) such
that

ν(A) =

∫
A
wdµ

for any A ∈ E. In particular this implies∫
E
F (x)dν(x) =

∫
E
F (x)w(x)dµ(x)

for any non-negative measurable F .

Proof. Let
α = µ+ 2ν, β = 2µ+ ν,

then α, β are finite measures on (E, E) in an obvious way. On the Hilbert space H =
L2(E,α) = L2(E,µ) ∩ L2(E, ν), we consider the map Λ : H → C given by:

Λ(f) =

∫
E
fdβ.

Noting that |Λ(f)| 6
∫
E |f | dβ 6 2

∫
E |f | dα 6 2

√
α(E) ‖f‖L2(E,α), we see that Λ is

bounded on H, and it is manifestly linear, so by Riesz representation theorem (Thm 2.8)
there exists g ∈ H such that for any f ∈ H we have∫

E
f(x)dβ(x) =

∫
E
f(x)g(x)dα(x)

Rearranging, we deduce ∫
E
f(2g − 1)dν =

∫
E
f(2− g)dµ. (2.2)
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for all f ∈ H. Taking f = 1Aj for Aj = {x ∈ E : g(x) < 1
2 −

1
j } we deduce µ(Aj) =

ν(Aj) = 0, and so g > 1
2 µ-ae and ν-ae. Similarly by considering Aj = {x ∈ E : g(x) >

2 + 1
j } we see that g 6 2 µ-ae and ν-ae. Thus by redefining g on a set which is null with

respect to all measures in the problem, we may assume 1
2 6 g(x) 6 2 for all x ∈ E. By

the monotone convergence theorem, we can deduce that (2.2) holds for any non-negative
measurable f .

Let Z = {g(x) = 1
2}. Setting f = 1Z in (2.2) we see that µ(Z) = 0. Since ν � µ we

deduce that ν(Z) = 0, so given a non-negative measurable function F , we can define

f(x) =
F (x)

2g(x)− 1
, w(x) =

2− g(x)

2g(x)− 1

for all x ∈ Zc and set f(x) = w(x) = 0 otherwise. Applying (2.2) and using µ(Z) =
ν(Z) = 0, we deduce∫

E
F (x)dν(x) =

∫
E\Z

F (x)dν(x)

=

∫
E
f(2g − 1)dν =

∫
E
f(2− g)dµ

=

∫
E\Z

F (x)w(x)dµ(x) =

∫
E
F (x)w(x)dµ(x)

Setting F (x) = 1 shows w ∈ L1(E,µ).

Exercise 1.12. (*) Suppose (E, E) is a measurable space, with finite measures
µ, ν. Show that ν may be uniquely written as ν = νa + νs, for measures νa, νs
such that νs ⊥ µ and νa � µ.
[Hint: Return to the proof of the Radon–Nikodym theorem, but drop the assump-
tion that ν � µ]

2.2 Dual spaces

Given a topological vector space2 X, we define the dual spaceX ′ to be the set of continuous
linear functions Λ : X → C. This is a vector space with the obvious operations:

(Λ1 + αΛ2)(x) := Λ1(x) + αΛ2(x), for all x ∈ X,Λ1,Λ2 ∈ X ′, α ∈ C.

If X is a normed space, we can equip X ′ with a norm by setting

‖Λ‖X′ = sup
x∈X,‖x‖=1

|Λ(x)| .

Often (though not always), we will take X to be a Banach space.

Exercise 2.1. Let X be a normed space. Show that X ′ equipped with its norm
forms a Banach space. If X is the completion of X with respect to the metric
induced by its norm, show that X ′ = X

′.
2See Definition A.7
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Exercise 2.2. Suppose X is a Banach space. Show that if Λ ∈ X ′ with Λ 6= 0
then Λ is an open mapping (i.e. Λ(U) is open whenever U ⊂ X is open).

An important fact concerning the dual of a Banach space is that it separates points.
That is

Lemma 2.12. Let X be a Banach space. Suppose x, y ∈ X with x 6= y. Then there exists
Λ ∈ X ′ such that Λ(x) 6= Λ(y).

We shall not prove this result at this stage, it will follow as a corollary of the
Hahn–Banach theorem which we shall prove later.

Suppose X is a Banach space. Given x ∈ X, there is a natural map:

fx : X ′ → C
Λ 7→ Λ(x).

This is a bounded linear map, thus belongs to X ′′. Furthermore, if fx(Λ) = fy(Λ) for all
Λ then x = y by Lemma 2.12, thus we have a natural injection of X into X ′′ given by
x 7→ fx. If this map is surjective, then we say that X is reflexive, and write X = X ′′ (by
a slight abuse of notation).

2.2.1 The dual of Lp(Rn)

Suppose f ∈ Lp(Rn) for some 1 6 p 6∞, and let q be such that p−1 + q−1 = 1. Then by
Hölder’s inequality, we know that if g ∈ Lq(Rn) we have:∣∣∣∣∫

Rn
g(x)f(x)dx

∣∣∣∣ 6 ‖g‖Lq ‖f‖Lp
This tells us that the map Λg : Lp(Rn)→ C given by:

Λg(f) :=

∫
Rn
g(x)f(x)dx

is a bounded linear map from Lp(Rn) to C, thus Λg ∈ Lp(Rn)′. Furthermore, it can be
shown (Exercise 1.4) that ‖Λg‖Lp′ = ‖g‖Lq . Thus the map

κ : Lq(Rn) → Lp(Rn)′

g 7→ Λg

is linear, isometric and injective. We see that Lq(Rn) ⊂ Lp(Rn)′ in a natural way.
For the case p = q = 2, we know by Riesz representation theorem that in fact3

L2(Rn) = L2(Rn)′. It is a very natural question to ask whether this happens for other
values of p. In fact, it is true for all values of p except one.

Theorem 2.13. [The dual of Lp(Rn)] Let 1 6 p <∞, and let q satisfy p−1 + q−1 = 1.
Then Lq(Rn) = Lp(Rn)′, where we understand elements of Lq(Rn) as linear maps on
Lp(Rn) according to the map κ described above.

3Being pedantic, one should say that Riesz representation theorem gives an isometric bijection
between L2(Rn) and L2(Rn)′, but we will leave this as understood.
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Note that this result asserts that L1(Rn)′ = L∞(Rn), however it makes no statement
about L∞(Rn)′. In fact, L∞(Rn)′ 6= L1(Rn). We also comment that the result holds more
generally for the spaces Lp(E,µ), where µ is a σ-finite measure on E, but for simplicity
we stick to the case of Rn.

The main work of the proof of Theorem 2.13 has already been done in the proof of
the Radon–Nikodym theorem, which is the key result we shall require. We first simplify
the problem by reducing to the case of positive real linear functionals. Let Lp(Rn;R)
denote the subset of Lp(Rn) consisting of functions taking values in R almost everywhere.
Clearly Lp(Rn;R) is a vector space over R, and any element f ∈ Lp(Rn) can be written
uniquely as fr + ifi with fr, fi ∈ Lp(Rn;R). Given a bounded (complex-)linear map
Λ : Lp(Rn)→ C, we can define two bounded (real-)linear maps Λr,Λi : Lp(Rn;R)→ R
by:

Λr(f) := <(Λ(f)), Λi(f) := =(Λ(f))

and we can recover Λ from Λr,Λi by:

Λ(fr + ifi) = Λr(fr)− Λi(fi) + i (Λr(fi) + Λi(fr)) .

We say that a real-linear map u : Lp(Rn;R) → R is positive if u(f) > 0 for all
f > 0. We claim that any bounded real-linear map u : Lp(Rn;R)→ R may be written
as u = u+ − u−, where u± : Lp(Rn;R)→ R are bounded, positive, real-linear maps (see
Exercise 2.3). In view of these facts, in order to prove Theorem 2.13 it will suffice to
establish:

Lemma 2.14. Let 1 6 p < ∞, p−1 + q−1 = 1. Suppose u : Lp(Rn;R) → R is a
bounded, positive (real-)linear map. Then there exists a non-negative g ∈ Lq(Rn;R) with
‖g‖Lq = ‖u‖(Lp)′ such that:

u(f) =

∫
Rn
f(x)g(x)dx

for all f ∈ Lp(Rn;R).

Proof. Let µ = e−|x|
2

dx be the Gaussian measure on the Lebesgue sets of Rn, which has
the property that µ(Rn) <∞. Define, for a measurable set A:

ν(A) := u(e
− |x|

2

p 1A).

Clearly ν(A) ∈ [0,∞] and ν(∅) = 0. Further, if B = ∪∞n=1An for disjoint measurable An,
setting Bk = ∪kn=1An we have∥∥∥∥e− |x|2p 1B − e−

|x|2
p 1Bk

∥∥∥∥
Lp

= [µ(B \Bk)]
1
p → 0

so by the continuity and linearity of u, we have ν(Bk)→ ν(B). Thus ν defines a measure
on the Lebesgue sets of Rn. Further ν(Rn) <∞ and moreover ν � µ since if µ(A) = 0
then ∥∥∥∥e− |x|2p 1A

∥∥∥∥
Lp

= [µ(A)]
1
p = 0.



2.2 Dual spaces 35

By the Radon–Nikodym theorem, we deduce that there exists a non-negative G ∈
L1(Rn, µ) such that

ν(A) =

∫
A
G(x)dµ =

∫
A
G(x)e−|x|

2

dx.

Now by linearity, we deduce that if f = e
− |x|

2

p F for some simple function F then we have

u(f) =

∫
Rn
f(x)g(x)dx.

where g(x) = e
− |x|

2

q G(x). Now, functions of the form e
− |x|

2

p F , with F simple, are dense
in Lp(Rn;R) and moreover we know from the boundedness of u that∫

Rn
|f(x)g(x)| dx =

∫
Rn
|f(x)| g(x)dx = u(|f |) 6 ‖u‖Lp′ ‖f‖Lp .

This implies that

sup

{∫
Rn
|f(x)g(x)| dx : f ∈ Lp(Rn;R), ‖f‖Lp 6 1

}
6 ‖u‖Lp′

By Exercise 1.4 we deduce that g ∈ Lq(Rn;R) with ‖g‖Lq 6 ‖u‖Lp′ . On the other hand
‖g‖Lq > ‖u‖Lp′ follows from Hölder and we’re done.

Exercise 2.3. Let u : Lp(Rn;R)→ R be a bounded, linear functional.

a) For f ∈ Lp(Rn;R), f > 0, define

ũ(f) = sup{u(g) : g ∈ Lp(Rn;R), 0 6 g 6 f}.

Show that 0 6 ũ(f) and u(f) 6 ũ(f) 6 ‖u‖Lp′ ‖f‖Lp , and establish

ũ(f + ag) = ũ(f) + aũ(g)

for all f, g ∈ Lp(Rn;R) with f, g > 0 and a ∈ R, a > 0.

b) For f ∈ Lp(Rn;R), define w(f) = ũ(f+)−ũ(f−), where f+(x) = max{0, f(x)},
f−(x) = max{0,−f(x)}. Show that w is linear and bounded, and that w
and w − u are positive.

c) Deduce that u = u+−u−, where u± are bounded, positive, linear functionals.

2.2.2 The Riesz Representation Theorem for spaces of continuous functions

Another space whose dual space can be conveniently described is C0
c (Rn), the space of

continuous, compactly supported, functions on Rn equipped with the supremum norm.
By a similar reduction to §2.2.1, we can reduce to the problem of understanding positive
bounded functionals on C0

c (Rn;R).
A classical result known, somewhat confusingly, as the Riesz Representation Theorem

shows that any positive functional on C0
c (Rn;R) can be represented as integration against

a suitable measure. To motivate this result, we first suppose that we are given a σ-algebra
M on Rn and a measure µ such that µ(Rn) <∞. We will also require that the measure
space is regular :
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Definition 2.3. Suppose that E is a topological space, and E is a σ-algebra on E which
contains the Borel algebra. Then a measure µ defined on (E, E) is regular if for any A ∈ E,
and any ε > 0 we can find a closed set C and an open set O such that C ⊂ A ⊂ O and:

µ(O \ C) < ε.

Since B(Rn) ⊂ M, we know that any f ∈ C0
c (Rn;R) is measurable. The map

Λ : C0
c (Rn;R)→ R given by:

Λ(f) =

∫
Rn
f(x)dµ(x) (2.3)

is then a positive, bounded linear map. Now, suppose we are given the map Λ, can we
recover the measure µ? We note that, if we could set f = 1A for A ∈M, then

‘Λ(1A) =

∫
Rn
1A(x)dµ(x) = µ(A)’,

however 1A 6∈ C0
c (Rn;R). At least for certain sets, however, we can approximate 1A

from below by elements of C0
c (Rn;R). Suppose O ⊂ Rn is open, and for k ∈ N let

Ok = O ∩ {|x| < k}. Define:

χk(x) :=


1, x ∈ Ok, d(x,Ock) > k

−1

kd(x,Ock) x ∈ Ok, d(x,Ock) < k−1

0 x ∈ Ock

Then χk ∈ C0
c (Rn;R) and χk(x) increases monotonically to 1O. Thus, by the monotone

convergence theorem,

µ(O) = lim
k→∞

∫
Rn
χk(x)dµ(x) = lim

k→∞
Λ(χk).

This shows in particular that

µ(O) = sup{Λ(g) : g ∈ C0
c (Rn;R), 0 6 g 6 1O}. (2.4)

Now, since µ is regular, it suffices to know how to compute µ(O) for open sets in order to
find µ(A) for any A ∈M. We have shown:

Lemma 2.15. Suppose we are given a σ-algebra M containing B(Rn) on Rn and a
regular measure µ such that µ(Rn) <∞. Then Λ : C0

c (Rn;R)→ R given by (2.3) defines
a bounded, positive, linear operator. Furthermore, µ is uniquely determined by Λ.

Riesz Representation Theorem makes the stronger statement that all positive bounded
linear operators take the form (2.3) for some regular measure.

Theorem 2.16. Given a positive bounded linear operator Λ : C0
c (Rn;R) → R, there

exists a σ-algebraM on Rn, containing B(Rn), and a unique regular measure µ such that
µ(Rn) <∞ and:

Λ(f) =

∫
Rn
f(x)dµ(x).
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We shall not include the proof of this result here, as it is fairly long and technical,
and not especially enlightening. The main idea is to use (2.4) to define µ on open sets,
and then use Carathéodory’s Theorem (or some equivalent approach) to complete this
measure. Those interested in the proof will find it in Chapter 2 of Rudin’s Real and
Complex Analysis.

2.2.3 The strong, weak and weak-∗ topologies

If X is a Banach space, then X ′, with the dual norm, is also a Banach space. Thus both
spaces are naturally equipped with a topology which makes them topological vector spaces.
For certain purposes, however, we may wish to introduce an alternative topology on X or
X ′. For example, a hugely useful result in the analysis of Rn is the Bolzano–Weierstrass
theorem:

Theorem 2.17. Let (xk)
∞
k=1 with xk ∈ Rn be a bounded sequence. Then (xk)

∞
k=1 has a

convergent subsequence.

This result is not true when Rn is replaced by an infinite dimensional Banach space,
so the closed unit ball in such a space is not compact. This is quite inconvenient for many
problems: for example in the calculus of variations one often wishes to minimise some
continuous function defined on a Banach or Hilbert space. Without compactness as a
tool, this can be difficult to achieve.

Exercise 2.4. Suppose X is a normed space, and V ⊂ X is a closed proper
subspace of X and let 0 < α < 1. Show that there exists x ∈ X with ‖x‖ = 1
such that ‖x− y‖ > α for all y ∈ V . Deduce that the Bolzano–Weiserstrass
theorem does not hold if X is an infinite dimensional Banach space.
[The first result above is known as Riesz’ Lemma]

One way to restore (a version of) compactness for the closed unit ball in X is to
consider a different topology defined on X. In order to describe new topologies on X we
will make use of seminorms. For full details of this discussion, see §A.2

Definition 2.4. A seminorm on a vector space X over a field Φ = C or R is a map
p : X → R satisfying:

i) p(x+ y) 6 p(x) + p(y), for all x, y ∈ X,

ii) p(λx) = |λ| p(x) for all x ∈ X, λ ∈ Φ,

iii) p(x) > 0 for all x ∈ X.

A family P of seminorms is said to be separating if for every x ∈ X with x 6= 0, there
exists p ∈P with p(x) 6= 0.

Strictly speaking, condition iii) follows from i) and ii) (check this!), but we include
it in the definition for convenience. Given a separating family of seminorms, we can
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construct a topology τP as follows. First, for p ∈P, n ∈ N, we define the set V (p, n) ⊂ X
by

V (p, n) :=

{
x ∈ X : p(x) <

1

n

}
We let β̇ be the collection of finite intersections of V (p, n)’s, and β = {x+B : B ∈ β̇}.

Theorem 2.18. Let P be a separating family of seminorms. The collection of sets β, as
described above, is a base for a Hausdorff topology τP on X such that the vector space
operations are continuous, and each p ∈P is continuous.

A topological space (X, τP) constructed in the manner above is known as a locally
convex topological vector space. If P = {pi}∞i=1 is countable, then the topology is a metric
topology, with metric given by:

d(x, y) =

∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)

If this metric is complete, we say that (X, τP) is a Fréchet space.

Exercise 2.5. Let P be a separating family of seminorms on a vector space X.
Show that a sequence (xk)

∞
k=1 with xk ∈ X converges to x ∈ X in the topology

τP if and only if p(xk − x)→ 0 for all p ∈P.

For a Banach space X, a trivial family of separating seminorms is given by P = {‖·‖}.
The topology τs := τP induced by this family is simply the usual norm topology. In this
context, we sometimes refer to this as the strong topology on X. A sequence (xk)

∞
k=1

with xk ∈ X converges to x in the strong topology if

‖xk − x‖ → 0.

An alternative topology on X is given by making use of X ′ to construct a family
of seminorms. It is straightforward to verify that if Λ ∈ X ′ then pΛ : x 7→ |Λ(x)| is a
seminorm. Setting

P :=
{
pΛ : Λ ∈ X ′

}
we have a family of seminorms. Moreover, it is separating, since X ′ separates points of
X. Thus τw := τP makes X into a locally convex topological space. This topology is
known as the weak topology. With respect to the weak topology, the elements of X ′ are
still continuous, however convergence of sequences in the weak topology differs from the
strong topology. A sequence (xk)∞k=1 with xk ∈ X converges to x in the weak topology if

|Λ(xk − x)| → 0, for all Λ ∈ X ′.

When (xk)
∞
k=1 converges to x in the weak topology, we write xk ⇀ x.

Now, X ′ is a Banach space itself in a natural fashion, and so has its own associated
strong and weak topologies. It also has a further topology, known as the weak-∗ topology
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(pronounced ‘weak star’). To define this topology, we note that for each x ∈ X, we can
define a seminorm px : X ′ → R by px(Λ) = |Λ(x)|. Setting

P := {px : x ∈ X}

we have a family of seminorms, which is separating since if Λ ∈ X ′, Λ 6= 0, then there
exists x ∈ X such that Λ(x) 6= 0. The associated topology we denote τw∗. A sequence
(Λk)

∞
k=1 with Λk ∈ X ′ converges to Λ in the weak-∗ topology if:

|Λk(x)− Λ(x))| → 0, for all x ∈ X.

When (Λk)
∞
k=1 converges to Λ in the weak-∗ topology, we write Λk

∗
⇀ Λ. Note that if X

is reflexive, then X ′′ = X, and the weak and weak-∗ topologies coincide.

Exercise 2.6. Suppose that X is a Banach space, and let (Λk)∞k=1 be a sequence
with Λk ∈ X ′. Show that:

Λk → Λ =⇒ Λk ⇀ Λ =⇒ Λk
∗
⇀ Λ.

(*) Show the stronger statement that τw∗ ⊂ τw ⊂ τs, where τw∗, τw, τs are the
weak-∗, weak and strong topologies on X ′ respectively.

As an example, suppose that 1 6 p <∞. Then we know that Lp(Rn)′ = Lq(Rn) with
p−1 + q−1 = 1. If (fi)

∞
i=1 is a sequence of functions fi ∈ Lp(Rn), then of course fi → f in

Lp if:
‖fi − f‖Lp → 0.

On the other hand, fi ⇀ f in Lp if∫
Rn
g(x)fi(x)dx→

∫
Rn
g(x)f(x)dx, for all g ∈ Lq(Rn).

If 1 < p < ∞, Lp(Rn) is reflexive, so the weak-∗ topology that arises from viewing
Lp(Rn) as the dual of Lq(Rn) agrees with the weak topology. We have not identified any
space X such that X ′ = L1(Rn), so no weak-∗ topology on L1 is available to us. Since
L1(Rn)′ = L∞(Rn), we can consider the weak-∗ topology on L∞(Rn). We have fi

∗
⇀ f

in L∞ if: ∫
Rn
g(x)fi(x)dx→

∫
Rn
g(x)f(x)dx, for all g ∈ L1(Rn).

Since we don’t have a concrete realisation of L∞(Rn)′, we don’t have a simple description
of weak convergence in this space (other than the abstract condition Λ(fi)→ Λ(f) for all
Λ ∈ L∞(Rn)′).

Exercise 2.7. For a bounded measurable set E ⊂ Rn of positive measure, and
any f ∈ L1

loc.(Rn), define the mean of f on E to be:

−
∫
E
f(x)dx =

1

|E|

∫
E
f(x)dx.
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Suppose 1 < p < ∞ and let (fj)
∞
j=1 be a bounded sequence in Lp(Rn). Show

that fj ⇀ f for some f ∈ Lp(Rn) if and only if

−
∫
E
fj(x)dx→ −

∫
E
f(x)dx

for all bounded measurable sets E ⊂ Rn of positive measure.

Exercise 2.8. Suppose (H, (·, ·)) is an infinite dimensional Hilbert space and
let (xi)

∞
i=1 be a sequence with xi ∈ H.

i) Show that xi ⇀ x if and only if (y, xi)→ (y, x) for all y ∈ H.

ii) Show there exists a sequence such that xi ⇀ 0, but xi 6→ 0.

iii) Suppose xi ⇀ x. Show that

‖x‖ 6 lim inf
i→∞

‖xi‖ ,

and ‖xi‖ → ‖x‖ iff xi → x.

2.2.4 Compactness, Banach–Alaoglu

As we have discussed above, if X is an infinite dimensional Banach space, then the closed
unit ball B = {x : ‖x‖ 6 1} is not compact. This is unfortunate, and we would like to
try and restore compactness in some way. There are essentially two (related) approaches:
we can either restrict our attention to a subset of B for which we have compactness, or
else we can weaken the topology on B.

To explain this, let us recall the Arzelà–Ascoli theorem. We set I = [0, 1]

Theorem 2.19. Suppose (fk)∞k=1 is a sequence of continuous functions fk : I → C which
is bounded, i.e. for all k:

sup
x∈I
|fk(x)| 6M

and equicontinuous: for all ε > 0, there exists δ > 0 such that for all k and all |x− y| < δ
we have

|fk(x)− fk(y)| < ε.

Then (fk)
∞
k=1 admits a uniformly convergent subsequence.

To put this into the language we have been discussing, recall that for 0 < γ ≤ 1, we
say a continuous function f : I → C is γ-Hölder continuous if

‖f‖C0,γ := sup
x∈I
|f(x)|+ sup

x,y∈I,x6=y

|f(x)− f(y)|
|x− y|γ

<∞.

The set C0,γ(I), of γ-Hölder continuous functions, is a Banach space with this norm, and
C0,γ(I) ⊂ C0(I). A consequence of the Arzelà–Ascoli theorem is the following:

Corollary 2.20. The closed unit ball in C0,γ(I) is compact in the C0-topology.
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Proof. Since the C0-topology is a metric topology, compactness is equivalent to sequential
compactness. If (fk)

∞
k=1 is a sequence with fk ∈ C0,γ(I) satisfying

‖fk‖C0,γ 6 1,

then (fk)
∞
k=1 is a bounded equicontinuous sequence of functions, so admits a uniformly

convergent subsequence, i.e. a subsequence which converges in the C0-topology to some
f . It is a short exercise to check that f ∈ C0,γ with ‖f‖C0,γ 6 1.

This gives us a paradigmatic example of a compactness result for Banach spaces: the
closed unit ball is compact, but only in a weaker topology than the strong topology. The
central result is the Banach–Alaoglu theorem:

Theorem 2.21. Let X be a normed space, and let B′ = {Λ ∈ X ′ : ‖Λ‖X′ 6 1} be the
closed unit ball in X ′. Then B′ is compact in the weak-∗ topology on X ′.

This result in its full generality is typically proven using Tychonoff’s theorem, which
relies on (a version of) the axiom of choice. We will content ourselves with the proof in the
case where X is a separable Banach space for which it is possible to give a constructive
proof. The majority of the applications of Banach–Alaoglu that arise in (for example)
the calculus of variations or PDE are covered by this special case.

We first note that if X is a separable Banach space, then the weak-∗ topology on B′

is in fact a metric topology.

Lemma 2.22. Let X be a separable Banach space, with a countable dense subset D =
{xk}∞k=1. Let P̃ = {pk}∞k=1 be the family of seminorms on X ′ defined by:

pk : Λ 7→ |Λ(xk)| ,

and let τP̃ be the associated topology. Then τP̃ |B′ = τw∗|B′. In particular, the weak-∗
topology on B′ is a metric topology.

Proof. From the definition of the topologies, it is immediate that every open set in τP̃ is
open in τw∗, thus τP̃ |B′ ⊂ τw∗|B′ . For any x ∈ X, n ∈ N let

V (x, n) :=

{
Λ ∈ B′ : |Λ(x)| < 1

n

}
.

In order to show τP̃ |B′ ⊃ τw∗|B′ it suffices to show that for any x ∈ X, n ∈ N, we can
find xk ∈ D, m ∈ N such that

V (xk,m) ⊂ V (x, n).

Fix x ∈ X. For any ε > 0, there exists xi ∈ D such that ‖x− xi‖ < ε. If Λ ∈ V (xi,m),
then:

|Λ(x)| = |Λ(x− xi) + Λ(xi)| 6 ‖Λ‖ ‖x− xi‖ + |Λ(xi)| < ε+
1

m
.

Taking ε < 1/(2n), m > 2n we have Λ ∈ V (x, n) and we’re done.
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This result is useful in two ways. Firstly, we see that a sequence (Λj)
∞
j=1 with Λj ∈ B

′

converges to Λ in the weak-∗ topology if and only if:

Λj(xk)→ Λ(xk) as j →∞, for all k.

Secondly, since the weak-∗ topology on B′ is metric, compactness is equivalent to sequential
compactness. We can establish sequential compactness with a very similar method to the
proof of the Arzelà–Ascoli theorem.

Theorem 2.23. Let X be a separable Banach space. Let (Λj)
∞
j=1 be a sequence with

Λj ∈ B
′. Then there exists a subsequence (Λjk)∞k=1 and Λ ∈ B′ such that Λj

∗
⇀ Λ.

Proof. Let D = {xk}∞k=1 be a countable dense subset. Consider the sequence (Λj(x1))∞j=1.
This is a uniformly bounded sequence of complex numbers, since:

|Λj(x1)| 6 ‖Λj‖ ‖x1‖ 6 ‖x1‖ .

Thus, by Bolzano–Weierstrass, there exists a subsequence (Λjk(x1))∞k=1 and a number
Λ(x1) ∈ C with |Λ(x1)| 6 ‖x1‖ such that:

Λjk(x1)→ Λ(x1).

We write Λ1,k := Λjk , then (Λ1,j)
∞
j=1 is a subsequence of (Λj)

∞
j=1. By a similar argument,

we can find a subsequence (Λ1,jk)∞j=1 of (Λ1,j)
∞
j=1 such that Λ1,jk(x2)→ Λ(x2). We write

Λ2,k := Λ1,jk . Continuing in this fashion, we construct for each l > 1 a sequence (Λl,j)
∞
j=1,

and a complex number Λ(xl) with |Λ(xl)| 6 ‖xl‖ with the property that (Λl,j)
∞
j=1 is a

subsequence of (Λl−1,j)
∞
j=1, and Λl,j(xk)→ Λ(xk) as j →∞ for all l 6 k.

Now, consider (Λj,j)
∞
j=1. This is a subsequence of (Λj)

∞
j=1 with the property that for

each x ∈ D we have:
Λj,j(x)→ Λ(x).

If we can show that there exists Λ̃ ∈ B′ with Λ̃(x) = Λ(x) for all x ∈ D, then we are done.
We first claim that Λ : D → C is uniformly continuous. Fix ε > 0, and suppose x, y ∈ D
with ‖x− y‖ < ε

3 . Since Λj,j(x)→ Λ(x) and Λj,j(y)→ y, there exists k such that for all
j > k we have |Λj,j(x)− Λ(x)| < ε

3 and |Λj,j(y)− Λ(y)| < ε
3 . For such a j we estimate:

|Λ(x)− Λ(y)| 6 |Λ(x)− Λj,j(x)|+ |Λj,j(y)− Λ(y)|+ |Λj,j(x− y)| < ε.

we conclude that Λ : D → C is continuous. Thus Λ extends to a continuous function
Λ̃ : X → C. We abuse notation and drop the tilde at this point. Next, we claim Λ is
linear. Suppose x, y ∈ X and a ∈ C and for z = x+ ay estimate:

|Λ(z)− Λ(x)− aΛ(y)| 6
∣∣Λ(z)− Λ(z′)

∣∣+
∣∣Λ(x)− Λ(x′)

∣∣+ |a|
∣∣Λ(y)− Λ(y′)

∣∣
+
∣∣Λ(z′)− Λj,j(z

′)
∣∣+
∣∣Λ(x′)− Λj,j(x

′)
∣∣+ |a|

∣∣Λ(y′)− Λj,j(y
′)
∣∣

+
∣∣Λj,j(z′ − x′ − ay′)∣∣ .

By choosing x′, y′, z′ ∈ D sufficiently close to x, y, z respectively we may arrange that the
first and final line are arbitrarily small. Taking j sufficiently large we see that the middle
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line can also be made arbitrarily small. We conclude that Λ(x + ay) = Λ(x) + aΛ(y).
Thus Λ : X → C is a continuous linear map. Finally, since D is dense in X we have:

‖Λ‖ = sup
x∈X,‖x‖61

|Λ(x)| = sup
x∈D,‖x‖61

|Λ(x)| 6 1.

Hence Λ ∈ B′.

As a corollary, we find the following compactness result for the Lebesgue spaces:

Corollary 2.24. Suppose 1 < p 6 ∞, and let (fj)
∞
j=1 be a sequence of functions fj ∈

Lp(Rn) satisfying
‖fj‖Lp 6 K.

Then there exists f ∈ Lp(Rn) and a subsequence (fjk)∞k=1 such that ‖f‖Lp 6 K and∫
Rn
g(x)fjk(x)dx→

∫
Rn
g(x)f(x)dx

for all g ∈ Lq(Rn), where p−1 + q−1 = 1.

Proof. Apply the previous result to fj/K.

Note that we do not have a corresponding compactness result for L1(Rn). It is
possible to gain some compactness by considering L1(Rn) as a subspace of the dual space
of C0

c (Rn), however the limiting objects constructed in this way are typically measures,
not elements of L1(Rn).

Exercise 2.9. Construct a bounded sequence (fi)
∞
i=1 of functions fi ∈ L1(R)

such that no subsequence is weakly convergent.

2.3 Hahn–Banach

The next result we shall cover is the Hahn–Banach theorem. This modest-seeming result
permits us to extend a bounded linear functional defined on a subspace, M , of a vector
space X into a bounded linear functional defined on the whole space. While it seems like
this should be straightforward, in full generality it requires the axiom of choice (or at
least some method of transfinite induction). We will proceed modestly by first showing
that we can extend a linear functional in one direction.

We first show that we can reduce to the case of a real vector space. Suppose X is a
complex vector space. We note that X is also a real vector space in a natural fashion. A
real-linear map ` : X → R is a map satisfying:

`(x+ ay) = `(x) + a`(y), for all x, y ∈ X, a ∈ R.

Suppose Λ : X → C is a complex-linear map, then `(x) = <(Λ(x)) defines a real-linear
map on X. Conversely, given a real-linear map ` : X → R, we have that:

Λ(x) = `(x)− i`(ix)
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defines a complex-linear map Λ : X → C, with <(Λ(x)) = `(x). Thus provided we can
establish a result which allows us to extend linear functionals in a bounded fashion on a
real vector space, we immediately have a corresponding result for the complex setting.

At this point we should address our use of the word ‘bounded’ above. When X
is a Banach space, then we have already discussed what it means for a functional to
be bounded. It turns out to be useful to consider a slightly more general notion of
boundedness at this stage, however. For this we introduce

Definition 2.5. A sublinear functional on a real vector space X is a map p : X → R
satisfying

p(x+ y) 6 p(x) + p(y), p(tx) = tp(x),

for any x, y ∈ X and t ≥ 0.

For example if Λ : X → R linear, then p(x) = |Λ(x)| is sublinear. Any semi-norm
(hence any norm) is sublinear, but the converse doesn’t hold, so be careful!

We first show that we can extend a linear functional ` defined on a subspace in one
direction, maintaining a bound by a sublinear functional p. We will work with one-sided
bounds of the form `(x) 6 p(x), but we note that this implies the two-sided bound
−p(−x) 6 `(x) 6 p(x).

Lemma 2.25. Let X be a real vector space, p : X → R sublinear and M ⊂ X a subspace.
Suppose ` : M → R is linear and satisfies `(y) 6 p(y) for all y ∈ M . Fix x ∈ X \M ,
then setting M̃ = span {M,x}, there exists a linear operator ˜̀ : M̃ → R such that

˜̀(z) 6 p(z) for all z ∈ M̃.

and
`(y) = ˜̀(y), for all y ∈M.

Proof. Any z ∈ M̃ can be uniquely written as z = λx + y for y ∈ M , so to define the
extension ˜̀, by linearity it suffices to specify ˜̀(x) = a as then ˜̀(λx + y) = λa + `(y).
Suppose y, z ∈M , then

`(y) + `(z) = `(y + z) 6 p(y + z) 6 p(y − x) + p(z + x)

and hence
`(y)− p(y − x) 6 p(z + x)− `(z). (2.5)

Let
a = sup

y∈M
(`(y)− p(y − x)) .

This is well defined by (2.5) and further we deduce

`(y)− a 6 p(y − x), `(z) + a 6 p(z + x)

for all y, z ∈M . If λ > 0, replace z with λ−1y and multiply by λ. If λ < 0 replace y with
−λ−1y and multiply by −λ to deduce

`(y) + aλ 6 p(y + λx),

holds for all y ∈M,λ ∈ R.
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Now, if dim X/M is finite, this result allows us to iteratively extend ` : M → R to the
whole space in a finite number of steps. If X is infinite, but separable, then it’s possible to
construct an extension inductively (try it!). If, however, X is not infinite, then (speaking
loosely) it’s not possible to exhaust X with a countable number of finite extensions. We
require some way to make an inductive type argument in a non-countable setting. There
are several approaches to this, all of which require the axiom of choice. We shall use
Zorn’s Lemma4. For this we require some background.

Exercise(∗). Suppose X is a separable real Banach space. Prove the Hahn–
Banach theorem on X without invoking the axiom of choice through Zorn’s
Lemma (or equivalent).

2.3.1 Zorn’s Lemma

Zorn’s Lemma is a statement concerning partial orderings of a set S.

Definition 2.6. Let S be a set. Then a partial order on S is a binary relation ≤
satisfying, for any a, b, c ∈ S:

i) a ≤ a for all a ∈ S. (Reflexivity)

ii) If a ≤ b and b ≤ a, then a = b. (Antisymmetry)

iii) If a ≤ b and b ≤ c, then a ≤ c. (Transitivity)

A set with a partial order is called a partially ordered set, or poset. Note that we do
not assert that for any a, b either a ≤ b or b ≤ a. If this does hold, we say ≤ is a total
order.

A subset T of a partially ordered set which is totally ordered is called a chain. An
element u ∈ S is an upper bound for T ⊂ S if a ≤ u for all a ∈ T . A maximal element of
S is an element m ∈ S such that m ≤ x implies x = m.

Example 4. a) If S is any set, then the power set 2S is a poset, with ≤ given by inclusion,
i.e. A ≤ B iff A ⊂ B. S is a maximal element.

b) The real numbers with their usual order is a totally ordered set, with no maximal
element.

c) The collection S of open balls in Rn is a poset with order given by inclusion. The
subset

T = {Br(0) ⊂ Rn : 0 < r 6 1}

is a chain. B1(0) is a maximal element, and B2(0) is an upper bound.

Zorn’s Lemma can now be stated as:

4For a good discussion of how and why Zorn’s Lemma is useful, see Prof. Gower’s blog:
https://gowers.wordpress.com/2008/08/12/how-to-use-zorns-lemma/

https://gowers.wordpress.com/2008/08/12/how-to-use-zorns-lemma/
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Proposition 1. Let (S,≤) be a partially ordered set in which every chain has an upper
bound. Then (S,≤) contains at least one maximal element.

We shall not prove this claim. In fact, it is equivalent (within the Zermelo-Fraenkel
framework) to the axiom of choice, so we can reasonably treat Zorn’s Lemma as an axiom
itself. The proof of the Hahn–Banach theorem we give below is a typical application of
Zorn’s Lemma.

Theorem 2.26 (Hahn–Banach). Let X be a real vector space, p : X → R sublinear, and
M ⊂ X a subspace. Suppose ` : M → R is linear and satisfies `(y) 6 p(y) for all y ∈M .
Then there exists a linear operator ˜̀ : X → R such that

˜̀(z) 6 p(z) for all z ∈ X.

and
`(y) = ˜̀(y), for all y ∈M.

Proof. We consider the set S of extensions of ` to a linear subspace of X. That is a pair
(N, `∗) ∈ S if:

i) N is a linear subspace of X containing M .

ii) `∗ : N → R is a linear map.

iii) `∗(x) 6 p(x) for all x ∈ N

iv) `∗(y) = `(y) for all y ∈M

S is a poset, with the partial ordering given by (N1, `1) ≤ (N2, `2) if N1 is a subspace of
N2 and `1(x) = `2(x) for all x ∈ N1. Suppose that T is a totally ordered subset of S. We
define (N , L) ∈ S by:

N =
⋃

(N,`∗)∈T

N,

and for any x ∈ N , we define L(x) = `∗(x), where (N, `∗) ∈ T with x ∈ N . This
is well defined since T is totally ordered, and moreover we have (N, `∗) ≤ (N , L) for
all (N, `∗) ∈ T , thus T has an upper bound. By Zorn’s Lemma, S has a maximal
element, (N , ˜̀). We claim that N = X. Suppose not, then there exists x ∈ X \N
and we can extend ˜̀ to a functional ˜̀∗ on N ∗ = span {N , x} by Lemma 2.25. Then
(N , ˜̀) ≤ (N ∗, ˜̀∗), but (N , ˜̀) 6= (N ∗, ˜̀∗), contradicting the maximality of (N , ˜̀). Thus
˜̀ : X → R is the extension we seek.

Notice that this proof of the Hahn–Banach theorem is non-constructive: while we
assert the existence of at least one extension, the proof provides no mechanism to construct
a particular example. This is typical of proofs which invoke the axiom of choice through
Zorn’s Lemma (or otherwise).

Corollary 2.27. Let X be a Banach space over Φ, where Φ = R, or C, and M ⊂ X be
a subspace. Let Λ : M → Φ be a bounded linear operator. Then there exists a bounded
linear operator Λ̃ : X → Φ with ‖Λ‖M ′ = ‖Λ̃‖X′ such that Λ(y) = Λ̃(y) for all y ∈M .
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Proof. If Φ = R, then we may apply the previous result with p(x) = ‖Λ‖‖x‖.
If Φ = C, then recall that we may write Λ(x) = `(x) − i`(ix) for a real-linear map

`(x) = <(Λ(x)). Further, by noting that |Λ(x)| = `(eiθx) for suitable θ, we can see that
for any subspace N ⊂ X

sup
x∈N,‖x‖61

|Λ(x)| = sup
x∈N,‖x‖61

|`(x)| ,

and we may apply the Φ = R result to `.

We will now establish some more geometric consequences of the Hahn–Banach theorem
that go by the name of separation theorems. The first of these is related to the hyperplane
separation theorem, which states that given two disjoint convex sets in Rn we may find a
co-dimension one plane such that the sets are on opposite sides of the plane. The theorem
(as with many of our results on Banach spaces) can be generalised to other topological
vector spaces. Those interested in more general statements may wish to consult Rudin’s
“Functional Analysis”.

Theorem 2.28. Suppose A and B are disjoint, nonempty, convex sets in a real or
complex Banach space X.

a) If A is open, there exist Λ ∈ X ′ and γ ∈ R such that

<(Λx) < γ 6 <(Λy) (2.6)

for all x ∈ A, y ∈ B. If B is further assumed to be open the second inequality may be
taken to be strict.

b) If A is compact, B is closed then there exist Λ ∈ X ′ and γ1, γ2 ∈ R such that

<(Λx) < γ1 < γ2 < <(Λy).

Proof. We first observe that it suffices to establish the result for real scalars. If we have
done so then for X a complex Banach space we may find a real-linear ` : X → R which
separates A and B as required, and we may then set Λ(x) = `(x)− i`(ix).

a) Pick a0 ∈ A, b0 ∈ B and let x0 = b0 − a0. Let C = A − B + x0. This is a convex
neighbourhood of 0 in X, and since A,B are disjoint x0 6∈ C. Let p(x) = inf{t > 0 :
t−1x ∈ C}. By Exercise 2.10 this is a sublinear function satisfying p(x) 6 k‖x‖ for
some k > 0 and p(y) < 1 for y ∈ C. Since x0 6∈ C we have p(x0) > 1.

Let M be the subspace generated by x0 and on this space define the linear functional
f(tx0) = t. If t > 0 then f(tx0) = t 6 tp(x0) = p(tx0), while if t < 0 then
f(tx0) = t < 0 6 p(tx0), so f 6 p on M . By the Hahn–Banach theorem we can
extend f to a linear functional Λ satisfying −k‖x‖ 6 −p(−x) 6 Λ(x) 6 p(x) 6 k‖x‖,
so Λ ∈ X ′.
Now suppose a ∈ A, b ∈ B. Then

Λa− Λb+ 1 = Λ(a− b+ x0) 6 p(a− b+ x0) < 1
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since a− b+ x0 ∈ C. Thus Λa < Λb. This implies that Λ(A) and Λ(B) are disjoint
convex subsets of R. Λ(A) is open since every non-constant linear functional is an
open mapping by Exercise 2.2. We may take γ to be the right end-point of Λ(A) and
(2.6) follows. If B is open, then so is Λ(B) and we can replace the 6 in (2.6) with <.

b) Since now A is compact and B is closed, we have inf{‖a− b‖ : a ∈ A, b ∈ B} = d > 0.
Let V = B d

2
(0) and consider A + V . This is open, convex and disjoint from B.

Applying part a) with A + V in place of A shows there exists Λ ∈ X ′ such that
Λ(A + V ) and Λ(B) are disjoint convex subsets of R with Λ(A + V ) to the left of
Λ(B). Since Λ(A+ V ) is open and Λ(A) is a compact subset of Λ(A+ V ), the result
follows.

This result immediately gives the proof of Lemma 2.12, which states that X ′ separates
points in X: we set A = {x}, B = {y} and apply part b). Another consequence is

Corollary 2.29. Suppose M is a subspace of a Banach space X and x0 ∈ X. If x0 is
not in the closure of M then there exists Λ ∈ X ′ such that Λx0 = 1 and Λx = 0 for every
x ∈M .

Proof. Applying part b) of the previous Theorem with A = {x0} and B = M , there exists
Λ ∈ X ′ such that Λx0 and Λ(M) are disjoint. But Λ(M) must be a proper subspace of
the scalar field, so must be {0}. The desired functional can be obtained by dividing Λ by
Λx0.

Exercise 2.10. Let X be a Banach space and suppose A ⊂ X is a convex
neighbourhood of 0. For x ∈ X define µA(x) = inf{t > 0 : t−1x ∈ A}. Show
that µA is sublinear and satisfies µA(x) 6 k‖x‖ for some k > 0. Show further
that µA(y) < 1 for y ∈ A.
µA is called the Minkowski functional of A

Exercise 2.11. Let {x1, . . . xn} be a set of linearly independent elements of a
Banach space X. Let a1, . . . , an ∈ C. Show that there exists Λ ∈ X ′ such that
Λ(xi) = ai, for i = 1, . . . , n.

Exercise 2.12. LetM be a vector subspace of the Banach spaceX, and suppose
that K ⊂ X is open, convex and disjoint from M . Show that there exists a
co-dimension one subspace N ⊂ X which contains M and is disjoint from K.
This is Mazur’s theorem.

Exercise 2.13. let X be a reflexive Banach space, and suppose Y ⊂ X is a
closed subspace. Show that Y is reflexive.



Chapter 3

Test functions and distributions

3.1 The space D(Ω)

Given an open set Ω, we are familiar with C∞(Ω) and C∞c (Ω) as sets and we can equip
them with the algebraic structure of a vector space. We want to discuss notions of
convergence and continuity in these spaces, and for this we shall require a topology. The
topologies we require are locally convex, so can in principle be described by a family of
semi-norms, however in the case of C∞c (Ω), it turns out to be quite subtle to do this.
Appendix A develops the topology in detail, for those who are interested. We shall simply
quote the following result:

Theorem 3.1. The set C∞c (Ω) can be endowed with a topology τ , such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to τ .

ii) A sequence {φj}∞j=1 ⊂ C∞c (Ω) tends to zero with respect to the topology τ if there
exists a compact K ⊂ Ω such that suppφj ⊂ K for all j ∈ N and for each multi-index
α we have:

sup
x∈K
|Dαφj | → 0,

as j →∞. Similarly, φj → φ with respect to τ if φj − φ→ 0.

We denote the set C∞c (Ω) equipped with the topology τ by D(Ω).

This topology is not a metric topology, so the description of the convergent sequences
is not the whole story, but for the purposes that we require, it will suffice. In particular,
for linear maps from D(Ω) into a locally convex vector space sequential continuity is
equivalent to continuity.

Example 5. Suppose φ ∈ D(Ω). Let δ be such that τxφ ∈ D(Ω) for |x| < δ. If
{xl}∞l=1 ⊂ Rn is a sequence with |x| < δ, and xl → 0, then

τxlφ→ φ, as l→∞.

49
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To see why this is so, recall that there exists ε > 0 such that suppφ+B2ε(0) ⊂ Ω. Suppose
that |x| < ε. Then

supp τxφ = suppφ+ x ⊂ suppφ+Bε(0) ⊂ suppφ+B2ε(0) ⊂ Ω.

Thus for i large enough, supp τxlφ ⊂ K := suppφ+Bε(0), where K is a compact subset
of Ω. Now for any multi-index α, Dαφ is a continuous function defined on a compact set,
hence is uniformly continuous. In particular this implies that

sup
K
|Dαφ(y + xl)−Dαφ(y)| → 0, as xl → 0,

which immediately gives us that τxlφ→ φ in D(Ω).

Example 6. Suppose φ ∈ D(Ω). For h > 0 sufficiently small, we define the forward
difference quotient:

∆h
i φ =

1

h
(τ−heiφ− φ)

with {ei}ni=1 the standard basis on Rn. Then

∆h
i φ→ Diφ, as h→ 0.

By the same argument as for the previous example, there exists a compact K ⊂ Ω such
that supp ∆h

i φ ⊂ K for h sufficiently small. By the mean value theorem, for each x ∈ K,
there exists tx ∈ (0, h) such that

Dα∆h
i φ(x) =

Dαφ(x+ hei)−Dαφ(x)

h
= DiD

αφ(x+ txei)

Fix ε > 0. Since DiD
αφ is continuous on K (hence uniformly continuous), there exists

δ > 0, independent of x such that If tx < δ we have

|DiD
αφ(x+ txei)−DiD

αφ(x)| < ε.

If we take h < δ, then tx < δ for all x and we conclude:

sup
x∈K
|DiD

αφ(x+ txei)−DiD
αφ(x)| < ε,

which implies
sup
x∈K

∣∣∣Dα∆h
i φ(x)−DαDiφ(x)

∣∣∣→ 0 as h→ 0.

Example 7. Fix φ ∈ D(R) with φ(x) 6≡ 0. The sequence:

φj(x) =
1

j
φ(x− j), j = 1, 2, . . .

does NOT converge in D(R). We have that

sup
R
|Dαφ| → 0, as j →∞,

but there is no compact set which contains the support of φj for all j.
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3.2 The space E (Ω)

The set C∞(Ω) can be given a topology in a fairly natural way. We recall that given
Ω ⊂ Rn open, we can find a sequence of compact sets Ki ⊂ Ω such that Ki ⊂ K◦i+1 and
Ω = ∪Ki. We define a family of semi-norms on C∞(Ω) by P = {pN}∞N=1, where for
N = 0, 1, 2, . . .

pN (φ) = sup
x∈KN ,|α|≤N

|Dαφ(x)| .

This is a separating family of seminorms, giving rise to a topology τP such that vector
space operations are continuous. We denote the set C∞c (Ω) equipped with the topology
τP by E (Ω). We can characterise the convergent sequences:

Theorem 3.2. A sequence {φj}∞j=1 ⊂ E (Ω) converges to zero if for every compact K ⊂ Ω
and for each multi-index α we have:

sup
x∈K
|Dαφj | → 0,

as j →∞. Similarly, φj → φ if φj − φ→ 0.

Since P is countable, the topology of E (Ω) comes from a translation invariant metric,
and moreover one can verify that it is complete, hence E (Ω) is a Fréchet space.

Example 8. Recall that C∞c (Ω) ⊂ C∞(Ω). If {φi}∞i=1 ⊂ C∞c (Ω) tends to 0 in D(Ω),
then φi → 0 in E (Ω). In fact, we can say more: the inclusion map ι : D(Ω) ↪→ E (Ω) is
continuous.

Example 9. Fix φ ∈ D(R) with φ(x) 6≡ 0, and consider the sequence:

φj(x) = jφ(x− j), j = 1, 2, . . .

This converges to 0 in E (R). For any compact K, suppφj ∩K = ∅ for j sufficiently large,
i.e., the support of φj eventually leaves any compact set. This shows that the topology of
D(Ω) is not simply the induced topology of C∞c (Ω) thought of as a subspace of E (Ω).

Exercise(∗). a) Suppose φ ∈ E (Rn). Let {xl}∞l=1 ⊂ Rn be a sequence with
xl → 0. Show that

τxlφ→ φ, as l→∞.

in E (Rn), where τx is the translation operator defined in equation (1.2).

b) Suppose φ ∈ E (Rn), show that

∆h
i φ→ Diφ, as h→ 0,

in E (Rn), where ∆h
i is the difference quotient defined in Example 6.
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3.3 The space S (Rn)

The spaces D(Ω) and E (Ω) are both defined on arbitrary open sets in Rn. The final
space of functions that we wish to consider is a subspace of E (Rn) consisting of functions
which are rapidly decreasing near infinity.

Definition 3.1. A function φ ∈ C∞(Rn) is said to be rapidly decreasing if:

sup
x∈Rn

∣∣(1 + |x|)NDαφ(x)
∣∣ <∞

for all multi-indices α and all N ∈ N.

Notice that rapidly decreasing functions and their derivatives decay faster than any
inverse power of |x| as |x| → ∞.

Example 10. i) Suppose φ ∈ C∞c (Rn), then φ is rapidly decreasing.

ii) The function x 7→ e−|x|
2

is rapidly decreasing.

The set of rapidly decreasing functions can be endowed with a topology as follows.
We define a family of semi-norms by P = {pN}∞N=1, where

pN (φ) = sup
x∈Rn,|α|≤N

∣∣(1 + |x|)NDαφ(x)
∣∣ .

This is a separating family of seminorms, giving rise to a topology τP such that vector
space operations are continuous. We denote the set of rapidly decreasing functions
equipped with the topology τP by S (Rn) or S . This is known as the Schwartz class of
functions. We can characterise the convergent sequences:

Theorem 3.3. A sequence {φj}∞j=1 of rapidly decreasing functions tends to zero in S if
for every multi-index α and N ∈ N we have:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣→ 0,

as j →∞. Similarly, φj → φ with respect to τ if φj − φ→ 0.

As for E (Rn), the topology on S is induced by a complete translation invariant
metric, so that S is a Fréchet space. The topology is not induced by a norm, so it cannot
be given a Banach space structure.

Lemma 3.4. The spaces D(Rn), S and E (Rn) satisfy:

D(Rn) ⊂ S ⊂ E (Rn).

Moreover, the inclusion map is continuous in each case.

Exercise 3.1. a) Show that S is a vector subspace of E (Rn). Show that if
{φj}∞j=1 is a sequence of rapidly decreasing functions which tends to zero in
S , then φj → 0 in E (Rn).
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b) Show that D(Rn) is a vector subspace of S . Show that if {φj}∞j=1 is a
sequence of compactly supported functions which tends to zero in D(Rn)
then φj → 0 in S .

c) Give an example of a sequence {φj}∞j=1 ⊂ C∞c (Rn) such that

i) φj → 0 in S , but φj has no limit in D(Rn).

ii) φj → 0 in E (Rn), but φj has no limit in S .

Exercise 3.2. For each X ∈ {D(Rn),S ,E (Rn)}, suppose φ ∈ X and establish:

a) If xl ∈ Rn, xl → 0, then

τxlφ→ φ, in X as l→∞,

where τx is the translation operator defined by τxφ(y) := φ(y − x).

b) If hl ∈ R, hl → 0, then

∆hl
i φ→ Diφ, in X as l→∞,

in X, where ∆h
i φ := h−1 [τ−heiφ− φ] is the difference quotient.

3.4 Distributions

The theory of distributions (sometimes called generalised functions) allows us to consider
familiar functions as sitting within a larger class of objects, which are in some sense easier
to manipulate, and in which certain equations are easier to solve. This is a familiar idea
in the context of complex numbers, which are introduced to extend the real numbers such
that every polynomial has a root.

To motivate the idea, recall the general linear PDE of order k,:

Lu :=
∑
|α|6k

aαD
αu = f, (3.1)

where we’ll assume that aα ∈ C∞(Ω) for an open Ω ⊂ Rn. We want to extend the notion
of a solution for this PDE to include the situation where u and f need not be of class
Ck(Ω). Let’s denote by X the space to which our generalised solution u and right hand
side f should belong. What properties do we require for X so that we can at least make
sense of the PDE (3.1)? We can start to make a list of desirable properties:

i) The smooth functions C∞(Ω) should be included in X in such a way that we can
recover them (i.e. the inclusion map ι : C∞(Ω) ↪→ X should be injective).

ii) X should be a vector space over C, and the vector space operations should be
compatible with the inclusion ι.

iii) We need to be able to multiply elements of X by elements of C∞(Ω).
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iv) We need to be able to differentiate elements of X. Moreover whatever definition for
‘differentiation’ we come up with, it should be compatible with the inclusion ι.

v) We need some topology on X such that the above operations are continuous.

The idea that we shall pursue is to consider the space of distributions to be the dual
space to that space of test functions, i.e. we take as our space D ′(Ω) the continuous dual
space of X:

Definition 3.2. A distribution u ∈ D ′(Ω) is a linear functional on the space of test
functions

u : D(Ω)→ C

which is continuous with respect to the topology of D(Ω).

We will state (but not prove) a criterion for continuity. Those interested in the proof
of this result will find it in the Appendix.

Theorem 3.5. Let u : D(Ω)→ C be a linear map. The following are equivalent:

i) u is continuous with respect to the topology of D(Ω).

ii) For each sequence {φj}∞j=1 ⊂ D(Ω) with φj → 0 in D(Ω), we have:

lim
j→∞

u [φj ] = 0.

iii) For each compact K ⊂ Ω, there exists N ∈ N and a constant C such that:

|u[φ]| 6 C sup
x∈K

∑
|α|6N

|Dαφ(x)| , for all φ ∈ C∞c (K). (3.2)

Remark. 1. By the linearity of u, condition ii) is equivalent to:

lim
j→∞

u [φj ] = u [φ] , for all φj → φ in D(Ω).

2. If there exists a single N ∈ N such that (3.2) holds for all compact K ⊂ Ω (possibly
with C depending on K), then we say that u has finite order. The least such N is
called the order of u.

For a general topological space (as opposed to a metric space) in order to establish
that a function is continuous, it is necessary to consider open sets and their pull-backs
etc. It is not usually enough to simply check continuity for sequences. The reason that
we can get away with it in this case is somewhat complicated, but boils down to the fact
that although the topology of D(Ω) does not arise as a metric topology, it is in some
sense the limit of a sequence of spaces which are metric.

We can think of a distribution as an operation which swallows a smooth function of
compact support and produces a real number. Let’s look at two important examples:
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Example 11. a) (The Dirac delta) For x ∈ Ω we define the distribution:

δxφ := φ(x) ∀ φ ∈ D(Ω).

b) If f ∈ L1
loc., we can define the distribution Tf by:

Tfφ :=

∫
Ω
f(x)φ(x)dx, ∀ φ ∈ D(Ω).

c) For φ ∈ D(R), we define:

P.V.

(
1

x

)
[φ] = lim

ε→0

[∫ −ε
−∞

φ(x)

x
dx+

∫ ∞
ε

φ(x)

x
dx

]
.

This is clearly linear (assuming the limit exists). By a change of variables, we can
re-write:

P.V.

(
1

x

)
[φ] = lim

ε→0

∫ ∞
ε

φ(x)− φ(−x)

x
dx

Note that
φ(x)− φ(−x)

x
=

∫ 1

−1
φ′(xt)dt

so that: ∣∣∣∣φ(x)− φ(−x)

x

∣∣∣∣ =

∣∣∣∣∫ 1

−1
φ′(xt)dt

∣∣∣∣ 6 2 sup
Rn

∣∣φ′∣∣ .
From this, we conclude that the limit ε → 0 above is well defined, and moreover, if
φ ∈ C∞c (BR(0)) then: ∣∣∣∣P.V.(1

x

)
[φ]

∣∣∣∣ 6 4R sup
Rn

∣∣φ′∣∣ .
We conclude that P.V.

(
1
x

)
defines a distribution of order at most one.

Exercise(∗). a) Show that δx, as defined in Example 11 is continuous and
linear, hence a distribution. Find the order.

b) Show that Tf , as defined in Example 11 is continuous and linear, hence a
distribution. Find the order.

c) By constructing a suitable sequence of smooth functions show that the order
of P.V.

(
1
x

)
is one.

3.5 Functions as distributions

Let’s have a look at how we’re doing with our ‘wish list’ of properties. For Property i)
we will take inspiration from part a) of the example above and define

ι : C∞(Ω) → D ′(Ω),
f 7→ Tf .
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In order to check that this is injective, we need to show that if Tf = Tg then f = g.
We shall prove this by showing that for any distribution of the form Tf , it is possible
to recover f by applying Tf to appropriately shifted and scaled bump functions. Recall
that in the proof of Theorem 1.10, we introduced the bump functions φε. The idea will
be to make use of our previous results about convolutions. We require a bit of notation
first. Recall that if φ : Rn → C, and x ∈ Rn we set τxφ(y) = φ(y − x). We introduce
the spatial inversion operator ·̌ defined by φ̌(y) = φ(−y). By convention, the translation
operator acts first, so that τxφ̌(y) = φ(x− y).

Theorem 3.6. Suppose f ∈ Ck(Ω), and let φε be as in Theorem 1.13. Define for any x
with d(x, ∂Ω) > ε:

fε(x) := Tf [τxφ̌ε].

Then for any compact subset K ⊂ Ω and any |α| 6 k we have:

sup
x∈K
|Dαfε(x)−Dαf(x)| → 0

as ε→ 0.

Proof. Fix K ⊂ Ω compact. Recall that by Lemma 1.14, there exists χ ∈ C∞c (Ω) such
that χ = 1 on K + Bδ(0) for some δ > 0. Take ε < δ. Then, since suppφε ⊂ Bε(0) we
have for x ∈ K:

fε(x) =

∫
Ω
f(y)τxφ̌ε(y)dy

=

∫
Ω
f(y)φε(x− y)dy

=

∫
Rn
χ(y)f(y)φε(x− y)dy

= φε ? (χf).

Here we have used the fact that when |x− y| < ε we have χ = 1 to insert the cut-off
function without altering the integral. Now, since χ is smooth, χf ∈ Ckc (Rn), so as ε→ 0,
we have by Theorem 1.13 that for any |α| 6 k:

Dα(φε ? (χf))→ Dα(χf)

uniformly on Rn as ε→ 0. In particular we have uniform convergence on K, so that:

sup
x∈K
|Dα(φε ? (χf))(x)−Dα(χf)(x)| → 0.

Since for x ∈ K we have φε ? (χf)(x) = fε(x) and χ(x) = 1, this is the result we
require.

This result immediately tells us that our map ι is injective.

Corollary 3.7. Suppose f, g ∈ C0(Ω). If Tf = Tg then f ≡ g. In particular this implies
ι : C∞(Ω) ↪→ D ′(Ω) is injective.
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Exercise(∗). Suppose f ∈ L1
loc.(Ω). Take φε as in Theorem 1.13, and define for

x with d(x, ∂Ω) > ε:
fε(x) := Tf

[
τxφ̌ε

]
.

Show that for any compact K ⊂ Ω:

‖fε − f‖L1(K) → 0

as ε→ 0.
[Hint: follow the proof of Theorem 3.6, but use part b) of Theorem 1.13]

3.6 Derivatives of distributions

Things are looking good for Property ii) because the dual space to a vector space is
naturally a vector space. If u1, u2 ∈ D ′(Ω) we define the sum u1 + u2 ∈ D ′(Ω) by:

(u1 + u2)φ = u1φ+ u2φ ∀ φ ∈ D(Ω).

It’s easy to check that this is linear and continuous from the properties of ui.
How about Property iii)? First, let’s notice that if a ∈ C∞(Ω) and φ ∈ C∞c (Ω) then

aφ ∈ C∞c (Ω). We can therefore define for u ∈ D ′(Ω) the product au ∈ D ′(Ω) by

(au)φ = u[aφ] ∀ φ ∈ D(Ω).

Now let’s consider Property iv). We want to find a definition for the derivative of a
distribution which gives the right answer when the distribution in question arises from a
smooth function f by the map ι : f 7→ Tf . If f ∈ C∞(Ω), then certainly Dif ∈ C∞(Ω).
Let’s consider TDif . We have:

TDifφ =

∫
Ω

[Dif ](x)φ(x)dx

Since φ ∈ C∞c (Ω), we can integrate by parts in this integral without picking up any
boundary terms to find

TDifφ = −
∫

Ω
f(x)[Diφ](x)dx

= −Tf [Diφ] .

Motivated by this, we define the Dα derivative of a distribution u to be the distribution
Dαu which acts on a test function φ ∈ C∞c (Ω) as:

(Dαu)[φ] := (−1)|α|u [Dαφ] .

The derivative we have defined on distributions extends the usual derivative for
functions defined as the linear approximation to the function at a point. The advantage
of the distributional derivative is that it is defined for any distribution. We’ll work out a
couple of examples:
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Example 12. a) The derivative of the Dirac delta acts on a test function φ ∈ C∞c (Ω)
by:

(Diδx)φ = −δx [Diφ] = − ∂φ
∂xi

(x), ∀ φ ∈ C∞c (Rn).

b) Consider the Heaviside function H : R→ R defined by

H(x) :=

{
1 x > 0,
0 x < 0.

This function is certainly not differentiable at x = 0. We can define the distribution
TH ∈ D ′(R) to be

THφ =

∫
R
H(x)φ(x)dx

for φ ∈ C∞c (R). We then compute:

(DxTH)φ = −TH [Dxφ]

= −
∫
R
H(x)φ′(x)dx

= −
∫ ∞

0
φ′(x)dx

= φ(0)

Here, we’ve used the fact that φ has compact support as well as the fact that H vanishes
for x < 0. Thus, we can say that

DxTH = δ0.

Thus we see that the theory of distributions allows us to give some sort of meaning to
the derivative of a functions whose classical derivative does not exist.

Exercise(∗). a) Show that if f1, f2 ∈ C0(Ω) and a ∈ C∞(Ω), then

aTf1 + Tf2 = Taf1+f2

b) Show that if f ∈ Ck(Ω) then

DαTf = TDαf

for |α| 6 k. Deduce that ι ◦Dα = Dα ◦ ι.

c) Deduce that if f ∈ Ck(Ω) then∑
|α|6k

aαD
αTf = TLf .

where
Lf =

∑
|α|6k

aαD
αf
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Exercise 3.3. Suppose u ∈ D ′(R) satisfies Du = 0. Show that u is a constant
distribution, i.e. there exists λ ∈ C such that:

u[φ] = λ

∫
R
φ(x)dx, for all φ ∈ D(R).

(*) Extend the result to Rn for n > 1.
[Hint: Fix φ0 ∈ D(R) and show that any φ ∈ D(R) may be written as φ(x) =
ψ′(x) + cφφ0(x) for some ψ ∈ D(R), cφ ∈ C.]

A useful result allows us to infer regularity of a function from the regularity of its
distributional derivatives:

Theorem 3.8. Suppose that f ∈ C0(Ω) defines the distribution Tf in the usual way and
suppose moreover that for any multi-index α with |α| 6 k there exists gα ∈ C0(Ω) such
that

DαTf = Tgα

where Dα is the distributional derivative. Then in fact f ∈ Ck(Ω) and Dαf = gα in the
sense of classical derivatives.

Proof. First we show the result for k = 1. Let us fix a compact subset K of Ω and let φε
be as in Theorem 1.13. Let us define for x ∈ K and ε sufficiently small:

fε(x) = Tf [τxφ̌ε] =

∫
Ω
f(y)φε(x− y)dy.

We know from Theorem 3.6 that fε → f uniformly on K as ε→ 0. Let us calculate

Difε(x) =

∫
Ω
f(y)

∂

∂xi
φε(x− y)dy

= −
∫

Ω
f(y)

∂

∂yi
φε(x− y)dy

= (DiTf ) [τxφ̌ε]

= (Tgi) [τxφ̌ε]

Now, as ε→ 0, we know that (Tgi) [τxφ̌ε]→ gi(x) uniformly on K. Thus we have

fε → f, Difε → gi

uniformly on K as ε→ 0. This implies that f ∈ C1(K), Dif = gi. Since this holds for
any compact set we have that f ∈ C1(Ω) with Dif = gi. By repeated application of the
k = 1 result, we can establish that the result holds for all k.

This tells us that the distributional derivative is essentially equivalent to the classical
derivative wherever both are defined and continuous. One should be careful, however.
There are examples of continuous functions whose derivative vanishes Lebesgue-almost
everywhere, but whose distributional derivative is not the zero distribution. You may
wish to look up the Cantor function.
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3.7 Convergence of distributions

Property v) of our ‘wish list’ is the only one that we’ve not yet addressed directly. We
wish to give D ′(Ω) a topology. In fact, as the continuous dual of a topological vector space,
it naturally carries the weak-? topology. For convenience, we recall the main features of
this topology:

Theorem 3.9. The vector space D ′(Ω) inherits a topology from D(Ω), the weak-? topology,
such that

i) The vector space operations on D ′(Ω) are continuous.

ii) A sequence {uj}∞j=1 ⊂ D ′(Ω) converges to zero in D ′(Ω) if

uj [φ]→ 0, for all φ ∈ D(Ω).

as j →∞. Similarly uj → u for u ∈ D ′(Ω) if uj − u→ 0.

Example 13. a) Suppose {fj}∞j=1 ⊂ C0(Ω) is a sequence of functions such that fj → 0
uniformly on any compact K ⊂ Ω. Then Tfj → 0 in D ′(Ω). To see this, note that for
any φ ∈ D(Ω), there exists a K such that suppφ ⊂ K. Then∣∣Tfj [φ]

∣∣ =

∣∣∣∣∫
K
fj(y)φ(y)dy

∣∣∣∣ 6 |K| sup
K
|fjφ|

but the right hand side is tending to zero, so Tfj [φ]→ 0 for any φ ∈ D(Ω).

b) A similar argument shows that if {fj}∞j=1 ⊂ L1
loc.(Ω) is a sequence such that ‖fj‖L1(K) →

0 for any compact K ⊂ Ω, then Tfj → 0 in D ′(Ω).

c) Let Ω = R. Define a distribution as follows. For φ ∈ D(Ω), set:

u[φ] =
∞∑

m=−∞
φ(|m|)(m)

For any given φ this sum will only have finitely many non-zero terms. It is straightfor-
ward to verify that u is itself a distribution, in fact it is an example of a distribution
of infinite order. Consider the sequence of distributions

uM =

M∑
m=−M

D|m|δm

Let φ ∈ D(Ω) be any test function. Then suppφ ⊂ BR(0), so for M > R, we have:

uM [φ] =

M∑
m=−M

φ(|m|))(m) = u[φ]

Thus we can write:

u =
∞∑

m=−∞
D|m|δm,

where the sum converges in D(Ω).
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d) Consider the bump functions τxφ̌ε for x ∈ Ω, where φε is as constructed in Theorem
1.13. Then:

Tτxφ̌ε → δx

in D ′(Ω) as ε→ 0. To see this, recall that for ψ ∈ D(Ω), and ε sufficiently small:

Tτxφ̌ε [ψ] =

∫
Ω
φε(y)ψ(x− y)dy =

∫
Rn
φε(y)ψ(x− y)dy = φε ? ψ(x).

By Theorem 1.13 we have Tτxφ̌ε [ψ]→ ψ(x) = δx[ψ]. Since ψ was arbitrary the result
follows.

3.8 Convolutions and the fundamental solution

What is the advantage of introducing distributions? Taking together various of the
properties we’ve considered above, we can formulate the following proposition.

Proposition 2. Suppose that f ∈ C0(Ω) and that T ∈ D ′(Ω) satisfies the distributional
equation: ∑

|α|6k

aαD
αT = Tf ,

for aα ∈ C∞(Ω) and that moreover there exist functions uα ∈ C0(Ω) such that DαT = Tuα .
Then u := u0 ∈ Ck(Ω) is a classical solution of the equation∑

|α|6k

aαD
αu = f.

This gives us a new approach to finding a classical solution for a linear PDE. We first
show that there exists a distribution which solves the PDE and then worry about whether
it is in fact a classical solution.

Now we are going to specialise to the case of linear operators of constant coefficients
defined on Rn. We will take L to be the partial differential operator

L :=
∑
|α|6k

aαD
α,

where aα are now assumed to be constant. We wish to find solutions to the distributional
equation

Lu = Tf

since by Proposition 2 we hope that this will lead to classical solutions w ∈ Ck(Ω) of the
equation ∑

|α|6k

aαD
αw = f,

A powerful approach to finding a distributional solution to a PDE is to first construct
a fundamental solution. For this, we will require the notion of a convolution. We will
specialise to the case where Ω = Rn, i.e. to distributions defined on all of space.

It’s useful to introduce the notion of the support of a distribution.
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Definition 3.3. A distribution u ∈ D ′(Ω) is supported in the closed set K ⊂ Ω if

u[φ] = 0 ∀ φ ∈ C∞c (Ω \K)

in other words if u gives zero when applied to any test function that vanishes on K. The
support of u, supp u is the set:

supp u =
⋂
{K : u supported in K}.

As an intersection of closed sets, this is closed. If there exists a compact K such that u is
supported in K then we say that u has compact support.

With this definition it is easy to see that for f ∈ C0(Ω), supp Tf = supp f where the
support of the function f is defined in the usual way as the closure of the set on which f
is non-zero. Also, one can easily check that if u is supported in K, then so is Dαu for
any multi-index α.

Exercise(∗). Show that
supp δx = {x}.

Deduce that there is no function f ∈ C0(Ω) such that δx = Tf .

Suppose that f ∈ C0(Rn) and φ ∈ C∞c (Rn). Recall that the convolution of the two
functions is defined to be

(f ? φ)(x) =

∫
Rn
f(y)φ(x− y)dy.

So that
(f ? φ)(x) = Tf

[
τxφ̌
]
.

Now, we can see that it is straightforward to define the convolution of any distribution
u ∈ D ′(Rn) with a test function φ ∈ D(Rn) by the formula:

(u ? φ)(x) := u
[
τxφ̌
]
.

Lemma 3.10 (Properties of convolutions). Suppose u, ui ∈ D ′(Rn) and φ ∈ D(Rn).
Then

i) If
u1 ? φ = u2 ? φ for all φ ∈ D(Rn),

then u1 = u2.

ii) u ? φ ∈ C∞(Rn) and

Dα(u ? φ) = u ? Dαφ = Dαu ? φ. (3.3)

iii) We have:
suppu ? φ ⊂ suppu+ suppφ.

In particular, if u has compact support, then u ? φ has compact support, and
u ? φ ∈ D(Rn).
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Proof. i) Notice that u[φ] = (u ? φ̌)(0), so we deduce that

u1φ = (u1 ? φ̃)(0) = (u2 ? φ̃)(0) = u2φ

for any test function φ, thus u1 = u2.

ii) We calculate

∆h
i [u ? φ] (x) =

(u ? φ)(x+ hei)− (u ? φ)(x)

h
=

1

h

(
u
[
τ(x+hei)φ̌

]
− u

[
τxφ̌
])

= u

[
1

h

(
τ(x+hei)φ̌− τxφ̌

)]
= u[∆h

i τxφ̌]

here we use the linearity of u. Now, if φ ∈ C∞c (Rn), then

lim
h→0

∆h
i τxφ̌ = lim

h→0

φ(x+ hei − y)− φ(x− y)

h

= Diφ(x− y)

=
(
τx ˇ(Diφ)

)
(y)

with convergence in the topology of D(Rn). As a result, using the continuity of the
distribution, we have that

lim
h→0

∆h
i [u ? φ] (x) = u

[
τx ˇ(Diφ)

]
= (u ? Diφ) (x).

Repeating the argument for higher derivatives, we conclude that the first equality
of (3.3) holds. To get the second equality, we calculate:

Dα
[
τxφ̌
]

(y) =
∂|α|

∂yα
[φ(x− y)]

= (−1)|α| (Dαφ)(x− y)

= (−1)|α|
[
τx ˇ(Dαφ)

]
(y)

Now, using the definition of the derivative of a distribution:

(Dαu ? φ)(x) = Dαu
[
τxφ̌
]

= (−1)|α|u
[
Dα
(
τxφ̌
)]

= (−1)|α|u
[
(−1)|α|

[
τx ˇ(Dαφ)

]]
= u

[
τx ˇ(Dαφ)

]
= (u ? Dαφ)(x).

iii) Suppose for x ∈ Rn that u ? φ(x) 6= 0. Then we must have

suppu ∩ supp τxφ̌ 6= ∅.
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In particular, there is z ∈ suppu such that τxφ̌(z) = φ(x− z) 6= 0. Thus x− z ∈
suppφ for z ∈ suppu, and we conclude:

{x : u ? φ(x) 6= 0} ⊂ suppu+ suppφ.

Since suppφ is compact and suppu is closed, suppu+ suppφ is closed, and so:

suppu ? φ = {x : u ? φ(x) 6= 0} ⊂ suppu+ suppφ.

We would like to define the convolution of two distributions. To do this, we recall
that if f, g, h ∈ C0

c (Rn) then

(f ? g) ? h = f ? (g ? h), (3.4)

so that the convolution is associative. Motivated by this, we define:

Definition 3.4. Suppose u1, u2 ∈ D ′(Rn) are distributions and that u2 has compact
support. The convolution u1 ? u2 is the unique distribution which satisfies

(u1 ? u2) ? φ = u1 ? (u2 ? φ)

for all test functions φ ∈ D(Rn).

Notice that the fact that u2 has compact support is required for this definition to
make sense, as it ensures (u2 ? φ) is a test function. Since we can recover a distribution
from its convolution with an arbitrary test function, this defines u1 ? u2.

Exercise(∗). a) Show that for f, g ∈ C0
c (Rn):

Tf?g = Tf ? Tg.

b) Show that convolution is linear in both of its arguments, i.e. if ui ∈ D ′(Rn)
and u3, u4 have compact support then

(u1 + au2) ? u3 = u1 ? u3 + au2 ? u3

and
u1 ? (u3 + au4) = u1 ? u3 + au1 ? u4

where a ∈ C is a constant.

Exercise 3.4. Let X ∈ {D(Rn),S ,E (Rn)}. For u ∈ X ′, x ∈ Rn, define τxu
by τxu[φ] = u[τ−xφ] for all φ ∈ X, and let ∆h

i u = h−1 [τ−heiu− u]. Show that
∆h
i u→ Diu as h→ 0 in the weak-∗ topology of X ′.

Exercise 3.5. Suppose u ∈ D ′(R) satisfies xu = 0. Show that u = cδ0 for some
c ∈ C. Find the most general u ∈ D ′(R) which satisfies xku = 0 for some k ∈ N.

Theorem 3.11. Suppose that u1, u2 ∈ D ′(Rn) are distributions and that u2 has compact
support. Then

Dα(u1 ? u2) = u1 ? D
αu2 = Dαu1 ? u2 (3.5)
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Proof. We will consider the convolution of the distribution Dα(u1 ? u2) with an arbitrary
test function φ and use the definition of the convolution, together with the previous
Lemma to shuffle the derivatives around:

Dα(u1 ? u2) ? φ = (u1 ? u2) ? Dαφ

= u1 ? (u2 ? D
αφ)

= u1 ? (Dαu2 ? φ)

= (u1 ? D
αu2) ? φ,

which establishes the first equality in (3.5) since φ was arbitrary. For the second equality,
we note

(u1 ? D
αu2) ? φ = u1 ? (Dαu2 ? φ)

= u1 ? D
α(u2 ? φ)

= Dαu1 ? (u2 ? φ)

= (Dαu1 ? u2) ? φ,

again since φ was arbitrary we’re done.

Exercise(∗). a) Show that if φ ∈ D(Rn) then

δ0 ? φ = φ

b) Show that if u ∈ D ′(Rn) has compact support, then

δ0 ? u = u

Now let us introduce the notion of a fundamental solution to a linear PDE. We say
that a distribution G is a fundamental solution of the partial differential operator with
constant coefficients L

L :=
∑
|α|6k

aαD
α

where aα are constants if it satisfies the distributional equation:

LG = δ0

The reason that this is useful is the following:

Lemma 3.12. Suppose that G ∈ D ′(Rn) is a fundamental solution of L and let u0 ∈
D ′(Rn) be a distribution of compact support. Then the distribution u := G ? u0 solves the
distributional equation ∑

|α|6k

aαD
αu = u0.
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Proof. First note that the linearity and differentiability properties of the convolution
imply that

L(G ? u0) =
∑
|α|6k

aαD
α(G ? u0)

=
∑
|α|6k

aα(DαG ? u0) [Lemma 3.10]

=

∑
|α|6k

aαD
αG

 ? u0 [Linearity]

= (LG) ? u0

Now, use the definition of the fundamental solution to obtain

L(G ? u0) = δ0 ? u0 = u0

since the convolution of a distribution with δ0 gives back the distribution (Exercise
3.8).

Thus, once we can find a fundamental solution, we can essentially solve the equation
Lu = u0 for an arbitrary right hand side. Rather crudely, we can think of the Dirac delta
distribution as an identity. Then the fundamental solution provides an inverse to the
operator L.

3.8.1 An example: Poisson’s equation

Consider the following classical PDE problem. Given f ∈ C2
c (R3), find a w ∈ C2(R3)

such that:
∆w = f.

Here the Laplace operator is given by:

∆ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3.6)

Following the procedure outlined above, we will first turn the equation into the distribu-
tional PDE, and seek u ∈ D ′(R3) such that:

∆u = Tf . (3.7)

If we can find a G such that
∆G = δ0,

then we can write down a solution of (3.7) by convolution. There are several ways to find
such a G. We will note two facts (which we will not attempt to prove at this stage)

• The Laplace operator and δ0 are both invariant under rotations about the origin.
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• The Laplace operator is elliptic. In particular, it has the property of elliptic
regularity. Roughly speaking this means that if a distribution u satisfies ∆u = 0 on
some open set, then u is a smooth function (thought of as a distribution).

Based on these observations, it is reasonable to suspect that we can write G = Tg for
g ∈ C∞(R3 \ {0}) a radial function g = g(r). Since g must satisfy the Laplace equation
away from the origin, and is spherically symmetric, we have (on changing to polar
coordinates):

d2

dr2
(rg) = 0, r > 0.

Thus:
g =

A

r
+B.

Clearly, since we can add a constant to any solution of (3.6), B is arbitrary and we choose
it to be 0. Let us proceed leaving A arbitrary. We shall eventually see that A = −(4π)−1.
Note that g ∈ L1

loc.(R3), so defines a distribution in the natural way.
We wish to show that for a suitable choice of A, the distribution G = Tg satisfies

(3.7). To show this, we take φ ∈ D(R3) to be arbitrary, and choose R > 0 such that
suppφ ⊂ BR(0). We calculate:

∆Tg [φ] = Tg∆ [φ]

=

∫
R3

g(x)∆φ(x)dx

= lim
ε→0

∫
BR(0)\Bε(0)

g(x)∆φ(x)dx.

In the last line, we use the dominated convergence theorem to justify the limit. The
reason that we have inserted this limit is that on BR(0) \Bε(0) the integrand is smooth,
so we are entitled to apply the divergence theorem. Note that for ψ1, ψ2 smooth functions,
we have the identity:

∇ · (ψ1∇ψ2 − ψ2∇ψ1) = ψ1∆ψ2 − ψ2∆ψ1.

Integrating this identity over BR(0) \ Bε(0) with ψ1 = g, ψ2 = φ and applying the
divergence theorem, we have:∫
BR(0)\Bε(0)

g(x)∆φ(x)dx =

∫
∂(BR(0)\Bε(0))

[
g
∂φ

∂n
− φ∂g

∂n

]
dσ +

∫
BR(0)\Bε(0)

∆g(x)φ(x)dx

=

∫
∂Bε(0)

[
φ
∂g

∂n
− g∂φ

∂n

]
dσ

In passing from the first to second line we have noted that ∆g = 0 away from the origin,
and also that φ = 0 in a neighbourhood of ∂BR(0). The change of sign comes from the
fact that ∂Bε(0) is an inner boundary. Now, we estimate:

sup
y∈∂Bε(0)

∣∣∣∣g(y)
∂φ

∂n
(y)

∣∣∣∣ = sup
y∈∂Bε(0)

|A|
ε

∣∣∣∣∂φ∂n(y)

∣∣∣∣ 6 |A|ε sup
R3

|Dφ| .
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Thus: ∣∣∣∣∣
∫
∂Bε(0)

g
∂φ

∂n
dσ

∣∣∣∣∣ 6 4πε2 × |A|
ε

sup
R3

|Dφ| → 0,

as ε → 0. For the other term, note that on ∂Bε(0), ∂
∂n = ∂

∂r , so that for y ∈ Bε(0) we
have:

φ(y)
∂g

∂n
(y) =

−A
ε2
φ(y).

We therefore have:∫
∂Bε(0)

φ
∂g

∂n
dσ = (−4πA)× 1

|∂Bε(0)|

∫
∂Bε(0)

φ(y)dσy.

Now, for any δ > 0, since φ is continuous, there exists ε > 0 such that |φ(y)− φ(0)| < δ
for all y ∈ Bε(0). We estimate:∣∣∣∣∣ 1

|∂Bε(0)|

∫
∂Bε(0)

φ(y)dσy − φ(0)

∣∣∣∣∣ =

∣∣∣∣∣ 1

|∂Bε(0)|

∫
∂Bε(0)

(φ(y)− φ(0)) dσy

∣∣∣∣∣
6

1

|∂Bε(0)|

∫
∂Bε(0)

|φ(y)− φ(0)| dσy

< δ × 1

|∂Bε(0)|

∫
∂Bε(0)

dσy = δ.

Thus, we conclude:

lim
ε→0

1

|∂Bε(0)|

∫
∂Bε(0)

φ(y)dσy = φ(0).

Putting this all together, we have:

∆Tg [φ] = (−4πA)× φ(0) = (−4πA) δ0 [φ] .

Thus if A = −(4π)−1, we deduce that ∆Tg = δ0, and so G = Tg is a fundamental solution.
We conclude that if f ∈ C0

c (R3), then a solution of the distributional equation (3.7)
is given by:

u = Tg ? Tf = Tg?f .

If f ∈ C2
c (R3), the we know that g ?f ∈ C2(R3), and moreover that w = g ?f is a solution

of the classical equation (3.6). Thus, the solution we seek is:

w(x) =
−1

4π

∫
R3

f(y)

|x− y|
dy.

By examining this integral more carefully, it is possible to show that assuming f ∈ C2
c (R3)

in order to get w ∈ C2(R3) is overkill. In fact, it suffices to have f ∈ C0,α
0 (R3) for some

0 < α 6 1, where a function belongs to the Hölder space C0,α
0 (R3) if it has compact

support, and there exists a constant C such that:

|f(x)− f(y)| 6 C |x− y|α ,

holds for any x, y ∈ R3. This is the subject of the Schauder estimates for elliptic PDE
(see “Elliptic Partial Differential Equations of Second Order”, Gilbarg and Trudinger).
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3.9 Distributions of compact support

Recall that as well as the space D(Ω) of test functions, we also defined the space
E (Ω) consisting of smooth functions on Ω where the topology is such that a sequence
{φj}∞j=1 ⊂ E (Ω) converges to zero in E (Ω) if for any compact K ⊂ Ω and any multiindex
α we have:

sup
x∈K
|Dαφj(x)| → 0.

It is natural to define E ′(Ω) to be the set of continuous linear maps E (Ω) → C.
Since the topology of E (Ω) is induced by a metric, continuity is equivalent to sequential
continuity. For a linear map u : E (Ω)→ C to belong to E ′(Ω), it is enough that:

lim
j→∞

u [φj ] = 0

for any sequence {φj}∞j=1 ⊂ E (Ω) which converges to zero in E (Ω). Notice that if
u ∈ E ′(Ω), then since D(Ω) is a subspace of E (Ω), u : D(Ω) → C is a linear map.
Moreover, we know that if {φj}∞j=1 is a sequence tending to zero in D(Ω), then it also
tends to zero in E (Ω). Thus u ∈ E ′(Ω) is naturally an element of D ′(Ω), we have:

E ′(Ω) ⊂ D ′(Ω).

We are justified then in referring to elements of E ′(Ω) as distributions.
We can give a useful characterisation of continuity for linear maps from E (Ω) to C as

follows:

Lemma 3.13. Suppose u : E (Ω)→ C is a linear map. Then u is continuous if and only
if there is some compact K ⊂ Ω, N ∈ N and C > 0 such that:

|u[φ]| 6 C sup
x∈K;|α|6N

|Dαφ(x)| , for all φ ∈ E (Ω). (3.8)

Proof. First we show that (3.8) implies that u is continuous. Pick a sequence {φj}∞j=1 ⊂
E (Ω) which converges to zero in E (Ω). This means that for all α and any compact
K ′ ⊂ Ω we have

sup
x∈K′

|Dαφ(x)| → 0.

In particular, this holds with K ′ = K and for all α with |α| 6 N , so as j →∞ we have:

|u[φj ]| 6 C sup
x∈K;|α|6N

|Dαφj(x)| → 0,

and so u is continuous.
To show the opposite implication, we assume that (3.8) does not hold for any K,N,C.

We take an exhaustion of Ω by compact sets Ki, i = 1, 2, . . . such that Ki ⊂ K◦i+1 and
Ω = ∪iKi (see Lemma A.6). Then since (3.8) does not hold for any K,N,C, in particular
it does not hold for K = Kj , N = j and C = j. Thus there must exist φj ∈ E (Ω) such
that:

|u[φj ]| > j sup
x∈Kj ;|α|6j

|Dαφj(x)| .
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We define:
ψj(x) =

φj(x)

|u[φj ]|
Clearly ψj ∈ E (Ω). We claim that ψj → 0 in E (Ω). To see this, fix a compact K ⊂ Ω
and a multiindex α. For sufficiently large j, K ⊂ Kj and j > |α|. Thus:

sup
x∈K
|Dαφj(x)| 6 sup

x∈Kj ;|β|6j

∣∣∣Dβφj(x)
∣∣∣

as a result, we can estimate:

sup
x∈K
|Dαψj(x)| = 1

|u[φj ]|
sup
x∈K
|Dαφj(x)|

<
supx∈K |Dαφj(x)|

j supx∈Kj ;|β|6j |Dβφj(x)|
<

1

j

We conclude that Dαψj tends to zero on K, but since α and K were arbitrary, this
implies ψj → 0 in E (Ω). However, u[ψj ] 6→ 0 since |u[ψj ]| = 1 by construction. Thus u is
not continuous. This establishes that if u is continuous, then (3.8) must hold for some
K,N,C.

With this result in hand, we can give some examples of distributions u ∈ E ′(Ω).

Example 14. i) If f ∈ C0
c (Ω), then defining as usual:

Tf [φ] =

∫
Ω
φ(x)f(x)dx, for all φ ∈ E (Ω)

we have Tf ∈ E ′(Ω), since:

|Tf [φ]| 6
∫

Ω
|f(x)| dx sup

y∈supp f
|φ(y)| .

If f ∈ C0(Ω) but supp f is not compact, then Tf 6∈ E (Ω).

ii) If x ∈ Ω, then then setting:

δx[φ] = φ(x) for all φ ∈ E (Ω),

we have δx ∈ E ′(Ω). If K is any compact set containing x, then:

|δx[φ]| 6 sup
y∈K
|φ(y)| .

iii) The map u : D(R)→ C

u[φ] =
∞∑

m=−∞
φ(m) (3.9)

does not define a distribution in E ′(R). Indeed, the sum need not converge for any
given element of E (R). For example, the constant function φ(x) = 1 belongs to E (R),
but the sum in (3.9) does not converge for this test function.



3.9 Distributions of compact support 71

In these examples we see that elements of E ′(Ω) have compact support, while distri-
butions with non-compact support do not appear to make sense when applied to elements
of E (Ω). In fact this is a more general result:

Theorem 3.14. Suppose u ∈ E ′(Ω). Then u ∈ D ′(Ω) and u has compact support.
Conversely, suppose that u ∈ D(Ω) has compact support. Then there exists a unique
ũ ∈ E ′(Ω) such that

ũ[φ] = u[φ] for all φ ∈ D(Ω).

We say that ũ is the extension of u as a linear map on E (Ω).

Proof. Suppose u ∈ E ′(Ω). We have already argued that u ∈ D ′(Ω) in a natural fashion,
so it remains to show that suppu is compact. By Lemma 3.13 there exists some compact
K ⊂ Ω and N ∈ N, C > 0 such that:

|u[φ]| 6 C sup
x∈K;|α|6N

|Dαφ(x)| , for all φ ∈ E (Ω).

Now suppose that suppφ ⊂ Ω \ K. From the estimate above, we have that u[φ] = 0.
Thus suppu ⊂ K and we must have that suppu is compact.

Now suppose that u ∈ D ′(Ω) has compact support. By Lemma 1.14 we know that
there exists χ ∈ C∞c (Ω) such that χ = 1 on suppu. For φ ∈ E (Ω), we define:

ũ[φ] = u[χφ].

This makes sense because χφ is compactly supported in Ω, so u[χφ] is defined. If φj → 0
in E (Ω), then χφj → 0 in D(Ω) (see Exercise 3.9). Thus ũ ∈ E ′(Ω). We also note that if
φ ∈ D(Ω), then χφ− φ has support in Ω \ suppu. Thus:

0 = u [χφ− φ] = ũ[φ]− u[φ],

so that ũ and u agree on D(Ω). It remains to show that ũ is unique. Suppose ṽ ∈ E ′(Ω)
satisfies

ũ[φ] = ṽ[φ] for all φ ∈ D(Ω).

Let ψ ∈ E (Ω) be arbitrary. We can find φj ∈ D(Ω) such that φj → ψ in E (Ω) (see
Exercise 3.9). We have, using the continuity of ũ, ψ̃:

ũ[ψ] = lim
j→∞

ũ[φj ] = lim
j→∞

ṽ[φj ] = ṽ[ψ].

Thus ũ = ṽ, since ψ was arbitrary.

Exercise(∗). a) Suppose that {φj}∞j=1 ⊂ E (Ω) is a sequence such that φj → φ
in E (Ω), and χ ∈ D(Ω). Show that

χφj → χφ in D(Ω).

b) Show that if ψ ∈ E (Ω), then there exists a sequence {φj}∞j=1 ⊂ D(Ω) such
that φj → ψ in E (Ω).
[Hint: Take an exhaustion of Ω by compact sets and apply Lemma 1.14]
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3.10 Tempered distributions

The final class of distributions that we shall consider are the tempered distributions. The
space of tempered distributions arises as the continuous dual of S , the Schwartz space of
rapidly decreasing functions. Recall that φ ∈ S if φ ∈ C∞(Rn) and for any multiindex
and any N ∈ N we have:

sup
x∈Rn

∣∣(1 + |x|)NDαφ(x)
∣∣ <∞.

We say that a sequence {φj}∞j=1 ⊂ S tends to zero if:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣→ 0

for all N ∈ N and all multiindices α.
We define S ′ to be the continuous dual space of S . That is to say, u ∈ S ′ if

u : S → C is a continuous linear map. Since the topology of S can be induced by a
metric, again sequential continuity is equivalent to continuity. For a linear map u : S → C
to belong to S ′, it is enough that:

lim
j→∞

u[φj ]→ 0,

for any sequence {φj}∞j=1 ⊂ S which converges to zero in S .

Lemma 3.15. Suppose u : S → C is a linear map. Then u is continuous if and only if
there exist N, k ∈ N and C > 0 such that:

|u[φ]| 6 C sup
x∈Rn;|α|6k

∣∣(1 + |x|)NDαφ(x)
∣∣ , for all φ ∈ S . (3.10)

Proof. See Exercise 3.6

Example 15. i) Suppose f ∈ L1
loc.(Rn) and there exist C > 0, N ∈ N such that

|f(x)| 6 C(1 + |x|)N .

Then Tf ∈ S ′

ii) The map:

φ 7→
∫
Rn
e|x|

2

φ(x)dx

does not define a tempered distribution.

iii) For φ ∈ C∞(R), and N ∈ N we set:

u[φ] =

∞∑
m=−∞

mNφ(m).

The sum converges for φ ∈ S , and defines a tempered distribution.
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From these examples, and Lemma 3.15, we see that the tempered distributions are
those that don’t grow too much near infinity.

Exercise 3.6. Suppose u : S → C is a linear map. Show that u is continuous
if and only if there exist N, k ∈ N and C > 0 such that:

|u[φ]| 6 C sup
x∈Rn;|α|6k

∣∣(1 + |x|)NDαφ(x)
∣∣ , for all φ ∈ S .

Exercise 3.7. Suppose u ∈ D ′(Rn) is positive, i.e. u[φ] ≥ 0 for all φ ∈ D(Rn)
with φ ≥ 0. Show that u has order 0. (*) Deduce that u[φ] =

∫
Rn φdµ for some

regular measure µ.

Exercise(∗). Let (aj)
∞
j=−∞ be a sequence of complex numbers. Define for

φ ∈ C∞(R):

u[φ] =

∞∑
j=−∞

ajφ(j)

provided that the sum converges. Give necessary and sufficient conditions on aj
such that: a) u ∈ E ′(R), b) u ∈ S ′, c) u ∈ D ′(R).



Chapter 4

The Fourier Transform and Sobolev Spaces

4.1 The Fourier transform on L1(Rn)

The Fourier transform is an extremely powerful tool across the full range of mathematics.
Loosely speaking, the idea is to consider a function on Rn as a superposition of plane waves
with different frequencies. For f ∈ L1(Rn), we define the Fourier transform f̂ : Rn → C
by:

F [f ](ξ) = f̂(ξ) :=

∫
Rn
f(x)e−ix·ξdx.

Sine
∣∣f(x)e−ix·ξ

∣∣ 6 |f(x)|, the integral is absolutely convergent, and f̂(ξ) makes sense for
each ξ ∈ Rn.

Example 16. i) Suppose f ∈ L1(R) is the “top hat” function, defined by:

f(x) =

{
1 −1 < x < 1,
0 |x| > 1.

We calculate:

f̂(ξ) =

∫ 1

−1
e−ixξdx =

[
e−ixξ

−iξ

]1

−1

= 2
sin ξ

ξ

Notice that f̂(ξ) is continuous (in fact smooth) on R. We also have f̂(ξ) → 0 as
ξ →∞.

ii) Suppose f ∈ L1(R) is defined by:

f(x) =

{
ex x < 0,
e−x x > 0.

74
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Then:

f̂(ξ) =

∫ 0

−∞
ex(1−iξ)dx+

∫ ∞
0

ex(−1−iξ)dx

=

[
ex(1−iξ)

1− iξ

]0

−∞

+

[
ex(−1−iξ)

−1− iξ

]∞
0

=
1

1− iξ
+

1

1 + iξ
=

2

1 + ξ2

Again, notice that f̂ is smooth and decays for large ξ.

iii) Consider g ∈ L1(R) given by

g(x) =
1

1 + x2
.

We have:

ĝ(ξ) =

∫ ∞
−∞

e−ixξ

1 + x2
dx

We can consider this as a limit of contour integrals:

ĝ(ξ) = lim
R→∞

∫
γR

e−izξ

1 + z2
dx.

Where γR = {=(z) = 0, |<(z)| < R}. For ξ > 0, we can close the contour with
a semi-circle in the lower half-plane, and we pick up a contribution from the pole
at z = −i. The contribution from the curved part of the contour tends to zero as
R→∞ by Jordan’s lemma, and we find:

ĝ(ξ) = πe−ξ, ξ > 0.

For ξ < 0, we close the contour in the upper half-plane, picking up a contribution
from the pole at z = i and again discard the contribution from the curved part of the
contour in the limit. We find:

ĝ(ξ) = πeξ, ξ < 0.

In conclusion, we have:

ĝ(ξ) =

{
πeξ ξ < 0,
πe−ξ ξ > 0.

iv) Consider now for x ∈ Rn the Gaussian f(x) = e−
1
2
|x|2. We calculate:

f̂(ξ) =

∫
Rn
e−

1
2
|x|2−iξ·xdx

=

∫
Rn
e−

1
2

(x−iξ)·(x−iξ)− 1
2
|ξ|2dx

= e−
1
2
|ξ|2
(∫

R
e−

1
2

(x1−iξ1)2dx1

)
· · ·
(∫

R
e−

1
2

(xn−iξn)2dxn

)
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By shifting a contour in the complex plane, which is justified since e−z2 is entire and
rapidly decaying as z approaches infinity along any line parallel to the real axis, we
can show that: ∫

R
e−

1
2

(x1−iξ1)2dx1 =

∫
R
e−

1
2
x21dx1 =

√
2π.

We deduce that:
f̂(ξ) = (2π)

n
2 e−

1
2
|ξ|2

Notice that this is (as a function) equal to f up to a factor.

We will make some casual observations at this stage. In all of our examples, we saw
that the Fourier transformed function decays towards infinity. For examples iii), iv) we see
very rapid (exponential) decay of the Fourier transform, while in examples i), ii) the decay
is only polynomial. In all examples the transformed function is continuous. In examples
i), ii), iv) it is in fact smooth, while for iii) the Fourier transform has a discontinuous
first derivative. Reflecting on this, one sees that these two features appear to be dual to
one another: if f is smooth, then f̂ has rapid decay towards infinity. If f decays rapidly
near infinity, then f̂ is smooth. This is in fact a general feature of the Fourier transform
smoothness and decay are dual to one another under the transform.

We shall now make some of these observations more precise.

Lemma 4.1 (Riemann-Lebesgue Lemma). Suppose f ∈ L1(Rn). Then f̂ ∈ C0(Rn) with
the estimate:

sup
ξ∈Rn

∣∣∣f̂(ξ)
∣∣∣ 6 ‖f‖L1 (4.1)

and moreover f̂(ξ)→ 0 as |ξ| → ∞.

Proof. To establish the continuity of f̂ , we use the continuity of the exponential, together
with the dominated convergence theorem. Let {ξj}∞j=1 be any sequence with ξj → ξ as
j →∞. Recalling the definition of the integral, we have:

f̂(ξj) =

∫
Rn
f(x)e−ix·ξjdx.

Now, clearly for x ∈ Rn we have:

f(x)e−ix·ξj → f(x)e−ix·ξ, as j →∞

so we have pointwise convergence of the integrand. We can also estimate:∣∣∣f(x)e−ix·ξj
∣∣∣ 6 |f(x)|

so the integrand is dominated by an integrable function, since f ∈ L1(Rn). Applying the
Dominated Convergence Theorem, we conclude:

f̂(ξj)→ f̂(ξ), as j →∞.
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This implies that f̂(ξ) is continuous. We can readily estimate:

sup
ξ∈Rn

∣∣∣f̂(ξ)
∣∣∣ = sup

ξ∈Rn

∣∣∣∣∫
Rn
f(x)e−ix·ξdx

∣∣∣∣ 6 sup
ξ∈Rn

∫
Rn
|f(x)| dx = ‖f‖L1 .

This establishes the first part of the Lemma. To establish the second part, we make use
of an approximation argument. Chapter 1 that if f ∈ L1(Rn), we can approximate f by
an element of C∞0 (Rn). Given ε > 0, there exists fε ∈ C∞0 (Rn) with

‖f − fε‖L1 <
ε

2
.

Now, in the integral for f̂ε we can integrate by parts::

f̂ε(ξ) =

∫
Rn
fε(x)e−ix·ξdx

=

∫
Rn
fε(x) div

(
ξ

−i |ξ|2
e−ix·ξ

)
dx

= −
∫
Rn

ξ

−i |ξ|2
·Dfε(x)e−ix·ξdx

so that for each i = 1, . . . , n we have, by the Cauchy-Schwarz inequality:∣∣∣f̂ε(ξ)∣∣∣ =

∣∣∣∣∫
Rn

ξ

i |ξ|2
·Dfε(x)e−ix·ξdx

∣∣∣∣
6
∫
Rn

∣∣∣∣ ξ

i |ξ|2
·Dfε(x)e−ix·ξ

∣∣∣∣ dx (4.2)

6
∫
Rn

1

|ξ|
|Dfε(x)| dx

=
1

|ξ|

∣∣∣∣∣∣ |Dfε(x)|
∣∣∣∣∣∣
L1

From this, we conclude that there exists R > 0 such that if |ξ| > R, we have
∣∣∣f̂ε(ξ)∣∣∣ < ε

2 .
For |ξ| > R we calculate: ∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣f̂(ξ)− f̂ε(ξ) + f̂ε(ξ)

∣∣∣
6
∣∣∣f̂ε(ξ)∣∣∣+

∣∣∣f̂(ξ)− f̂ε(ξ)
∣∣∣

6
∣∣∣f̂ε(ξ)∣∣∣+ ‖f − fε‖L1 < ε.

In the last line, we have used (4.1), together with the linearity of the Fourier transform.
Since ε > 0 was arbitrary, we have shown that

∣∣∣f̂(ξ)
∣∣∣→ 0.

Remark. The argument above is another example of an approximation argument where
one first proves the result on a suitably nice dense subset then extends to the full space by
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continuity. In this case, we are using the fact that the Fourier transform is a bounded (hence
continuous) linear operator from L1(Rn) to the Banach space of continuous functions
decaying at infinity equipped with the uniform norm. The dense set is C∞0 (Rn) ⊂ L1(Rn).

Another tactic which we used here was to use integration by parts to exploit the rapid
oscillations in the e−ix·ξ factor when |ξ| is large.

One might be tempted to infer from (4.2) that
∣∣∣f̂(ξ)

∣∣∣ 6 C(1 + |ξ|)−1. While this is
true for each fε approximating f , in general the constant C will grow larger and larger as
ε→ 0, so we cannot quite come to this conclusion.

Exercise(∗). For ξ ∈ Rn, define eξ(x) = eiξ·x. Show that Teξ ∈ S ′, and that:

Teξ → 0, as |ξ| → ∞

in the weak-∗ topology of S ′.

We shall prove some important properties of the Fourier transform. Recall that
τyf(x) = f(x− y), and introduce the character ey(x) = eiy·x.

Lemma 4.2 (Properties of the Fourier transform). i) Suppose f ∈ L1(Rn), x ∈ Rn,
λ > 0 and fλ(y) = λ−nf(λ−1y). Then

f̂λ(ξ) = f̂(λξ) (êxf)(ξ) = τxf̂(ξ) τ̂xf(ξ) = e−x(ξ)f̂(ξ)

ii) Suppose f, g ∈ L1(Rn). Then f ? g ∈ L1(Rn) and:

f̂ ? g(ξ) = f̂(ξ)ĝ(ξ).

Proof. i) Writing out the expression for f̂λ(ξ), and changing the integration variable to
z = λ−1x, we see

f̂λ(ξ) =

∫
Rn
fλ(x)e−iξ·xdx =

∫
Rn
f(λ−1x)e−iξ·xλ−ndx =

∫
Rn
f(y)e−iλξ·zdz = f̂(λξ).

Next, we calculate:

(êxf)(ξ) =

∫
Rn
eix·yf(y)e−iξ·ydy =

∫
Rn
f(y)e−i(ξ−x)·ydy = τxf̂(ξ).

Finally, we have:

τ̂xf(ξ) =

∫
Rn
f(y−x)e−iξ·ydy =

∫
Rn
f(z)e−iξ·(z+x)dz = e−iξ·x

∫
Rn
f(z)e−iξ·zdz = e−x(ξ)f̂(ξ),

where we have used the substitution z = y − x.

ii) First we show that f ? g ∈ L1(Rn). To see this, we first estimate:

|f ? g(x)| =
∣∣∣∣∫

Rn
f(y)g(x− y)dy

∣∣∣∣ 6 ∫
Rn
|f(y)g(x− y)| dy
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Integrating and applying Tonelli’s theorem, we have:

‖f ? g‖L1 6
∫
Rn

(∫
Rn
|f(y)g(x− y)| dy

)
dx

=

∫
Rn
|f(y)|

(∫
Rn
|g(x− y)| dx

)
dy

=

∫
Rn
|f(y)| ‖g‖L1 dy = ‖f‖L1 ‖g‖L1

Now, we can calculate the Fourier transform:

f̂ ? g(ξ) =

∫
Rn
f ? g(x)e−iξ·xdx

=

∫
Rn

(∫
Rn
f(y)g(x− y)dy

)
e−iξ·xdx

=

∫
Rn
f(y)

(∫
Rn
g(x− y)e−iξ·xdx

)
dy

=

∫
Rn
f(y)τ̂yg(ξ)dy

=

∫
Rn
f(y)ĝ(ξ)e−iξ·ydy = f̂(ξ)ĝ(ξ)

Exercise(∗). Calculate the Fourier transform of the following functions f ∈
L1(R):

a) f(x) =
sinx

1 + x2
.

b) f(x) =
1

ε2 + x2
, for ε > 0 a constant.

c) f(x) =

√
σ

t
e−σ

(x−y)2
t , where σ > 0, t > 0 and y are constants.

*d) f(x) =
1

coshx
.

We saw with the examples that there is a duality between the decay of a function
and the regularity of its Fourier transform and vice versa. To make this more precise we
prove the following result, which tells us, roughly speaking, that the Fourier transform
swaps coordinate functions xj multiplying f for derivatives iDj acting on f̂ .

Theorem 4.3. i) Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn) for all j = 1, . . . n.
Then

D̂jf(ξ) = iξj f̂(ξ)
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ii) Suppose (1 + |x|)f ∈ L1(Rn). Then f̂ ∈ C1(Rn), and:

Dj f̂(ξ) = −i x̂jf(ξ)

Proof. i) We again appeal to an approximation result. For f ∈ C1(Rn) with f,Dif ∈
L1(Rn), then for any ε > 0 there exists fε ∈ C1

0(Rn) such that ‖f − fε‖L1 < ε and
‖Djf −Djfε‖L1 < ε. Integrating by parts, we readily calculate:

D̂jfε(ξ) =

∫
Rn
Djfε(x)e−iξ·xdx

= −
∫
Rn
fε(x)Dj(e

−iξ·x)dx

= iξj

∫
Rn
fε(x)e−iξ·xdx

so that D̂jfε(ξ) = iξj f̂ε(ξ). Now, we calculate:∣∣∣D̂jf(ξ)− iξj f̂(ξ)
∣∣∣ =

∣∣∣D̂jf(ξ)− D̂jfε(ξ) + iξj f̂ε(ξ)− iξj f̂(ξ)
∣∣∣

6 ‖Djf −Djfε‖L1 + |ξ| ‖f − fε‖L1

6 ε(1 + |ξ|)

Since ε > 0 is arbitrary, we must have that
∣∣∣D̂jf(ξ)− iξj f̂(ξ)

∣∣∣ = 0, and the result
follows.

ii) From the condition on f it is clear that xjf ∈ L1(Rn), so −i x̂jf is continuous. It
suffices to prove then that:

∆hk
j f̂(ξ)→ −i x̂jf(ξ), as k →∞

for any sequence {hk}∞k=1 ⊂ R with hk → 0. We calculate:

∆hk
j f̂(ξ) =

1

hk

(
f̂(ξ + hkej)− f̂(ξ)

)
=

∫
Rn
f(x)e−ix·ξ

(
e−ixjhk − 1

hk

)
dx.

Now for x ∈ Rn we have:

f(x)e−ix·ξ
(
e−ixjhk − 1

hk

)
→ −ixjf(x)e−ix·ξ

as k →∞. Noting that
∣∣eiθ − 1

∣∣ = 2
∣∣sin θ

2

∣∣ 6 θ for any θ ∈ R, we have that:∣∣∣∣f(x)e−ix·ξ
(
e−ixjhk − 1

hk

)∣∣∣∣ 6 |xjf(x)|

where the right hand side is integrable. By the Dominated Convergence Theorem,
we have:

lim
k→∞

∆hk
j f̂(ξ) =

∫
Rn
−ixjf(x)e−ix·ξdx = −i x̂jf(ξ).

We deduce that f̂ ∈ C1(Rn).
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Exercise(∗). Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn). Fix ε > 0. Show
that there exists fε ∈ C1

0 (Rn) such that

‖f − fε‖L1 + ‖Djf −Djfε‖L1 <
ε

2
.

Corollary 4.4. i) Suppose f ∈ Ck(Rn) and Dαf ∈ L1(Rn) for |α| 6 k. Then there is
some constant Ck > 0 depending only on k such that:

sup
ξ∈Rn

∣∣∣(1 + |ξ|)kf̂(ξ)
∣∣∣ 6 Ck ∑

|α|6k

‖Dαf‖L1

ii) Suppose (1 + |x|)kf ∈ L1(Rn). Then f̂ ∈ Ck(Rn) and for any |α| 6 k we have:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 ∥∥∥(1 + |x|)kf

∥∥∥
L1

iii) The Fourier transform is a continuous linear map from S into S :

F : S → S .

Proof. i) First we note the algebraic fact that for any k there is some constant Ck such
that1:

(1 + |ξ|)k 6 Ck
∑
|α|6k

|ξα|

holds for any ξ ∈ Rn. Repeatedly applying the part i) of Theorem 4.3 we know that:

i|α|ξαf̂(ξ) = D̂αf(ξ).

We therefore have:

(1 + |ξ|)k
∣∣∣f̂(ξ)

∣∣∣ 6 Ck ∑
|α|6k

∣∣∣i|α|ξαf̂(ξ)
∣∣∣ = Ck

∑
|α|6k

∣∣∣D̂αf(ξ)
∣∣∣

taking the supremum over ξ ∈ Rn and applying the estimate (4.1) we conclude

sup
ξ∈Rn

∣∣∣(1 + |ξ|)kf̂(ξ)
∣∣∣ 6 Ck ∑

|α|6k

‖Dαf‖L1 .

ii) By iterating part ii) of Theorem 4.3 we have that for |α| 6 k:

Dαf̂(ξ) = (−i)|α|x̂αf(ξ).

Taking the supremum of the absolute value over ξ ∈ Rn and applying the estimate
(4.1) we have:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 ‖xαf‖L1 6

∥∥∥(1 + |x|)kf
∥∥∥
L1

1recall that ξα := ξα1
1 ξα2

2 · · · ξαn
n
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iii) Note that if:
sup
x∈Rn

(1 + |x|)N |f(x)| < K,

we have:
‖f‖L1 =

∫
Rn
|f(x)| dx 6 K

∫
Rn

1

(1 + |x|)N
dx <∞

provided N > n. Thus in particular if f ∈ S then there exists some constant Cn
such that: ∥∥(1 + |x|)MDαf

∥∥
L1 6 Cn sup

x∈Rn
(1 + |x|)M+n+1 |Dαf(x)|

for all M ∈ N and all multi-indices α. Applying the previous two parts we conclude
that f̂ ∈ C∞(Rn) and:

sup
ξ∈Rn,|β|6M

(1 + |ξ|)N
∣∣∣Dβ f̂(ξ)

∣∣∣ 6 CN,M,n sup
x∈Rn,|α|6N

(1 + |x|)M+n+1 |Dαf(x)|

For some constant CN,M,n depending only on N,M,n. Thus f̂ ∈ S . Moreover, if
{fj}∞j=1 ⊂ S is a sequence with fj → 0 in S , then f̂j → 0 in S , so that F is
continuous.

Notice that while the Fourier transform maps S to itself, the same is not true of
D(Rn). Suppose f ∈ C∞0 (Rn), then provided supp f ⊂ K for K a compact set we have:

f̂(ξ) =

∫
K
f(x)e−ix·ξdx

By repeatedly differentiating, it is possible to show that f̂ is in fact real analytic, and
hence f̂ cannot vanish on any open set without vanishing everywhere. In particular, f̂
cannot vanish outside a compact set.

Exercise 3.8. Suppose f ∈ L1(Rn), with supp f ⊂ BR(0) for some R > 0.

a) Show that f̂ ∈ C∞(Rn) and for any multi-index:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 R|α| ‖f‖L1

b) (*)Show that f̂ is real analytic, with an infinite radius of convergence, i.e.:

f̂(ξ) =
∑
α

Dαf̂(0)
ξα

α!

holds for all ξ ∈ Rn. Deduce that if f̂(ξ) vanishes on an open set, it must
vanish everywhere.
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You may assume the following form of Taylor’s theorem. Suppose g ∈ Ck+1(Br(0)).
Then for x ∈ Br(0):

g(x) =
∑
|α|6k

Dαg(0)
xα

α!
+

∑
|β|=k+1

Rβ(x)xβ

where the remainder Rβ(x) satisfies the following estimate in Br(0):

|Rβ(x)| 6 1

β!
max
|α|=|β|

max
y∈Br(0)

|Dαg(y)| .

Exercise 3.9. Recall that L∞(R) = L1(R)′. Consider the sequence (fn)∞n=1,
where fn ∈ L∞(R) is given by fn(x) = sin(nx). Show that fn

∗
⇀ 0. Show that

f2
n
∗
⇀ g for some g ∈ L∞(R) which you should find.

To complete this section, we are going to establish the invertibility of the Fourier
transform, under some reasonable assumptions on f and f̂ . In particular, this will permit
us to show that F : S → S is in fact a bijection.

Theorem 4.5 (Fourier inversion theorem). Suppose f ∈ L1(Rn), and assume f̂ ∈ L1(Rn),
then for almost every x:

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ. (4.3)

Proof. We shall establish the result by looking at the limit ε→ 0 of

Iε(x) =
1

(2π)n

∫
Rn
f̂(ξ)e−

1
2
ε2|ξ|2eix·ξdξ.

in two different ways. Firstly note that for ξ ∈ Rn we have:

f̂(ξ)e−
1
2
ε2|ξ|2eix·ξ → f̂(ξ)eix·ξ.

Moreover, we can estimate ∣∣∣f̂(ξ)e−
1
2
ε2|ξ|2eix·ξ

∣∣∣ 6 ∣∣∣f̂(ξ)
∣∣∣

so that the integrand is dominated by an integrable function. Thus by the Dominated
Convergence Theorem we have:

Iε(x)→ 1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ, as ε→ 0.

On the other hand, we have, using Fubini’s thorem:

Iε(x) =
1

(2π)n

∫
Rn

(∫
Rn
f(y)e−iξ·ydy

)
e−

1
2
ε2|ξ|2eix·ξdξ

=
1

(2π)n

∫
Rn
f(y)

(∫
Rn
e−

1
2
ε2|ξ|2e−iξ·(y−x)dξ

)
dy

=

∫
Rn
f(y)

1

εn (2π)
n
2

e−
|y−x|2

2ε2 dy

= f ? ψε(x)
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where ψε(x) = ε−nψ(ε−1x) for

ψ(x) =
1

(2π)
n
2

e−
1
2
|x|2 .

Note that ψ ∈ C∞(Rn), ψ(x) > 0 and∫
Rn
ψ(x)dx = 1

so by Theorem 1.13, b) we have that:

f ? ψε → f,

in L1(Rn), thus we must have that

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ

for almost every x.

Note that by the Riemann Lebesgue Lemma the map

x 7→ 1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ

is continuous. Thus under the conditions of the theorem, if f is additionally assumed to
be continuous, then we can upgrade the almost everywhere convergence to convergence
everywhere. Alternatively, our result shows that if both f ∈ L1(Rn) and f̂ ∈ L1(Rn),
then f must be almost everywhere equal to a continuous function.

We can summarise the inversion formula quite neatly by noting that (on a suitable f):

F2f = (2π)nf̌ .

An immediate corollary of the above result is that F : S → S is a bijection, and that
F−1 : S → S is continuous.

Exercise(∗). Consider the following ODE problem. Given f : R→ C, find φ
such that:

− φ′′ + φ = f. (4.4)

a) Show that if f ∈ S , there is a unique φ ∈ S solving (4.4), and give an
expression for φ̂.

b) Show that

φ(x) =

∫
R
f(y)G(x− y)dy

where

G(x) =

{
1
2e
x x < 0,

1
2e
−x x > 0.
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Exercise(∗). Suppose f ∈ L1(R3) is a radial function, i.e. f(Rx) = f(x),
whenever R ∈ SO(3) is a rotation.

a) Show that f̂ is radial.

b) Suppose that ξ = (0, 0, ζ). By writing the Fourier integral in polar coordinates,
show that

f̂(ξ) =

∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0
f(r)e−iζr cos θr2 sin θdθdrdφ.

c) Making the substitution s = cos θ, and using the fact that f̂ is radial, deduce:

f̂(ξ) = 4π

∫ ∞
0

f(r)
sin r |ξ|
r |ξ|

r2dr

for any ξ ∈ Rn.

4.2 The Fourier transform on L2(Rn)

Having defined the Fourier transform acting on functions in L1(Rn), we are going to
extend it to act on more general functions (and eventually distributions). Firstly, we shall
see how the Fourier transform extends very nicely to act on functions in L2(Rn). As we
have already seen, this is a particularly nice function space because it is a Hilbert space.
We recall the inner product:

(f, g) =

∫
Rn
f(x)g(x)dx,

which induces the norm via:
‖f‖L2 = (f, f)

1
2

and moreover it is complete, which means that all Cauchy sequences converge in L2(Rn).
We shall first establish that the Fourier transform maps L1(Rn)∩L2(Rn) into L2(Rn),

and moreover show that the L2 inner product is preserved by the Fourier transform (up
to multiplication by a constant).

Theorem 4.6 (Parseval’s Formula). Suppose f, g ∈ L1(Rn)∩L2(Rn). Then f̂ , ĝ ∈ L2(Rn)
and moreover:

(f, g) =
1

(2π)n
(f̂ , ĝ).

Proof. We will again use a density argument to prove this result. First suppose that
f, g ∈ S . Then using the Fourier Inversion Theorem (Theorem 4.5) and Fubini’s theorem
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we can calculate:

(f, g) =

∫
Rn
f(x)g(x)dx

=

∫
Rn
f(x)

(
1

(2π)n

∫
Rn
ĝ(ξ)eix·ξdξ

)
dx

=
1

(2π)n

∫
Rn

(∫
Rn
f(x)eix·ξdx

)
ĝ(ξ)dξ

=
1

(2π)n

∫
Rn

(∫
Rn
f(x)e−ix·ξdx

)
ĝ(ξ)dξ

=
1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ =

1

(2π)n
(f̂ , ĝ)

Now suppose that f, g ∈ L1(Rn) ∩ L2(Rn). By Theorem 1.13 part b), there exists a
sequence {fj}∞j=1 ⊂ C∞0 (Rn) ⊂ S such that:

‖fj − f‖L1 + ‖fj − f‖L2 <
1

j

and similarly for g. We know that:

sup
ξ∈Rn

∣∣∣f̂j(ξ)− f̂(ξ)
∣∣∣ 6 ‖fj − f‖L1 <

1

j

so that f̂j → f uniformly on Rn. We also have by the calculation above:∥∥∥f̂j − f̂k∥∥∥
L2

= (2π)
n
2 ‖fj − fk‖L2 .

Now since fj → f in L2(Rn), we have that {fj} is a Cauchy sequence in L2(Rn). Thus
f̂j is a Cauchy sequence in L2(Rn). By the completeness of L2(Rn), we have that f̂j
converges in L2(Rn) and hence f̂ ∈ L2(Rn). Furthermore, we know that

(fj , gj) =
1

(2π)n
(f̂j , ĝj)

since each of the sequences {fj}, {gj}, {f̂j}, {ĝj} converge in L2(Rn), we can take the
limit2 j →∞ to conclude:

(f, g) =
1

(2π)n
(f̂ , ĝ)

Thus we have shown that the Fourier transform F maps L1(Rn)∩L2(Rn) into L2(Rn).
Moreover, we have that it is a bounded as an operator from L2(Rn) to itself, since∥∥∥f̂∥∥∥

L2
6 (2π)

n
2 ‖f‖L2 .

This means that F is a bounded linear map defined on a dense subset of a Banach space.
A general result tells us that the map extends uniquely to a bounded linear map on the
entire space. Rather than invoke an abstract result, we can show this directly.

2You should check that you understand why this is valid.
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Corollary 4.7. There is a unique continuous linear operator F : L2(Rn)→ L2(Rn) such
that:

F [f ] = F [f ], for all f ∈ L1(Rn) ∩ L2(Rn). (4.5)

We say that F is the extension of the Fourier transform to L2(Rn). It is sometimes known
as the Fourier-Plancherel transform.

Proof. For any f ∈ L2(Rn), we can take a sequence {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) with
fj → f in L2(Rn) (for example by approximating f with smooth functions of compact
support). By Theorem 4.6 we have that:∥∥∥f̂j − f̂k∥∥∥

L2
= (2π)

n
2 ‖fj − fk‖L2 . (4.6)

Now, since fj converges in L2(Rn), it is in particular a Cauchy sequence in L2(Rn).
Equation (4.6) shows that f̂j is also a Cauchy sequence in L2(Rn), hence has a limit,
say F ∈ L2(Rn) by the completeness of L2(Rn). Suppose {f ′j}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) is
another sequence with f ′j → f , and suppose f̂j → F ′. Then we have:∥∥F − F ′∥∥

L2 = lim
j→∞

∥∥∥f̂j − f̂ ′j∥∥∥
L2

= lim
j→∞

(2π)
n
2

∥∥fj − f ′j∥∥L2 = 0

since both fj and f ′j tend to f . Thus F depends only f , and not on the sequence fj
which we chose to approximate f .

We define F [f ] = F , i.e.:

F [f ] = lim
j→∞

F [fj ], where {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn), fj → f in L2(Rn),

and the limit is to be understood to be in L2(Rn). This certainly satisfies (4.5), since we
can take our approximating sequence to be the constant sequence fj = f for all j when
f ∈ L1(Rn) ∩ L2(Rn). F is clearly linear and moreover, we have that∥∥F [f ]

∥∥
L2 =

∥∥∥∥ lim
j→∞

F [fj ]

∥∥∥∥
L2

= lim
j→∞

‖F [fj ]‖L2

= lim
j→∞

(2π)
n
2 ‖fj‖L2 = (2π)

n
2 ‖f‖L2 ,

so F is bounded and hence continuous3. It remains to show that F is unique. Suppose
that F ′ is another continuous linear operator satisfying (4.5). For any f ∈ L2(Rn), take
a sequence {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) with fj → f in L2(Rn). We have:

F ′[f ] = lim
j→∞

F ′[fj ] = lim
j→∞

F [fj ] = F [f ]

so that F ′ = F .
3If {fj}∞j=1 ⊂ L2(Rn) is a sequence with fj → f in L2(Rn), then∥∥F [fj ]−F [f ]

∥∥
L2 =

∥∥F [fj − f ]
∥∥
L2 = (2π)

n
2 ‖fj − f‖L2 → 0

so F [fj ]→ F [f ] in L2(Rn).
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Exercise(∗). (*) Suppose that f, g ∈ L2(Rn), and denote the Fourier-Plancherel
transform by F . You may assume any results already established for the Fourier
transform.

a) Show that

(f, g) =
1

(2π)n
(
F [f ],F [g]

)
.

b) Recall that f̌(y) = f(−y). Show that:

F
[
F [f ]

]
= (2π)nf̌ .

Hence, or otherwise, deduce that F : L2(Rn)→ L2(Rn) is a bijection, and
that F−1

: L2(Rn)→ L2(Rn) is a bounded linear map.

c) Show that:

F [f ](ξ) = lim
R→∞

∫
BR(0)

f(x)e−ix·ξdx

with convergence in the sense of L2(Rn).

d) Suppose that f ∈ C1(Rn) and f,Djf ∈ L2(Rn). Show that ξjF [f ](ξ) ∈
L2(Rn) and:

F [Djf ](ξ) = iξjF [f ](ξ)

e) For x ∈ R let:

f(x) =
sinx

x

i) Show that f ∈ L2(R).

ii) Show that:

F [f ](ξ) =

{
π −1 < ξ < 1,
0 |ξ| > 1.

f) i) Show that for all x ∈ Rn:

|f ? g(x)| 6 ‖f‖L2 ‖g‖L2 .

ii) Show that f ? g ∈ C0(Rn) and:

f ? g = F−1
[
F [f ] · F [g]

]
where:

F−1[f̂ ](x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ.

[Hint for parts a), b), d), f): approximate by Schwartz functions]
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Exercise(∗). Work in R3. For k > 0, define the function:

G(x) =
e−k|x|

4π |x|

a) Show that G ∈ L1(R3).

b) Show that:

Ĝ(ξ) =
1

|ξ|2 + k2

[Hint: use Exercise 4.1, part c)]

Exercise 3.10. Suppose f ∈ S (Rn). By observing that

‖f‖2L2 =

∫
Rn

1

n
(div x) |f(x)|2 dx,

or otherwise, show that:

(2π)
n
2 ‖f‖2L2 6

2

n

∥∥|x| f(x)
∥∥
L2

∥∥ |ξ| f̂(ξ)
∥∥
L2

with equality if and only if f(x) = ae−λ|x|
2

for some a ∈ C, λ > 0. Deduce that
if x0, ξ0 ∈ Rn:

(2π)
n
2 ‖f‖2L2 6

2

n

∥∥|x− x0| f(x)
∥∥
L2

∥∥ |ξ − ξ0| f̂(ξ)
∥∥
L2 .

Explain how this shows that a function f ∈ L2(Rn) cannot be sharply localised
in both physical and Fourier space simultaneously. This is the uncertainty
principle.

Usually one does not labour the distinction between the Fourier transform acting on
L1(Rn) and the Fourier-Plancherel transform acting on L2(Rn). From now on we shall
use the same notation for both, so that for f ∈ L2(Rn) we write F [f ] = F [f ] = f̂ . Since
the two transforms agree wherever both are defined, there is no ambiguity in this. The
majority of the results that we have already established for the Fourier transform extend
to the Fourier-Plancherel transform in a straightforward way, see Exercise 4.2.

4.3 The Fourier transform on S ′

We are now going to extend the Fourier transform in a slightly different way, such that it
acts on distributions. Suppose that f ∈ L1(Rn), and φ ∈ S . Then since f̂ ∈ C0(Rn) and
f̂ decays towards infinity, we have that Tf̂ ∈ S ′. By Fubini we have:

Tf̂ [φ] =

∫
Rn
f̂(x)φ(x)dx =

∫
Rn

(∫
Rn
f(y)e−ix·ydy

)
φ(x)dx

=

∫
Rn
f(y)

(∫
Rn
φ(x)e−ix·ydx

)
dy

=

∫
Rn
f(x)φ̂(x)dx.
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Thus for f ∈ L1(Rn) we have that:

Tf̂ [φ] = Tf [φ̂], for all φ ∈ S .

Motivated by this, we define:

Definition 4.1. For a distribution u ∈ S ′, we define the Fourier transform of u, written
û ∈ S ′ to be the distribution satisfying:

û[φ] = u[φ̂], for all φ ∈ S .

Notice that the definition makes sense because the Fourier transform maps S to S
continuously. If we tried to use the above definition but with φ ∈ D(Rn) and u ∈ D ′(Rn),
we would run into difficulties because φ̂ 6∈ D(Rn).

Example 17. a) For ξ ∈ Rn we have:

δ̂ξ = Te−ξ

To see this, we use the definition. For φ ∈ S :

δ̂ξ[φ] = δξ[φ̂] = φ̂(ξ) =

∫
Rn
e−ix·ξφ(x)dx = Te−ξ [φ]

Since φ was arbitrary, the distributions are equal.

b) For x ∈ Rn we have:
T̂ex = (2π)nδx.

To see this, we note for φ ∈ S :

T̂ex [φ] = Tex [φ̂] =

∫
Rn
eix·ξφ̂(ξ)dξ = (2π)nφ(x) = (2π)nδx[φ].

Again, as φ is arbitrary the distributions are equal. Note that a particular case is
T̂1 = (2π)nδ0.

c) For α a multi-index, denote by Xα the map

Xα : x 7→ xα.

Then we have:
T̂Xα = (2π)ni|α|Dαδ0

For φ ∈ S :

T̂Xα [φ] = TXα [φ̂] =

∫
Rn
ξαφ̂(ξ)dξ

= (−i)|α|
∫
Rn
D̂αφ(ξ)dξ

= (2π)n(−i)|α|Dαφ(0) = (2π)ni|α| × (−1)|α|δ0 [Dαφ]

= (2π)ni|α|Dαδ0[φ]
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Most of the properties of the Fourier transform defined on S are inherited by the
transform defined on S ′. We first need to define a couple of operations on S ′. Recall
that if φ ∈ S , then τxφ ∈ S is the translate of φ, given by τxφ(y) = φ(y − x), and
φ̌ ∈ S is given by φ̌(y) = φ(−y). For u ∈ S , we define:

τxu[φ] = u[τ−xφ], ǔ[φ] = u[φ̌]

Notice also that if f ∈ C∞(Rn) is a function of tempered growth, i.e., if for each α and
there exists a constant Cα and integer Nα such that:

|Dαf(x)| 6 Cα(1 + |x|)Nα , ∀x ∈ Rn.

then φf ∈ S when φ ∈ S and we can define fu ∈ S ′ by

fu[φ] = u[fφ]

Exercise(∗). Verify that if f ∈ L1
loc. is such that Tf ∈ S ′, then:

τxTf = Tτxf , and Ťf = Tf̌

Lemma 4.8. Suppose u ∈ S ′ is a tempered distribution. Then:

êxu = τxû, τ̂xu = e−xû, D̂αu = i|α|Xαû Dαû = (−i)|α|X̂αu

Moreover:
ˆ̂u = (2π)nǔ,

so that the Fourier transform on S ′ is invertible.

Proof. These are all calculations using the corresponding results for S . Take φ ∈ S . We
have:

êxu[φ] = exu[φ̂] = u[exφ̂] = u
[
τ̂−xφ

]
= û[τ−xφ] = τxu[φ].

Since φ was arbitrary, we have êxu = τxû. Similarly, we calculate:

τ̂xu[φ] = τxu[φ̂] = u[τ−xφ̂] = u
[
ê−xφ

]
= û[e−xφ] = e−xu[φ].

Next we have

D̂αu[φ] = Dαu
[
φ̂
]

= (−1)|α|u
[
Dαφ̂

]
= (−1)|α|u

[
(−i)|α|X̂αφ

]
= i|α|u

[
X̂αφ

]
= i|α|û [Xαφ] =

(
i|α|Xαû

)
[φ]

similarly:

Dαû[φ] = (−1)|α|û[Dαφ] = (−1)|α|u[D̂αφ]

= (−1)|α|u[i|α|Xαφ̂] = (−i)|α|Xαu[φ̂]

=
(

(−i)|α|X̂αu
)

[φ].
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Finally, we have

ˆ̂u[φ] = û[φ̂] = u[
ˆ̂
φ] = u[(2π)nφ̌] = (2π)nǔ[φ]

Since ˇ̌u = u, we have that the Fourier transform is invertible.

Importantly, the Fourier transform is also a continuous linear map S ′ → S ′.

Lemma 4.9. The map:
F : S ′ → S ′

u 7→ û

is a linear homeomorphism.

Proof. We already have that F is linear. From the definition of the weak-? topology, a
sequence {uj}∞j=1 ⊂ S ′ converges to u if

uj [φ]→ u[φ]

for all φ ∈ S . Suppose that we have such a convergent sequence in S ′. We calculate:

ûj [φ] = uj [φ̂]→ u[φ̂] = û[φ].

Thus if uj → u we have F(uj)→ F(u). Thus F is continuous. Since F4 = (2π)2nι, we
have that F is invertible and the inverse is also continuous.

Remark. Strictly, we have only established that F is sequentially continuous with respect
to the weak-? topology induced on S ′ by S . Establishing genuine continuity is not difficult,
but requires the full description of the weak-? topology, and we leave this as an exercise.

Exercise 3.11. Let f : R→ R be the sign function

f(x) =

{
−1 x < 0
1 x > 0

and define fR(x) = f(x)1[−R,R](x).

a) Sketch fR(x), and show that TfR → Tf in S ′(R) as R→∞.

b) Compute f̂R(ξ), and show that for φ ∈ S (R):

Tf̂R [φ] = −2i

∫ ∞
0

φ(x)− φ(−x)

x
dx+ 2i

∫ ∞
0

(
φ(x)− φ(−x)

x

)
cosRxdx.

Deduce T̂f = −2iP.V.
(

1
x

)
, where we define the distribution P.V.

(
1
x

)
by:

P.V.

(
1

x

)
[φ] = lim

ε→0

∫
R\(−ε,ε)

φ(x)

x
dx, φ ∈ S (R).
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c) Write down T̂H , where H is the Heaviside function:

H(x) =

{
0 x < 0
1 x > 0

By considering e−εxH(x), or otherwise, find an expression for the distribution
u which acts on φ ∈ S (R) by:

u[φ] := lim
ε→0+

∫
R

φ(x)

x+ iε
dx.

Exercise 3.12. Suppose φ ∈ C∞c (Rn ×Rm). For each y ∈ Rm let φy : Rn → C
be given by φy(x) = φ(x, y). Let u ∈ D ′(Rn).

a) Show that ψ : y 7→ u[φy] is smooth and find an expression for Dαψ. Deduce
that ∫

Rm
ψ(y)dy = u[Ψ], where Ψ(x) =

∫
Rm

φ(x, y)dy.

b) Show that there exists a sequence of smooth functions fn ∈ C∞c (Rn) such
that Tfn → u in the weak-∗ topology of D ′(Rn).

4.3.1 Convolutions

We have generalised almost all of the properties of the Fourier transform to distributions.
The final result that we shall establish concerns convolutions. Recall that if u ∈ D ′(Rn)
and φ ∈ D(Rn) then u ? φ ∈ C∞(Rn) is given by:

u ? φ(x) = u
[
τxφ̌
]
.

Notice that this definition continues to make sense for each x, provided u ∈ S ′ and
φ ∈ S , although it is no longer clear that the resulting function is smooth. We have the
following results concerning this convolution.

Theorem 4.10. Suppose u ∈ S ′ and φ ∈ S are given. Then the function:

u ? φ : Rn → C

has the following properties

a) u ? φ ∈ C∞(Rn) with
Dα(u ? φ) = Dαu ? φ = u ? Dαφ.

b) There exist constants N ∈ N, K > 0 depending on u and φ such that:

|u ? φ(x)| 6 K(1 + |x|)N .

c) Tu?φ ∈ S ′ and moreover:
T̂u?φ = φ̂û.
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d) For any ψ ∈ S , we have:

(u ? φ) ? ψ = u ? (φ ? ψ)

e) We have:

Tû?φ̂ = (2π)nφ̂u

Proof. a) The smoothness of u ? φ is proven exactly as in Lemma 3.10, ii). The only
modification to the argument required is to note that for φ ∈ S , we have

∆h
i φ→ Diφ in S , as h→ 0.

b) First, we note the following simple inequality which holds for all x, y ∈ Rn:

1 + |x+ y| 6 1 + |x|+ |y| 6 (1 + |x|)(1 + |y|).

Next, recall from Lemma 3.15 that there exist N, k ∈ N and C > 0 such that:

|u[ψ]| 6 C sup
y∈Rn;|α|6k

∣∣(1 + |y|)NDαψ(y)
∣∣ , for all ψ ∈ S .

Applying this inequality with ψ = τxφ̌, we calculate:

|u ? φ(x)| =
∣∣u [τxφ̌]∣∣ 6 C sup

y∈Rn;|α|6k

∣∣(1 + |y|)NDαφ(y − x)
∣∣

= C sup
z∈Rn;|α|6k

∣∣(1 + |z + x|)NDαφ(z)
∣∣

6

[
C sup
z∈Rn;|α|6k

∣∣(1 + |z|)NDαφ(z)
∣∣] (1 + |x|)N

which gives the result on setting:

K = C sup
y∈Rn;|α|6k

∣∣(1 + |z|)NDαφ(z)
∣∣ .

c) Combining the above two results, we have that Tu?φ ∈ S ′, since u ? φ ∈ L1
loc.(Rn) and

u ? φ grows at most polynomially. It therefore makes sense to consider the Fourier
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transform. Suppose that ψ ∈ D(Rn). We calculate:

T̂u?φ[ψ̂] = Tu?φ

[
ˆ̂
ψ
]

= (2π)nTu?φ
[
ψ̌
]

Fourier Inversion Thm

= (2π)n
∫
Rn
u ? φ(x)ψ(−x)dx Defn. of Tf

= (2π)n
∫
Rn
u
[
τxφ̌
]
ψ(−x)dx Defn. of u ? φ

= (2π)n
∫
Rn
u
[
ψ(−x)τxφ̌

]
dx Linearity of u

= (2π)nu

[∫
Rn
ψ(−x)τxφ̌dx

]
(!!)

= (2π)nu
[

ˇ(φ ? ψ)
]

Defn. of φ ? ψ

= u

[
̂̂
φ ? ψ

]
= û

[
φ̂ ? ψ

]
Fourier Inversion Thm

= û
[
φ̂ψ̂
]

=
(
φ̂û
)

[ψ̂] F.T. of convolution

Most of the manipulations here are relatively straightforward. We have used Theorems
4.2, 4.5 in addition to various definitions. The step marked (!!), in which we inter-
changed an integration and an application of u requires some justification. Crudely
this is true because we can replace the integration with an appropriately convergent
Riemann sum and use the linearity and continuity of u. We shall justify this step in
Lemma 4.11. The conclusion of this calculation is that:

T̂u?φ[ψ̂] =
(
φ̂û
)

[ψ̂]

This holds for all ψ ∈ D(Rn). Now, since D(Rn) is dense in S and F : S → S is a
homeomorphism, we have that:

F [D(Rn)] =
{
ψ̂ : ψ ∈ D(Rn)

}
is dense in S . Thus, by approximation,

T̂u?φ[χ] =
(
φ̂û
)

[χ]

holds for any χ ∈ S and we’re done.

d) Note that in the process of proving the previous part, we established that for any
ψ ∈ D(Rn): ∫

Rn
u ? φ(x)ψ(−x)dx = u

[
ˇ(φ ? ψ)

]
which is equivalent to:

(u ? φ) ? ψ(0) = u ? (φ ? ψ) (0). (4.7)
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Now, note that:

u ? τyφ = τy (u ? φ) , φ ? τyψ = τy (φ ? ψ)

as can be easily seen from the definitions. Applying (4.7) with ψ replaced by τyψ, we
conclude that:

(u ? φ) ? ψ(y) = u ? (φ ? ψ) (y).

Since this holds for any ψ ∈ D(Rn) and D(Rn) is dense in S , we’re done.

e) This result follows by applying part c) to û ? φ̂ and repeatedly making use of the
Fourier inversion theorem. We calculate:

T̂û?φ̂ =
ˆ̂
φˆ̂u = (2π)2nφ̌ǔ

= (2π)2n ˇ(φu) = (2π)n
̂̂
(φu)

Since the Fourier transform is a bijection on S ′, the result follows.

In order to complete the proof of the above result, we need to justify the step marked
(!!) in which a tempered distribution and an integration were interchanged. We will first
prove a result concerning the convergence of Riemann sums, which will enable us to
establish that the (!!) step was justified. Let us suppose that Ω ⊂ Rn and Ω′ ⊂ Rm are
open and that f ∈ C0(Ω× Ω′) is uniformly continuous. We will also assume that there is
some R > 0 such that:

supp f(·, y) ⊂ [−R,R)n ⊂ Ω

for each y ∈ Ω′.
Next, we define a dyadic family of partitions of [−R,R)n into cubes as follows:

Πk =

{[
−R

2k
i1,

R

2k
(i1 + 1)

)
× · · · ×

[
−R

2k
in,

R

2k
(in + 1)

)
: il ∈ [−2k, 2k − 1] ∩ Z

}
where k = 0, 1, . . .. The (k + 1)st partition is obtained by chopping each cube in the kth

partition into cubes with half the side length. Clearly for each fixed k:⋃
Πk = [−R,R)n

For π ∈ Πk, we define xπ to be the point at the centre of the cube π. We define the kth

Riemann sum with respect to this partition by:

Sk(y) =
∑
π∈Πk

f(xπ, y) |π| .

Lemma 4.11. With the definitions as above,

Sk(y)→
∫

Ω
f(x, y)dx

uniformly in y ∈ Ω′.
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Proof. First note that x 7→ f(x, y) is continuous and of compact support, hence Riemann
integrable on Ω. Thus for each fixed y we have:

Sk(y)→
∫

Ω
f(x, y)dx

Next consider k′ > k. We have that Πk′ is a refinement of Πk, i.e. if π′ ∈ Πk′ , then there
is a unique π ∈ Πk with π′ ⊂ π. We calculate:

Sk(y)− Sk′(y) =
∑
π∈Πk

f(xπ, y) |π| −
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

f(xπ′ , y)
∣∣π′∣∣

=
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

(f(xπ, y)− f(xπ′ , y))
∣∣π′∣∣

here we have used that:
|π| =

∑
π′∈Πk′
π′⊂π

∣∣π′∣∣
Now, since f is uniformly continuous, we know that for any ε > 0 there exists a δ,
independent of y, such that ∣∣f(x, y)− f(x′, y)

∣∣ < ε

for all |x− x′| < δ. Notice that for π′ ⊂ π we have:∣∣x′π − xπ∣∣ 6 R

2k+1

√
n.

Thus given ε > 0, there exists K such that for all k > K:

|f(xπ, y)− f(xπ′ , y)| < ε

(2R)n
.

Now suppose k′ > k > K. We estimate:

|Sk(y)− Sk′(y)| 6
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

|f(xπ, y)− f(xπ′ , y)|
∣∣π′∣∣

6
ε

(2R)n

∑
π∈Πk

∑
π′∈Πk′
π′⊂π

∣∣π′∣∣ = ε,

since the sum over the partition simply gives us back the volume of the large cube.
Sending k′ to infinity, we have the result we require.

This result allows us to establish the result we require:

Corollary 4.12. Suppose u ∈ S ′, φ ∈ S and ψ ∈ D(Rn). Then:

u

[∫
Rn
ψ(−x)τxφ̌dx

]
=

∫
Rn
u
[
ψ(−x)τxφ̌

]
dx
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Proof. Fix Ω, R > 0 such that supp ψ̌ ⊂ [−R,R)n ⊂ Ω. Define the map:

f : Ω× Rn → C
(x, y) 7→ ψ(−x)φ(y − x)

Notice that (1+ |y|)NDα
y f is uniformly continuous on Ω×Rn for any α, N . Thus applying

Lemma 4.11 we deduce that:

Sk →
∫
Rn
ψ(−x)τxφ̌dx, in S .

By the continuity of u, we deduce that:

u

[∫
Rn
ψ(−x)τxφ̌dx

]
= u

[
lim
k→∞

Sk

]
= lim

k→∞
u [Sk]

By the linearity of u, we calculate:

u [Sk] = u

∑
π∈Πk

f(xπ, ·) |π|

 =
∑
π∈Πk

u [f(xπ, ·)] |π| =
∑
π∈Πk

u
[
ψ(−xπ)τxπ φ̌

]
|π|

But x 7→ u
[
ψ(−x)τxφ̌

]
is smooth, hence Riemann integrable, and we have that

lim
k→∞

∑
π∈Πk

u
[
ψ(−xπ)τxπ φ̌

]
|π| =

∫
Rn
u
[
ψ(−x)τxφ̌

]
dx.

4.4 The Fourier–Laplace transform on E ′(Rn)

Recall that E ′(Rn) ⊂ S ′(Rn) is a continuously embedded subspace, consisting of the
distributions of compact support. These distributions are precisely those which extend to
continuous linear maps from E (Rn) to C (see Theorem 3.14). For these distributions, we
can express the Fourier transform in a very clean fashion.

Theorem 4.13. Suppose that u ∈ E ′(Rn). Then û = Tυ̂ for some υ̂ ∈ C∞(Rn) with:

υ̂(ξ) = u[e−ξ].

Proof. Suppose that suppu ⊂ BR(0). Pick ψ ∈ D(Rn) with ψ = 1 on BR+1(0), so that
ψu = u. We calculate:

û = ψ̂u =
1

(2π)n
Tû?ψ̂.

By Theorem 4.10 e). Thus we have û = Tυ̂ with υ̂ = (2π)−nû ? ψ̂ ∈ C∞(Rn), by Theorem
4.10 a).

Now let φ ∈ S be such that φ̂ = ψ. We calculate:

υ̂(ξ) =
1

(2π)n
û ? ψ̂(ξ) = û ? φ̌(ξ)

= û [τξφ] = u
[
τ̂ξφ
]

= u[e−ξψ] = (ψu)[e−ξ]

= u[e−ξ].
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In practice, one does not distinguish between the distribution û and the function υ̂
and one uses the same letter to denote both. Notice that for u ∈ E ′(Rn), the expression
u[e−z] makes sense for z ∈ Cn. Moreover, this function is in fact holomorphic on Cn.
The analytic extension of a Fourier transform from Rn to Cn (or a subset thereof) is
sometimes called the Fourier-Laplace transform.

4.5 Periodic distributions and Poisson’s summation formula

Recall that the translate of a distribution u ∈ D ′(Rn) is defined by:

τzu[φ] = u [τ−zφ] , for all φ ∈ D(Rn),

Bearing this in mind, we can make a very natural definition of what it means to be
periodic:

Definition 4.2. We say that a distribution u ∈ D ′(Rn) is periodic if for each g ∈ Zn we
have:

τgu = u.

Example 18. a) The distribution u = Te2πg is periodic for any g ∈ Zn. Suppose g′ ∈ Zn.
Then:

τg′Te2πg [φ] = Te2πg
[
τ−g′φ

]
=

∫
Rn
e2πig·yφ(y + g′)dy

=

∫
Rn
e2πig·(z−g′)φ(z)dz = e−2πig·g′

∫
Rn
e2πig·zφ(z)dz

= Te2πg [φ]

b) Suppose v ∈ E ′(Rn). Then
u =

∑
g∈Zn

τgv

is periodic. It is straightforward to show that u defines a distribution (see Exercise
below). To check periodicity, we have, for g ∈ Zn:

τg′u[φ] = u[τ−g′φ] =
∑
g∈Zn

τgv
[
τ−g′φ

]
=
∑
g∈Zn

v
[
τ−g−g′φ

]
=
∑
g∈Zn

τg+g′v [φ] = u[φ],

where we shift the dummy variable in the sum for the last step.

Exercise(∗). Suppose v ∈ E ′(Rn) and let:

u =
∑
g∈Zn

τgv.

Show that if φ ∈ D(Rn) with suppφ ⊂ K for some compact K ⊂ Rn then

u[φ] =
∑
g∈A

τgv[φ],

for some finite set A ⊂ Zn which depends only on K. Deduce that u defines a
distribution.
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When dealing with a periodic function f ∈ C∞(Rn), many quantities of interest are
averages over a fundamental cell of the periodic lattice:

q =

{
x ∈ Rn : −1

2
6 xi <

1

2
, i = 1, . . . , n

}
For example:

M(f) =

∫
q
f(x)dx

is the mean value that f attains. We’d like to extend this notion to makes sense for
periodic functions, but we’re presented with a difficulty. The obvious definition would be
to set:

M(u)
!

= u[1q]

but of course 1q 6∈ D(Rn) so we’re not able to do this. Instead we will ‘smear out’ the
function 1q. To do this, notice that a crucial property of 1q is the following identity:∑

g∈Zn
τg1q = 1,

which tells us that 1q generates a partition of unity.
We shall construct a smooth ‘partition of unity’, which will allow us to localise various

objects, and thus render them easier to deal with, and will enable us to define the mean of
a periodic distribution. This is a slightly technical result, but the basic idea is important
and crops up in many areas of analysis.

Lemma 4.14. Let
Q = {x ∈ Rn : |xi| < 1, i = 1, . . . , n}

be the cube of side length 2 centred at the origin. There exists a function ψ ∈ C∞(Rn)
with ψ > 0 and suppψ ⊂ Q such that:∑

g∈Zn
τgψ = 1.

Suppose that u ∈ D ′(Rn) is periodic, and ψ,ψ′ are both as above. Then:

u[ψ] = u[ψ′]

We then define:
M(u) := u[ψ]

Proof. Note

q =

{
x ∈ Rn : |xi| 6

1

2
, i = 1, . . . , n

}
.

By Lemma 1.14, there exists a function ψ0 ∈ C∞0 (Q), with ψ0(x) = 1 for x ∈ q and
ψ0 > 0. Consider:

S(x) :=
∑
g∈Zn

ψ0(x− g).
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For any bounded open set Ω, we have that

A = {g ∈ Zn : (Ω− g) ∩Q 6= ∅}

is finite. For x ∈ Ω, we have:

S(x) =
∑
g∈A

ψ0(x− g),

so S(x) is smooth. Moreover, for each x ∈ Rn, there is at least one g ∈ Zn with x− g ∈ q.
Thus S(x) > 1. We can thus take:

ψ(x) =
ψ0(x)

S(x)
.

This is smooth, positive, supported in Q and moreover:∑
g∈Zn

τgψ(x) =
1

S(x)

∑
g∈Zn

ψ0(x− g) = 1.

Now suppose u ∈ D ′(Rn) is periodic and ψ,ψ′ are both partitions of unity as above.
We calculate:

u[ψ] = u

ψ ∑
g∈Zn

τgψ
′

 =
∑
g∈Zn

u
[
ψτgψ

′]

=
∑
g∈Zn

τ−gu
[
τ−gψψ

′] = u

ψ′ ∑
g∈Zn

τ−gψ

 = u[ψ′]

We thus have an acceptable definition of the mean of a periodic distribution. Notice
that if u = Tf for some locally integrable periodic function f , then by choosing a bounded
sequence of ψj ’s such that ψj → 1q pointwise, we can show that:

M(Tf ) =

∫
q
f(x)dx,

justifying calling M the mean of the distribution.
To see why this technical lemma is useful, let us apply it to show that a periodic

distribution is necessarily tempered, and in fact the periodic distributions we found by
translating a compact distribution are indeed all of the periodic distributions.

Lemma 4.15. Suppose v ∈ E ′(Rn) is a compact distribution. Then:

u =
∑
g∈Zn

τgv (4.8)

converges in S ′. Conversely, suppose that u ∈ D ′(Rn) is a periodic distribution. Then
there exists v ∈ E ′(Rn) such that (4.8) holds and thus u extends uniquely to a tempered
distribution u ∈ S ′.
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Proof. Let K = supp v. Since v ∈ E ′(Rn), by Lemma 3.13 there exists C > 0, N such
that:

|v[φ]| 6 C sup
x∈K;|α|6N

|Dαφ(x)| , for all φ ∈ E (Rn).

Now suppose φ ∈ S ⊂ E (Rn). We have:

|τgv [φ]| = |v [τ−gφ]| 6 C sup
x∈K;|α|6N

|Dαφ(x+ g)| .

Since K is bounded, we have that K ⊂ BR(0) for some R > 0. We calculate:

1 + |g| = 1 + |x+ g − x| 6 1 +R+ |x+ g| 6 (1 +R)(1 + |x+ g|)

for all x ∈ K, so that:

1 6 (1 +R)
1 + |x+ g|

1 + |g|
.

We conclude that for any M > 1:

|τgv [φ]| 6 C(1 +R)M

(1 + |g|)M
sup

x∈K;|α|6N
(1 + |x+ g|)M |Dαφ(x+ g)|

6
C(1 +R)M

(1 + |g|)M
sup

y∈Rn;|α|6N
(1 + |y|)M |Dαφ(y)| .

Since φ ∈ S , in particular we have:

|τgv [φ]| 6 C ′

(1 + |g|)n+1

where C ′ depends on v, φ. Now, since:∑
g∈Zn

1

(1 + |g|)n+1 <∞,

(see Exercise below) we deduce that for each φ ∈ S the sum:∑
g∈Zn

τgv [φ]

converges. This is precisely the statement that the sum in (4.8) converges in S ′.
Now suppose u ∈ D ′(Rn) is periodic, and take ψ as in Lemma 4.14. Suppose

φ ∈ D(Rn) is arbitrary. We have:

u[φ] =

∑
g∈Zn

τgψ

u[φ] =
∑
g∈Zn

u [τgψφ] . (4.9)

Now, since u is periodic,:

u [τgψφ] = τgu [τgψφ] = u [ψτ−gφ] = (ψu) [τ−gφ] = τg(ψu)[φ]
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Now ψu has compact support, so by Theorem 3.14 extends uniquely to v ∈ E ′(Rn). Thus
we have:

u =
∑
g∈Zn

τgv

which by the first part of the proof converges in S ′, thus u ∈ S ′.

Exercise(∗). Recall that for x ∈ Rn:

‖x‖1 :=
n∑
i=1

|xi| .

For k ∈ N set:

Qk =

{
g ∈ Zn : k − 1

2
6 ‖g‖1 < k +

1

2

}
a) Show that:

#Qk = (2k + 1)n − (2k − 1)n

so that #Qk 6 c(1 + k)n−1 for some c > 0.

b) By applying the Cauchy-Schwarz identity to estimate a · b for a = (1, . . . , 1)
and b = (|g1| , . . . , |gn|), deduce that:

‖g‖1 6
√
n |g|

c) Show that there exists a constant C > 0, depending only on n such that:

∑
g∈Zn;‖g‖16K

1

(1 + |g|)n+1
6 1 + C

K∑
k=1

1

k2

holds for all K ∈ N. Deduce that:∑
g∈Zn

1

(1 + |g|)n+1
<∞.

We have shown that a periodic distribution is necessarily tempered. It is therefore
reasonable to ask what one can say about the Fourier transform of a periodic distribution.
In fact, it will turn out that the Fourier transform of a periodic distribution has a very
simple form: it consists of a sum over δ-distributions with support on the points of an
integer lattice.

Before we establish this, we will first need a technical result regarding distributions.

Lemma 4.16. Suppose that u ∈ S satisfies:(
e−g′ − 1

)
u = 0 (4.10)

for all g′ ∈ Zn. Then:
u =

∑
g∈Zn

cgδ2πg,
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where cg ∈ C satisfy the bound

|cg| 6 K(1 + |g|)N

for some K > 0, N ∈ Z, and the sum converges in S ′.

Proof. First, we claim that suppu ⊂ Λ, with

Λ = {2πg : g ∈ Zn} .

Suppose φ ∈ D(Rn) with suppφ ⊂ Rn\Λ. Then for each g′ ∈ Zn, we have
(
e−g′ − 1

)−1
φ ∈

S , since φ vanishes near any zeros of e−g′ − 1. Applying the condition (4.10), we deduce:

0 =
(
e−g′ − 1

)
u
[(
e−g′ − 1

)−1
φ
]

= u[φ]

so u vanishes. Thus suppu ⊂ Λ.
Now, let us take ψ as in Lemma 4.14, and define ψ̃(x) = ψ

(
x
2π

)
. It’s straightforward

to check that: ∑
g∈Zn

τ2πgψ̃ = 1, supp ψ̃ ⊂ {x ∈ Rn : |xi| < 2π}.

For g ∈ Zn, let us consider vg = (τ2πgψ̃)u. This distribution is supported at 2πg, and by
multiplying (4.10) by τ2πgψ̃ we have:(

e−g′ − 1
)
vg = 0

In particular, we have, taking g′ = lj for j = 1, . . . n, where {lj} is the canonical basis for
Rn: (

e−i(xj−2πgj) − 1
)
vg = 0.

Now, (
e−i(xj−2πgj) − 1

)
= (xj − 2πgj)κ(xj)

where κ(xj) is non-zero on a neighbourhood of gj . Thus we conclude that:

(xj − 2πgj)vg = 0, j = 1, . . . n.

Now suppose φ ∈ S . We can write:

φ(x) = φ(2πg) +

n∑
j=1

(xj − 2πgj)φj(x)

where φj(x) ∈ C∞(Rn). Since vg has compact support, it extends to smoothly to act on
E (Rn) and we calculate:

vg[φ] = vg[φ(2πg)] +

n∑
j=1

(xj − 2πgj)vg[φj ] = vg[φ(2πg)]
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Returning to the definition of vg, we have:

(τ2πgψ̃)u[φ] = (τ2πgψ̃)u[φ(2πg)] = u[τ2πgψ̃]δ2πg[φ]

so that
(τ2πgψ̃)u = u[τ2πgψ̃]δ2πg

Summing over g ∈ Zn, we recover:

∑
g∈Zn

(τ2πgψ̃)u =

∑
g∈Zn

(τ2πgψ̃)

u = u =
∑
g∈Zn

cgδ2πg

Where
cg = u[τ2πgψ̃].

To establish the estimate for cg, we recall from Lemma 3.15 that there exist N, k ∈ N
and C > 0 such that:

|u[φ]| 6 C sup
x∈Rn;|α|6k

∣∣(1 + |x|)NDαφ(x)
∣∣ , for all φ ∈ S .

Applying this to τ2πgψ̃, we have:

|cg| 6 C sup
x∈Rn;|α|6k

∣∣∣(1 + |x|)NDαψ̃(x− 2πg)
∣∣∣

6 C sup
x∈Rn;|α|6k

∣∣∣(1 + |x+ 2πg|)NDαψ̃(x)
∣∣∣

6 C ′ sup
x∈Rn;|α|6k

∣∣∣(1 + |x|)NDαψ̃(x)
∣∣∣× (1 + |g|)N

6 K(1 + |g|)N

With this bound, it is a straightforward exercise to verify that the sum converges in
S ′.

Exercise(∗). Show that if cg satisfy:

|cg| 6 K(1 + |g|)N

for some K > 0 and N ∈ N, then:∑
g∈Zn

cgδ2πg

converges in S ′.

This now enables us to establish a result regarding the Fourier series of a periodic
distribution.
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Theorem 4.17. Suppose u ∈ D ′(Rn) is a periodic distribution. Then there exist constants
cg ∈ C such that:

u =
∑
g∈Zn

cgTe2πg .

with cg are given by:
cg = M(e−2πgu).

and satisfy the bound:
|cg| 6 K(1 + |g|)N (4.11)

for some K > 0, N ∈ Z.

Proof. Since u is periodic, it is tempered by Lemma 4.15. Thus we may take the Fourier
transform. Noting that:

τg′u = u

for all g′ ∈ Zn, we have that

e−g′ û = û =⇒ (e−g′ − 1)û = 0.

By Lemma 4.16, we deduce that:

û = (2π)n
∑
g∈Zn

cgδ2πg,

for some cg satisfying (4.11), where the sum converges in S ′. We can apply the inverse
Fourier transform, making use of the fact that it is continuous on S ′ to deduce:

u =
∑
g∈Zn

cgTe2πg ,

with convergence again in S ′. To establish the formula for cg, we make use of the
comments after Lemma 4.14 to note that:

M(e−2πgTe2πg′ ) =

∫
q
e2πi(g−g′)·xdx = δgg′

Since u 7→M(e−2πgu) is a continuous map from S ′ to C, we deduce that:

M(e−2πgu) =
∑
g′∈Zn

cgM(e−2πgTe2πg′ ) = cg′ .

Remark. Usually one writes the Fourier series for u as:

u =
∑
g∈Zn

cge2πg,

ignoring the distinction between the function e2πg and the distribution it defines.
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As a simple example, let us consider the distribution:

u =
∑
g∈Zn

δg.

By Lemma 4.15, this defines a periodic distribution, since δg = τgδ0 and δ0 ∈ E ′(Rn).
Notice also that if ψ satisfies the conditions of Lemma 4.14, then since suppψ ⊂ {x ∈ Rn :
|xj | < 1}, we have that τgψ(0) = 0 for g ∈ Zn with g 6= 0. Thus, since

∑
g∈Zn τgψ = 1,

we must have ψ(0) = 1. We can then calculate:

cg = M(e−2πgu) = u[ψe−2πg] = ψ(0)e−2πig·0 = 1.

Thus we have established Poisson’s formula:∑
g∈Zn

δg =
∑
g∈Zn

Te2πg ,

where we understand both sums to converge in S ′. This is sometimes written, with an
abuse of notation: ∑

g∈Zn
δ(x− g) =

∑
g∈Zn

e2πg·xi

We can specialise various results concerning Fourier transforms to the case of Fourier
series.

Corollary 4.18. i) Suppose u ∈ D ′(Rn) is periodic and may be written as:

u =
∑
g∈Zn

cgTe2πg .

Then Dju ∈ D ′(Rn) is periodic and has Fourier series:

Dju =
∑
g∈Zn

(2πigjcg)Te2πg .

ii) Suppose f ∈ L1
loc.(Rn), then:

|cg| 6 ‖f‖L1(q) ,

and moreover, cg → 0 as |g| → ∞.

iii) Suppose f ∈ Cn+1(Rn) is periodic. Then:

f(x) =
∑
g∈Zn

cge
2πig·x

with the sum converging uniformly.
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iv) Suppose f, h ∈ L2
loc.(Rn) are periodic with Fourier coefficients fg, hg respectively.

Then: ∫
q
f(x)h(x)dx =

∑
g∈Zn

fghg.

This is the Fourier series version of Parseval’s formula. Moreover,

f(x) =
∑
g∈Zn

cge
2πig·x

holds, with the sum converging in L2(q).

Proof. i) Since the Fourier series for u converges in S ′, we may differentiate term by
term (as differentiation is a continuous operation from S ′ to itself). Since

DjTe2πg = (2πigj)Te2πg ,

the result follows.

ii) Note that if f ∈ L1
loc.(Rn), then:

|cg| =
∣∣∣∣∫
q
e−2πig·xf(x)dx

∣∣∣∣ 6 ∫
q
|f(x)| dx = ‖f‖L1(q) .

Now, given ε > 0, we can approximate4 f by a smooth periodic function fε, with
Fourier coefficients c′g, such that

‖f − fε‖L1(q) <
ε

2
.

Since DjDjfε ∈ L1
loc.(Rn), we have that |g|2

∣∣c′g∣∣ < C, for each j = 1, . . . , n so there
exists R > 0 such that

∣∣c′g∣∣ < ε
2 for |g| > R. We have:∣∣cg − c′g∣∣ 6 ‖f − fε‖L1(q) <

ε

2
,

so we conclude that for |g| > R:

|cg| =
∣∣cg − c′g + c′g

∣∣ < ε

2
+
ε

2
= ε.

Thus cg → 0 as |g| → ∞.

iii) Since f ∈ Ck+1(Rn), we have that Dαf ∈ L1
loc.(Rn) for |α| < n + 1. Applying the

previous two results we conclude that |cg| 6 K(1 + |g|)−n+1 for some K > 0. Thus
the partial sums:

Fn(x) =
∑

g∈Zn,|g|6n

cge
2πig·x

4See Exercise 4.1
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converge uniformly to some continuous function F by the Weierstrass M−test. We
have:

Tf = lim
n→∞

∑
g∈Zn,|g|6n

cgTe2πg = lim
n→∞

TFn = TF

since uniform convergence implies convergence in S ′. By the injectivity of the
mapping between continuous functions and distributions we conclude f = F .

iv) Suppose f, h ∈ C∞(Rn) are periodic. Then:

f(x) =
∑
g∈Zn

fge
2πig·x, h(x) =

∑
g∈Zn

hge
2πig·x

with supg∈Zn(1 + |g|)N |fg| <∞ for all N ∈ N, and similarly for hg. We calculate:

∫
q
f(x)g(x)dx =

∫
q

∑
g∈Zn

fge
−2πig·x

∑
g′∈Zn

hg′e
2πig′·x

 dx

=
∑
g∈Zn

∑
g′∈Zn

fghg′

∫
q
e2πi(g′−g)·xdx

=
∑
g∈Zn

∑
g′∈Zn

fghg′δgg′ =
∑
g∈Zn

fghg.

In particular, we have that:

‖f‖L2(q) = ‖fg‖`2(Zn) ,

where for a sequence {ag}g∈Zn , we define:

‖ag‖`2(Zn) =

∑
g∈Zn

|ag|2
 1

2

.

Now suppose f ∈ L2
loc.(Rn). Given k > 0, we can find f (k) ∈ C∞(Rn) with Fourier

coefficients f (k)
g such that: ∥∥∥f − f (k)

∥∥∥
L2(q)

<
1

k
.

Since by Cauchy-Schwarz we have:

‖f‖L1(q) =

∫
q
|f(x)| dx 6

(∫
q
|f(x)|2 dx

) 1
2
(∫

q
dx

) 1
2

= ‖f‖L2(q)

we have that: ∥∥∥fg − f (k)
g

∥∥∥
`∞(Zn)

:= sup
g∈Zn

∣∣∣fg − f (k)
g

∣∣∣ < 1

k
,

Now, f (k) is a Cauchy sequence in L2(q), so {f (k)
g } is a Cauchy sequence in `2(Zn).

We conclude that f (k)
g converges in `2(Zn), however we also know that f (k) → f
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in `∞(Zn), thus we must have f (k) → f in `2(Zn). Taking a similar sequence of
h(k) ∈ C∞(Rn) approximating h with Fourier coefficients h(k)

g , and recalling that:(
f (k), h(k)

)
L2(q)

=
(
f (k), h(k)

)
`2(Zn)

,

the result follows on sending k →∞. The convergence of the Fourier series in L2(q)
follows by showing that the partial sums form a Cauchy sequence in L2(q).

Exercise 4.1. Suppose f ∈ Lploc.(R
n) is a periodic function and let:

q =

{
x ∈ Rn : |xj | <

1

2
, j = 1, . . . , n

}
.

Show that for any ε > 0 there exists a smooth, periodic, function fε such that

‖f − fε‖Lp(q) < ε.

Exercise 4.2. Let u ∈ S ′(R) be the periodic distribution u =
∑∞

n=−∞ δn,
and suppose α is irrational. Let wN = 1

N

∑N
n=1 τnαu. By considering ŵN , or

otherwise, show that wN converges in S ′(R) to a constant distribution.
This is Weyl’s equidistribution theorem.

Exercise(∗). Suppose that f : R→ R is given by:

f(x) = x for |x| < 1

2
, f(x+ 1) = f(x).

Show that:

f(x) =
∑

n∈Z,n 6=0

i(−1)n

2πn
e2πinx =

∞∑
n=1

(−1)n+1

nπ
sin(2πnx),

with convergence in L2
loc.(R).

Exercise(∗). Suppose f : R→ R is given by:

f(x) =

{
−1 −1

2 < x 6 0
1 0 < x 6 1

2

, f(x+ 1) = f(x).

a) Show that:

f(x) =
1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x =

4

π

∞∑
n=0

1

2n+ 1
sin [2π(2n+ 1)x]

With convergence in L2
loc.(Rn).
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Define the partial sum:

SN (x) = 8
N−1∑
n=0

1

2π(2n+ 1)
sin [2π(2n+ 1)x] .

b) Show that:

SN (x) = 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt.

c) Show that:

cos [2π(2n+ 1)t] sin 2πt =
1

2
(sin [2π(2n+ 2)t]− sin [4πnt])

And deduce:
SN (x) = 8

∫ x

0

sin 4πNt

2 sin 2πt
dt.

d) Show that the first local maximum of SN occurs at x = 1
4N , and:

SN

(
1

4N

)
> 8

∫ 1
4N

0

sin 4πNt

4πt
dt =

2

π

∫ π

0

sin s

s
ds ' 1.179 . . .

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is
known as Gibbs Phenomenon.

4.6 Sobolev spaces

4.6.1 The spaces W k,p(Ω)

Suppose Ω ⊂ Rn is an open set. For k ∈ Z>0 and 1 6 p 6 ∞, we say that f ∈ Lp(Ω)
belongs to the Sobolev space W k,p(Ω) if for any |α| 6 k there exists fα ∈ Lp(Ω) with:

DαTf = Tfα .

We call fα the weak, or distributional derivative of f and write Dαf := fα. We can
equip W k,p(Ω) with the norm:

‖f‖Wk,p(Ω) :=
∑
|α|6k

‖Dαf‖Lp(Ω) .

With this norm, W k,p(Ω) is complete, and hence a Banach space. The Sobolev spaces
are particularly well suited to the study of PDE, and form the starting point for many
modern PDE investigations.

We can think of k as telling us how differentiable our function is, while p tells us
how integrable our function is. Roughly speaking spaces with larger k contain smoother



112 Chapter 4 The Fourier Transform and Sobolev Spaces

functions, while spaces with larger p contain less ‘spiky’ functions. We shall see that
(roughly speaking) one can trade smoothness for integrability: a function that belongs
to W k,p(Rn) belongs to certain W l,q(Rn) where l < k and p > q. If k and p are large
enough we can even conclude that the function must be classically differentiable.

We will frame the result as concerning the embedding of W k,p(Rn) spaces. Recall that
a Banach space (X, ‖·‖X) is said to embed continuously into the Banach space (Y, ‖·‖Y )
if X ⊂ Y and there exists a constant C such that:

‖x‖Y 6 C ‖x‖X , for all x ∈ X.

Theorem 4.19 (Sobolev embedding theorem). Suppose k > l and 1 6 p < q <∞ satisfy
(k − l)p < n and:

1

q
=

1

p
− k − l

n
.

Then W k,p(Rn) embeds continuously into W l,q(Rn).

If kp > n, then W k,p(Rn) embeds continuously into the Hölder space Ck−
[
n
p

]
−1,γ

(Rn),
where [x] is the largest integer less than or equal to x, and

γ =

{ [
n
p

]
+ 1− n

p
n
p 6∈ Z,

any element of (0, 1) n
p ∈ Z.

Here we have introduced the Hölder space Cm,κ(Rn) which consists of f ∈ Cm(Rn)
such that:

‖f‖Cm,κ(Rn) :=
∑
α6m

sup
x∈Rn

|Dαf(x)|+
∑
α=m

sup
x,y∈Rn

|Dαf(x)−Dαf(y)|
|x− y|κ

<∞.

We shan’t attempt to prove the general Sobolev embedding theorems, but will establish a
special case later on.

Exercise 4.3. Suppose that Ω ⊂ Rn is open and bounded, let f ∈ C∞c (Ω), and
suppose 0 < ε < 1.

a) Show that
∫

Ω(|f |2 + ε)
p
2 dx→ ‖f‖pLp as ε→ 0.

b) By considering
∫

Ω(|f |2 + ε)
p
2 dx =

∫
Rn
(

1
ndiv x

)
(|f |2 + ε)

p
2 dx, or otherwise,

show that there exists a constant C, depending on Ω, p but not on f , such
that

‖f‖Lp ≤ C ‖Df‖Lp .

4.6.2 The space Hs(Rn)

We shall immediately specialise to the case p = 2 and Ω = Rn. This is an important
special case for two reasons. Firstly, W k,2(Ω) is a Hilbert space (in addition to being
a Banach space), and so carries additional structure. Secondly, W k,2(Rn) is very well
adapted to the Fourier transform. To see this, we recall that if f ∈ L2(Rn), then:

T̂f = Tf̂
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where f̂ ∈ L2(Rn) is the Fourier-Plancherel transform of f . We immediately obtain an
alternative characterisation of the space W k,2(Rn). A function f ∈ L2(Rn) belongs to
W k,2(Rn) if and only if: ∫

Rn

(
1 + |ξ|2

)k ∣∣∣f̂(ξ)
∣∣∣2 dξ <∞.

Notice that in this characterisation there is no need to restrict k to be an integer, nor in
fact for f to belong to L2(Rn). This motivates the following definition. For s ∈ R we say
that f ∈ S ′ belongs to the space Hs(Rn) provided f̂ ∈ L2

loc.(Rn) and:

‖f‖Hs(Rn) :=

(∫
Rn

(
1 + |ξ|2

)s ∣∣∣f̂(ξ)
∣∣∣2 dξ) 1

2

<∞.

Hs(Rn) is complete, and moreover is a Hilbert space. We see that if k ∈ Z>0 then
Hk(Rn) = W k,2(Rn), where we make the canonical identification between a functions
f ∈ L2(Rn) and the distribution Tf ∈ S ′(Rn). From now on, we shall use f to mean
both the function and the distribution.

Exercise 4.4. Let s ∈ R.

a) Show that S is a dense subset of Hs(Rn).

b) Find a condition on s such that δx ∈ Hs(Rn).

c) Show that Ht(Rn) is continuously embedded in Hs(Rn) for s < t.

d) Show that the derivative Dα is a bounded linear map from Hs+k(Rn) into
Hs(Rn), where k = |α|.

e) (*) Show that the pairing 〈, 〉 : H−s(Rn) × Hs(Rn) → C, which acts on
f ∈ H−s(Rn), g ∈ Hs(Rn) by

〈f, g〉 =
1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ

is well defined, and show that the map g 7→ 〈f, g〉 is a bounded linear operator
on Hs(Rn). Deduce that Hs(Rn)′ may be identified with H−s(Rn). How
does this relate to your answer to part b)?

4.6.3 Sobolev Embedding

An important feature of the Sobolev spaces Hs(Rn) is that for s sufficiently large, they
embed into Ck(Rn). More previsely:

Theorem 4.20. Fix k ∈ Z>0. Suppose that f ∈ Hs(Rn) for some s > k + n
2 , then

(possibly after redefinition on a set of measure zero) f ∈ Ck(Rn). That is, we have:

Hs(Rn) ⊂ Ck(Rn).
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Proof. First suppose f ∈ S (Rn). Then by the Fourier inversion theorem we have for
|α| 6 k:

Dαf(x) =
i|α|

(2π)n

∫
Rn
eix·ξξαf̂(ξ)dξ.

We estimate with the Cauchy-Schwarz inequality:

|Dαf(x)| = 1

(2π)n

∣∣∣∣∫
Rn
eix·ξξαf̂(ξ)dξ

∣∣∣∣
6

1

(2π)n

∫
Rn

∣∣∣ξαf̂(ξ)
∣∣∣ dξ

6
1

(2π)n

(∫
Rn

(1 + |ξ|2)s
∣∣∣f̂(ξ)

∣∣∣2 dξ) 1
2

(∫
Rn

|ξα|2

(1 + |ξ|2)s
dξ

) 1
2

Now, since |ξα|2 6 ck(1 + |ξ|2)k for some ck > 0, we have that:

1

(2π)n

(∫
Rn

|ξα|2

(1 + |ξ|2)s
dξ

) 1
2

6
ck

(2π)n

(∫
Rn

1

(1 + |ξ|2)s−k
dξ

) 1
2

=: Cn,k,s <∞

where we have used s > k + n
2 in order to ensure that the integral converges. We thus

have that:
sup

|α|6k,x∈Rn
|Dαf(x)| 6 Cn,k,s ‖f‖Hs(Rn) . (4.12)

Now suppose f ∈ Hs(Rn). We can approximate f by a sequence (fm)∞m=1 with
fm ∈ S (Rn) and fm → f in Hs(Rn) and pointwise almost everywhere. In particular,
(fm) is Cauchy in Hs(Rn), so by the estimate (4.12) applied to fm− fl we have that (fm)
is Cauchy in Ck(Rn), thus there exists f∗ ∈ Ck(Rn) such that Dαfm → Dαf∗ uniformly
for all |α| 6 k. Since fm → f pointwise almost everywhere, we deduce that f = f∗ almost
everywhere.

Exercise 4.5. a) Suppose s = n
2 + γ for some 0 < γ < 1. Show that there

exists a constant Cn,γ > 0 such that for all x, y ∈ Rn:∫
Rn

∣∣eix·ξ − eiy·ξ∣∣2
|ξ|2s

dξ 6 Cn,γ |x− y|2γ

b) Show that if s = n
2 + k + γ for some k ∈ Z>0, 0 < γ < 1, then

Hs(Rn) ⊂ Ck,γ(Rn).

Exercise 4.6. Fix s ∈ R, and suppose that f ∈ Hs(Rn).

a) Show that there exists a unique u ∈ Hs+4(Rn) which solves:

∆2u+ u = f.

b) Show further that there exists C > 0 such that ‖u‖Hs+4 6 C ‖f‖Hs .

c) For what values of s does the equation hold in the sense of classical derivatives
(possibly after redefining u, f on a set of measure zero)?
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4.6.4 The trace theorem

We are often interested in the restriction of a function defined on Rn, or some open subset,
to some hypersurface Σ ⊂ Rn. For example, when studying a PDE problem posed in
some nice domain Ω we might wish to impose a boundary condition on ∂Ω. If we work
with functions in Hs(Rn) for s > 0, which are defined only almost everywhere, then this
is a problem, since for nice domains ∂Ω will have Lebesgue measure zero. The trace
theorem allows us to make sense of the restriction of a function in Hs to a hypersurface
Σ, even when we don’t have f ∈ C0 by Sobolev embedding. We restrict to the problem
of defining f |{xn=0} when f ∈ Hs(Rn) is given, however by combining this result with
coordinate transformations it is fairly easy to see how to generalise to the case of smoothly
embedded submanifolds.

Theorem 4.21. Let s > 1
2 . Then there is a bounded linear map T : Hs(Rn)→ Hs− 1

2 (Rn)
such that

Tf = f |{xn=0}

for all f ∈ Hs(Rn) ∩ C0(Rn).

Proof. See Exercise 4.7.

Exercise 4.7. Assume s > 1
2 and suppose u ∈ S (Rn). Define Tu ∈ S (Rn−1)

by:
Tu(x′) = u(x′, 0), x′ ∈ Rn−1.

a) Show that if ξ′ ∈ Rn−1:

T̂ u(ξ′) =
1

2π

∫
R
û(ξ′, ξn)dξn.

b) Deduce that:

∣∣∣T̂ u(ξ′)
∣∣∣2 6 1

(2π)2

(∫
R

(1 + |ξ|2)s
∣∣û(ξ′, ξn)

∣∣2 dξn)
∫

R

dξn(
1 + |ξ|2

)s
 ,

where ξ = (ξ′, ξn).

c) By changing variables in the second integral above to ξn = t
√

1 + |ξ′|2, show
that there exists a constant C(s) such that:

‖Tu‖
Hs− 1

2 (Rn−1)
6 C(s) ‖u‖Hs(Rn) .

d) Conclude that T extends to a bounded linear operator T : Hs(Rn) →
Hs− 1

2 (Rn−1).
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e) (*) Suppose v ∈ S (Rn−1) and let φ ∈ C∞c (R) satisfy
∫
R φ(t)dt =

√
2π.

Define u through its Fourier transform by:

û(ξ′, ξn) =
v̂(ξ′)√
1 + |ξ′|2

φ

 ξn√
1 + |ξ′|2

 .

Show that there exists a constant C > 0 such that:

‖u‖Hs(Rn) 6 C ‖v‖Hs− 1
2 (Rn−1)

and that Tu = v. Conclude that T : Hs(Rn)→ Hs− 1
2 (Rn−1) is surjective.

4.6.5 The space H1
0 (Ω)

Suppose that Ω is an open subset of Rn. For any function f ∈ C∞c (Ω), we can trivially
extend to an element of C∞c (Rn) by f(x) = 0 for x ∈ Ωc, so can abuse notation slightly
to denote by C∞c (Ω) the space of smooth functions f : Rn → C with support in some
compact K ⊂ Ω. We define H1

0 (Ω) to be the completion of C∞c (Ω) with respect to the
H1(Rn)-norm. H1

0 (Ω) is a Hilbert space, equipped with the inner product:

(u, v)H1 =

∫
Ω

(
Du(x) ·Dv(x) + u(x)v(x)

)
dx.

Let u ∈ H1
0 (Ω). Then by definition there exists a sequence (φn)∞n=1, with φn ∈ C∞c (Ω)

and φn → φ in H1(Rn). Since for any open U ⊂ Rn we have

‖fn − f‖L2(U) 6 ‖fn − f‖L2(Rn) 6 ‖fn − f‖H1(Rn) ,

we deduce that fn|U → f |U in L2. If we choose U = Ωc, we conclude that if f ∈ H1
0 (Ω)

then f |Ωc = 0 almost everywhere.
If we assume the boundary of Ω is smooth, i.e. is an embedded smooth (n−1)-manifold,

then we can make sense of the restriction of f to ∂Ω in the trace sense, and since the
trace operator is a continuous map from H1(Rn), we find that f vanishes on ∂Ω in the
trace sense.

For many PDE problems, one wishes to solve some equation in an open set Ω, subject
to the condition that the solution vanishes on the boundary of Ω. Seeking a solution in
H1

0 (Ω) is often a convenient way to encode this boundary condition.

4.6.6 Rellich–Kondrachov

The Rellich–Kondrachov theorem is an important result concerning Sobolev spaces, with
applications in PDE, calculus of variations and beyond. It concerns compact embedding
for Sobolev spaces defined on a bounded domain. We shall prove a version of the result
for the space H1

0 (Ω), where Ω is a bounded open set.

Theorem 4.22 (Rellich–Kondrachov). Suppose that Ω is a bounded open set and that
(ui)

∞
i=1 is a bounded sequence in H1

0 (Ω). Then there exists u ∈ H1
0 (Ω) and a subsequence

(uij )
∞
j=1 such that:
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i) uij ⇀ u in H1
0 (Ω), and

ii) uij → u in L2(Ω).

Proof. By assumption, we have that

‖ui‖L2(Ω) 6 ‖ui‖H1
0 (Ω) 6 K

so (ui)
∞
i=1 is bounded in both H1

0 (Ω), and L2(Ω), and we immediately deduce from the
Banach–Alaoglu theorem that there exists u ∈ H1

0 (Ω) and a subsequence (uij )
∞
j=1 such

that uij ⇀ u in H1
0 (Ω), and uij ⇀ u in L2(Ω). For convenience, let us set wj = uij so

that wj ⇀ u in H1
0 (Ω), and wj ⇀ u in L2(Ω). Thus our goal is to improve the weak-L2

convergence of (wj) to strong-L2 convergence.
Fix ε > 0. We make use of Parseval’s Formula (Theorem 4.6) to give:

‖wj − u‖2L2 =
1

(2π)n
‖ŵj − û‖2L2

=
1

(2π)n

∫
|ξ|<R

|ŵj(ξ)− û(ξ)|2 dξ +
1

(2π)n

∫
|ξ|>R

|ŵj(ξ)− û(ξ)|2 dξ

We deal with the two integrals on the final line separately. First we estimate:

1

(2π)n

∫
|ξ|>R

|ŵj(ξ)− û(ξ)|2 dξ 6 2

(2π)nR2

∫
|ξ|>R

|ξ|2 (|ŵj(ξ)|2 + |û(ξ)|2)dξ

6
2K2

(2π)nR2
< ε,

provided R > 0 is chosen sufficiently large.
Now consider the remaining integral that we need to bound. First, we note that

ŵj(ξ) =

∫
Ω
wj(x)e−ix·ξdx = (wi, e−ξ)L2(Ω) ,

where we recall ey(x) = eix·y. Noting that e−ξ ∈ L2(Ω) since |Ω| <∞, and that wj ⇀ u
in L2(Ω), we deduce that for each ξ ∈ Rn:

ŵj(ξ)→ û(ξ).

We can also estimate, for |ξ| < R:

|ŵj(ξ)− û(ξ)|2 6 2 |ŵj(ξ)|2 + 2 |û(ξ)|2 6 2
(
‖ŵj‖2L∞ + ‖û‖2L∞

)
6 2

(
‖wj‖2L1(Ω) + ‖u‖2L1(Ω)

)
6 2|Ω|

(
‖wj‖2L2(Ω) + ‖u‖2L2(Ω)

)
6 4K2|Ω| ∈ L1(BR(0))

So by the dominated convergence theorem we deduce that

1

(2π)n

∫
|ξ|<R

|ŵj(ξ)− û(ξ)|2 dξ → 0
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as j →∞, so that for j sufficiently large we have established:

‖wj − u‖2L2 < 2ε

Corollary 4.23. Let Ω ⊂ Rn be open and bounded. Suppose that L : L2(Ω)→ H1
0 (Ω) is

a bounded linear operator, then L : L2(Ω)→ L2(Ω) is compact.

Exercise 4.8. Suppose that λ = {λ1, . . . λn} is a basis for Rn. We define the
lattice generated by λ to be Λ =

{∑n
j=1 zjλj : zj ∈ Z

}
, and the the fundamental

cell qΛ =
{∑n

j=1 xjλj : |xj | < 1
2

}
. We say that u ∈ D ′(Rn) is Λ−periodic if:

τgu = u for all g ∈ Λ.

a) Show that there exists ψ ∈ C∞c (2qΛ) such that ψ > 0 and
∑

g∈Λ τgψ = 1. If
ψ, ψ′ are two such functions and u ∈ D ′(Rn) is Λ−periodic, deduce

1

|qΛ|
u[ψ] =

1

|qΛ|
u[ψ′] =: M(u).

b) Define the dual lattice by Λ∗ := {x ∈ Rn : g · x ∈ 2πZ, ∀g ∈ Λ}. Show that
there exists a basis λ∗ = {λ∗1, . . . λ∗n} such that λ∗j · λk = 2πδjk, and Λ∗ is the
lattice generated by λ∗. Show that if g ∈ Λ∗ then eg is Λ−periodic.

c) Show that if u ∈ D ′(Rn) is Λ−periodic, then û =
∑

g∈Λ∗ cgδg for some cg ∈ C
satisfying |cg| 6 K(1 + |g|)N for some K > 0, N ∈ Z. Deduce that

u =
∑
g∈Λ∗

dgTeg

where |dg| 6 K(1 + |g|)N for some K > 0, N ∈ Z are given by:

dg = M(e−gu)

Exercise 4.9. Suppose that Ω ⊂ Rn is open and bounded. For u ∈ H1
0 (Ω),

define the Dirichlet energy:

E[u] =

∫
Ω
|Du|2 dx.

a) Suppose that (ui)
∞
i=1 is a sequence with ui ∈ H1

0 (Ω) such that ui ⇀ u. Show
that E[u] 6 lim infiE[ui].

b) Consider the set

E1 = {E[u] : u ∈ H1
0 (Ω), ‖u‖L2 = 1}

Let λ1 := inf E . Show that there exists w1 ∈ H1
0 (Ω) with ‖w1‖L2 = 1 and

E[w1] = λ1, and deduce λ1 > 0.
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c) Deduce that:

λ1 ‖u‖2L2 6
∫

Ω
|Du|2 dx

holds for all u ∈ H1
0 (Ω), with equality for u = w1. This is Poincaré’s

inequality.

d) By considering u = w1 + tφ for t ∈ R, φ ∈ D(Ω), or otherwise, show that w1

satisfies
−∆w1 = λ1w1,

where we understand this equation as holding in D ′(Ω).

e) (*) Suppose χ ∈ C∞c (Ω), and let v = χw1. Show that v satisfies −∆v+v = f ,
where we understand the equation as holding in S ′(Rn), where f ∈ L2(Rn).
Deduce that v ∈ H2(Rn). By iterating this argument, deduce that w1 ∈
H1

0 (Ω) ∩ C∞(Ω).

f) (*) By considering

E2 = {E[u] : u ∈ H1
0 (Ω), ‖u‖L2 = 1, (u,w1)L2 = 0},

or otherwise, show that there exists λ2 > λ1 and w2 ∈ H1
0 (Ω) ∩ C∞(Ω) with

w2 6= w1, ‖w2‖L2 = 1 solving

−∆w2 = λ2w2.

4.7 PDE Examples

4.7.1 Elliptic equations on Rn

Consider the following equation on Rn, with k > 0:

−∆u+ k2u = f,

where f is given and we wish to find u. Suppose that f ∈ Hs(Rn) for some s ∈ R. We
claim that there is a unique solution u ∈ Hs+2(Rn). Our assumptions on u, f permit us
to take the Fourier transform of the equation so that:

(|ξ|2 + k2)û(ξ) = f̂(ξ)

holds pointwise almost everywhere. Since |ξ|2 + k2 > C(1 + |ξ|2) > 0 for some C, we can
divide through to find

û(ξ) =
f̂(ξ)

|ξ|2 + k2
,

again using |ξ|2 + k2 > C(1 + |ξ|2) > 0 we deduce:

‖u‖Hs+2(Rn) 6 C ‖f‖Hs(Rn) .

Thus we indeed have that u ∈ Hs+2(Rn). Uniqueness follows from the injectivity of the
Fourier transform. Note that if s > n

2 then f ∈ C0(Rn) and u ∈ C2(Rn), so that we in
fact have a classical solution to the PDE. Note also that the solution is more regular than
the data. This is an example of a phenomenon known as elliptic regularity.
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4.7.2 Elliptic boundary value problems

Suppose that Ω ⊂ Rn is open, assume f : Ω→ R is given, and consider the equation:{
−∆u+ u = f in Ω

u = 0 on ∂Ω.
(4.13)

We wish to reformulate this so that we can solve it. In order to incorporate the boundary
condition, we shall seek a solution u ∈ H1

0 (Ω). Since an element of H1
0 (Ω) only has weak

derivatives in L2 up to first order, we need to recast the equation in a form that makes
sense. To do this, suppose we have a sufficiently regular solution, conjugate the equation
and multiply it by v ∈ C∞c (Ω) to deduce, after integrating by parts:∫

Ω

(
Du ·Dv + uv

)
dx =

∫
Ω
fvdx (4.14)

holds for all v ∈ C∞c (Ω). We realise that, if f ∈ L2(Ω), we are seeking u ∈ H1
0 (Ω) such

that:
(u, v)H1 = (f, v)L2

for all v ∈ C∞c (Ω). We also notice that since C∞c (Ω) is dense in H1
0 (Ω), this is equivalent

to requiring the condition holds for v ∈ H1
0 (Ω). We say that u ∈ H1

0 (Ω) is a weak solution
of (4.13) if (4.14) holds for all v ∈ H1

0 (Ω). Clearly, if u is a classical solution then it is a
weak solution.

Now, for f ∈ L2(Ω), the map F : H1
0 (Ω) → C given by v 7→ (f, v)L2 is a bounded

linear operator, hence we can apply Riesz representation theorem for the Hilbert space
H1

0 (Ω) to deduce that there exists a unique ũ ∈ H1
0 (Ω) such that F (v) = (u, v)H1 for all

v ∈ H1
0 (Ω). This is precisely the solution we seek! In conclusion, then, we have shown:

Lemma 4.24. Given f ∈ L2(Ω) there exists a unique u ∈ H1
0 (Ω) solving (4.13) in the

sense that (4.14) holds for all v ∈ H1
0 (Ω).

We note that setting v = u in (4.14), and using Cauchy-Schwarz we have:

‖u‖2H1 = (f, u)L2 6 ‖f‖L2 ‖u‖L2 6 ‖f‖L2 ‖u‖H1 ,

so that
‖u‖H1 6 ‖f‖L2 .

We will now show that we can improve the regularity of u, at least in the interior
of Ω, provided we make some assumptions on f . For this, we introduce the space (here
k ∈ Z>0)

Hk
loc.(Ω) =

{
u : Ω→ C| χu ∈ Hk(Rn), for all χ ∈ C∞c (Ω)

}
Fix a compact K ⊂ Ω and suppose that the real function χ ∈ C∞c (Ω) satisfies χ(x) = 1

for x ∈ K. Let φ ∈ S (Rn), then since χφ ∈ C∞(Ω), we can set v = χφ in (4.15):∫
Ω
Du ·D(χφ) + uχφdx =

∫
Ω
fχφdx
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rearranging, we have:∫
Ω
D(χu) ·Dφ+Du · (Dχ)φ−Dφ · (Dχ)u+ uχφdx =

∫
Ω
fχφdx

and hence: ∫
Ω
−(χu)∆φ+ 2Du · (Dχ)φ+ φ(∆χ)u+ uχφdx =

∫
Ω
fχφdx

So that v = χu satisfies: ∫
Rn
v(−∆φ+ 1)dx =

∫
Rn
gφdx,

where
g = −2Du · (Dχ)− u∆χ+ fχ ∈ L2(Rn).

We have deduced that v ∈ H1(Rn) satisfies:

−∆v + v = g

in the sense of S ′(Rn). Now, by the results of the previous section, we deduce v ∈ H2(Rn)
with:

‖v‖H2 6 C ‖g‖L2 .

Further, v(x) = u(x) for all x ∈ K. Suppose χ̃ ∈ C∞c (Ω), then by applying the above
argument with the compact set K = supp χ̃ we deduce that χ̃u = χ̃χu ∈ H2(Rn). Thus
u ∈ H1

0 ∩H2
loc.(Ω).

Now suppose that f ∈ L2 ∩H1
loc.(Ω). Repeating the above argument, we notice that

g ∈ H1(Rn), and so v ∈ H3(Rn), and as a consequence we can conclude u ∈ H1
0∩H3

loc.(Rn).
Iterating, we find:

Theorem 4.25. Suppose Ω ⊂ Rn is open and f ∈ L2 ∩ Hk
loc.(Ω). Then there exists a

unique u ∈ H1
0 ∩ H

k+2
loc. (Ω) solving (4.13) in the weak sense. In particular, by Sobolev

embedding if f ∈ L2 ∩ C∞(Ω), then u ∈ H1
0 ∩ C∞(Ω).

Now, if u ∈ C∞(Ω), then we can see that the equation −∆u+ u = f must hold in Ω
in the classical sense. If we assume more regularity of the boundary (and f), then we can
also show that u extends to the boundary as a continuous function, and the boundary
condition holds classically also. Discussing boundary regularity would take us beyond the
remit of this course however.

We note, that our proof shows that the elliptic regularity phenomenon that we observed
above for an equation on Rn is in fact localisable: if (−∆u+ u) is smooth in the interior
of some open set, then u is smooth in that set. This is certainly not true for (for example)
the wave operator −∂2

t + ∆. It is straightforward (try it!) to find a function that satisfies
the wave equation in one dimension, hence utt − uxx = 0 ∈ C∞(R2), but for which
u /∈ C∞(R2).
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Spectral theory for elliptic boundary value problems

We now assume that Ω ⊂ Rn is both open and bounded. Let us represent by A the map
which takes f ∈ L2(Ω) to the unique solution u ∈ H1

0 (Ω) to (4.13). We can check that
A is linear, since if u = Af and w = Ag for some f, g ∈ L2(Ω) and a ∈ C, then for any
v ∈ H1

0 (Ω) we have:

(u+ aw, v)H1 = (u, v)H1 + a(w, v)H1 = (f, v)L2 + a(g, v)L2 = (f + ag, v)L2

so that Af + aAg = A(f + ag). Moreover, A : L2(Ω) → L2(Ω) is Hermitian. Suppose
u = Af and w = Ag for some f, g ∈ L2(Ω). Then

(f,Ag)L2 = (f, w)L2 = (u,w)H1 = (w, u)H1 = (g, u)L2 = (Af, g)L2 .

Finally, by Corollary 4.23 we have that A : L2(Ω) → L2(Ω) is compact. Thus by the
spectral theorem for compact operators (see Linear Analysis), the spectrum of A takes the
form σ(A) = {0, µ1, µ2, . . .}, where µk ∈ R, µk → 0. Further, there exists an orthonormal
basis for L2(Ω) consisting of eigenvectors of A. An eigenvector of A satisfies Aw = µw
for µ ∈ R, and thus for v ∈ H1

0 (Ω):

(w, v)L2 = (Aw, v)H1 = µ(w, v)H1 (4.15)

Setting v = w we deduce µ > 0, so in particular µ 6= 0, and we deduce that w solves:

−∆w + w =
1

µ
w

in the weak sense. This means that we can test the equation against elements of
H1

0 (Ω) (alternatively, we can understand the equation as holding in D ′(Ω)). Now, since
µ−1w ∈ H1

0 (Ω), we conclude from our previous work that w ∈ H1
0 ∩ H3(Ω). Hence

w ∈ H1
0 ∩H5(Ω), etc. We conclude, after Sobolev embedding that w ∈ C∞(Ω).

Finally, noting that an eigenfunction of (−∆ + 1) is also an eigenfunction of −∆, we
have shown:

Theorem 4.26. Let Ω ⊂ Rn be open and bounded. Then there exists an orthonormal
basis {wk}∞k=1 for L2(Ω) such that wk ∈ H1

0 ∩ C∞(Ω) satisfy

−∆wk = λkwk in Ω,

where λ1 6 λ2 6 λ3 6 · · · , and λk → ∞. (In fact, by Exercise 4.9 we can show that
0 < λ1).

Exercise 4.10. Let H be the completion of S (Rn) with respect to the norm

‖u‖H :=

(∫
Rn

(
|Du|2 + |x|2 |u|2

)
dx

) 1
2

a) Show that H is a Hilbert space with the inner product:

(u, v)H :=

∫
Rn

(
Du ·Dv + |x|2uv

)
dx,

and show that if u ∈ H,χ ∈ C∞c (BR(0)), then χu ∈ H1
0 (BR(0)), with

‖χu‖H1 6 CR,χ ‖u‖H for some constant CR,χ > 0.
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b) Show that H embeds compactly into L2(Rn), that is H ⊂ L2(Rn) and if
(un)∞n=1 is a bounded sequence in H then it admits a subsequence which
converges in L2(Rn).
[Hint: take a subsequence converging weakly in both H and L2(Rn), and write
un = unχR + un(1 − χR), where χR ∈ C∞c (BR(0)) satisfies χR(x) = 1 for
|x| < R− 1, where R is to be chosen.]

c) If f ∈ L2(Rn), we say that u ∈ H is a weak solution of:

−∆u+ |x|2u = f (†)

if
(u, v)H = (f, v)L2 for all v ∈ H. (�)

Show that if u, f ∈ S (Rn) solve (†), then u satisfies (�). Show that for any
f ∈ L2(Rn), there exists a unique solution u ∈ H to (�).

d) Denote by Lf the unique solution u ∈ H to (�) for f ∈ L2(Rn). Show that the
map f 7→ Lf is a compact, symmetric, linear operator L : L2(Rn)→ L2(Rn).
Deduce that there exists an orthonormal basis (wk)∞k=1 for L2(Rn) consisting
of wk ∈ H satisfying:

(wk, v)H = λk(wk, v)L2 for all v ∈ H, ([)

where 0 < λ1 6 λ2 6 λ3 6 · · · , and λk →∞.

e) Show that if wk ∈ H satisfies ([), then in fact wk ∈ C∞(Rn). Show further
that ŵk will also solve ([) with the same λk. Deduce that there exists
an orthonormal basis for L2(Rn), consisting of smooth functions, which
diagonalises the Fourier–Plancherel transform.

f) (**) Show that w ∈ H ∩ C∞(Rn) satisfies:

−∆w + |x|2w = λw

for some λ ∈ R if and only if:

w(x) = cHk1(x1) · · ·Hkn(xn)e−
1
2
|x|2 ,

where x = (x1, . . . , xn), c ∈ C, Hk(t) are the Hermite polynomials, and
λ = n+ 2k1 + . . . 2kn.
[Hint: treat the case n = 1 first. You may wish to look up the simple harmonic
oscillator in a textbook on quantum mechanics.]

4.7.3 Spaces involving time

For certain PDE problems it’s useful to separate out the time direction from the spatial
directions. To do this, it’s useful to introduce some new function spaces:
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Definition 4.3. Given a Banach space (X, ‖·‖X), and an interval I ⊂ R, the space
C0(I;X) is the space of continuous functions u : I → X.

If I is open, we define Ck(I;X) for k > 0 inductively as follows. We say u ∈
Ck−1(I;X) belongs to Ck(I,X) if there exists u′ ∈ Ck−1(I;X) such that for each t ∈ I:∥∥∥∥u(t+ ε)− u(t)

ε
− u′(t)

∥∥∥∥
X

→ 0, as ε→ 0.

A typical example of X will be one of the space Hs(Rn) for s > 0.

4.7.4 The heat equation

Let us now give another example to show how powerful the Fourier transform can be for
solving PDE problems. Let us consider the heat equation on Rn. The problem we shall
consider is, given u0 : Rn → R, determine u : Rn × [0, T )→ R, such that{

ut = ∆u in (0, T )× Rn,
u = u0 on {0} × Rn (4.16)

We suppose that our solution is a continuous mapping from (0, T ) intoH2(Rn), i.e. for each
fixed t we wish u(t, ·) =: u(t) to be an element of H2(Rn). In terms of the function spaces
above u ∈ C0((0, T );H2(Rn)). We will also suppose that u is continuously differentiable
as a mapping from (0, T ) into L2(Rn). In other words, u ∈ C1((0, T );L2(Rn)). Finally,
we wish for the initial condition to make sense, so we also require u ∈ C0([0, T );L2(Rn).

Exercise(∗). Show that if u ∈ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)), then
denoting by û the Fourier transform of u in the spatial variables:

û(t, ξ) = lim
R→∞

∫
BR(0)

u(t, x)e−ix·ξdx,

we have û ∈ C0((0, T );L2(Rn)) ∩ C1((0, T );L2(Rn)).

Let us, then, seek a solution of (4.16) such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))

Under this assumption we can take the Fourier transform of (4.16) for (t, x) ∈ (0, T )×Rn
to get: {

ût(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (0, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn

Now, the PDE has become an ODE for each fixed ξ! This ODE has a unique solution
given for almost every ξ ∈ Rn by:

û(t, ξ) = û0(ξ)e−t|ξ|
2

.

We note that if u0 ∈ L2(Rn), then û0 ∈ L2(Rn) and thus û ∈ C0([0, T );L2(Rn)) ∩
C1((0, T );L2(Rn)). In fact, for t > 0, we have that û(t, ξ) and ût(t, ξ) are rapidly



4.7 PDE Examples 125

decaying functions of ξ, in particular they belong to Hs(Rn) for any s > 0, so we have
that u(t, x) is smooth in x. Since u satisfies the equation (∂t)

nu = (∆)nu, we have that
u is smooth in both t and x. We can recover u(t, x) via the inverse Fourier transform
formula:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ. (4.17)

Summarising, we have the following result:

Lemma 4.27. Suppose u0 ∈ L2(Rn). Then (4.16) admits a unique solution u such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))

given by (4.17). In fact,
u ∈ C∞((0, T )× Rn).

Even with very rough initial data, the heat equation instantaneously gives a smooth
solution. This is an example of what is known as parabolic regularity.

Exercise 4.11. Suppose that u0 ∈ L1(Rn) ∩ L2(Rn) and that u(t, x) is the
solution of the heat equation with initial data u0. Explicitly, u is given by:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ,

for t > 0.

a) Show that:
‖u(t, ·)‖L2 6 ‖u0‖L2 ,

b) Show that:
u(t, x) = u0 ? Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4πt)
n
2

e−
|x|2
4t .

c) Suppose that u0 > 0. Show that u > 0, and:

‖u(t, ·)‖L1 = ‖u0‖L1 .

Exercise 4.12. Consider the free Schrödinger equation:{
ut = i∆u in (0, T )× Rn,
u = u0 on {0} × Rn (∗)

Suppose u0 ∈ H2(Rn).
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a) Show that (∗) admits a unique solution u such that

u ∈ C0([0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ξ) = û0(ξ)e−it|ξ|
2

.

b) Show that:
‖u(t, ·)‖H2(Rn) = ‖u0‖H2(Rn)

*c) For t > 0, let Kt ∈ L1
loc.(Rn) be given by:

Kt(x) =
1

(4πit)
n
2

e
i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2 = ei

π
4 . For ε > 0 set

Kε
t (x) = e−ε|x|

2

Kt(x).

i) Show that TKε
t
→ TKt in S ′ as ε→ 0.

ii) Show that if <(σ) > 0, then:∫
R
e−σx

2−ixξdx =

√
π

σ
e−

ξ2

4σ .

iii) Deduce that

K̂ε
t (ξ) =

(
1

1 + 4itε

)n
2

e
−it|ξ|2
1+4itε

iv) Conclude that:
T̂Kt = TK̃t ,

where K̃t = e−it|ξ|
2

.

*d) Suppose that u ∈ S (Rn). Show that for t > 0:

u(t, x) =

∫
Rn
u0(y)Kt(x− y)dy,

and deduce that for t > 0:

sup
x∈Rn

|u(t, x)| 6 1

(4πt)
n
2

‖u0‖L1 .

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.
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4.7.5 The wave equation

Now let us consider the wave equation on Rn. The problem we shall consider is, given
u0, u1 : Rn → R, determine u : Rn × (−T, T )→ R, such that

utt = ∆u in (−T, T )× Rn,
u = u0 on {0} × Rn
ut = u1 on {0} × Rn

(4.18)

We will seek a solution in the space:

Xs := C0((−T, T ), Hs+2(Rn)) ∩ C2((−T, T )×Hs(Rn)).

Fourier transforming in the spatial variable, we have: ûtt(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (−T, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn
ût(0, ξ) = û1(ξ) ξ ∈ Rn

Again, this is an ODE for each fixed ξ, and we deduce:

û(t, ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|

Notice that if u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn), then we conclude û ∈ Xs. Thus (after
taking the inverse Fourier transform) we have found the unique solution of the wave
equation in Xs.

Let’s specialise to R3. We’d like to write this solution as some sort of convolution,
at least for initial data in the Schwarz class. For this we need to find the (inverse)
Fourier transform of cos (|ξ| t) and sin(|ξ|t)

|ξ| , where we have to understand these functions
as tempered distributions. Let us define, for t > 0 the distribution:

Ut[φ] =
1

4πt

∫
∂Bt(0)

φ(y)dσy

for all φ ∈ S ′, where dσy is the surface measure on the sphere ∂Bt(0). This is a
distribution of compact support, so we can invoke Theorem 4.13 to find the Fourier
transform:

Ût = Tυ̂t

where:
υ̂t(ξ) = Ut[e−ξ] =

1

4πt

∫
∂Bt(0)

e−iξ·ydσy

We can perform this integral by choosing spherical polar coordinates for y with the axis
aligned with the vector ξ. Doing so, the integral becomes:

υ̂t(ξ) =
1

4πt

∫ π

θ=0

∫ 2π

φ=0
e−i|ξ|t cos θt2 sin θdθdφ

=
t

2

∫ 1

−1
e−i|ξ|tzdz =

t

2

(
e−i|ξ|t

−i |ξ| t
− ei|ξ|t

−i |ξ| t

)

=
sin (|ξ| t)
|ξ|

.
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Now, let us return to our expression for u:

û(ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|

=
∂

∂t

(
û0(ξ)

sin (|ξ| t)
|ξ|

)
+ û1(ξ)

sin (|ξ| t)
|ξ|

Suppose u0, u1 ∈ S . Then by Theorem 4.10, we have:

u(t, x) =
∂

∂t
Ut ? u0(x) + Ut ? u1(x)

=
∂

∂t

(
1

4πt

∫
∂Bt(0)

u0(x− y)dσy

)
+

1

4πt

∫
∂Bt(0)

u1(x− y)dσy

=
∂

∂t

(
1

4πt

∫
∂Bt(x)

u0(y)dσy

)
+

1

4πt

∫
∂Bt(x)

u1(y)dσy

=
∂

∂t

(
t−
∫
∂Bt(x)

u0(y)dσy

)
+ t−
∫
∂Bt(x)

u1(y)dσy (4.19)

Where for a surface Σ with surface measure σ:

−
∫

Σ
dσ :=

1

|Σ|

∮
Σ
dσ.

Expression (4.19) is known as Kirchoff’s formula. While our derivation assumes
u0, u1 ∈ S , this assumption can be relaxed. This expression tells us some interesting
facts about solutions to the wave equation. First note that the value of u(x, t) depends
only on the initial data on the sphere ∂Bt(x). This is known as the strong Huygens
principle. In particular this shows us that information is propagated at a finite speed by
the wave equation. Secondly, note that the value of u(x, t) depends on derivatives of u0.
This suggests that Ck−regularity is not propagated in wave evolution, although we have
already seen that Hs−regularity is propagated.

Exercise(∗). Let R3
∗ := R3 \ {0}, S∗,T := (−T, T )× R3

∗ and |x| = r. You may
assume the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave

equation on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave

equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).
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b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST := (−T, T )×
R3, with

u(0, t) = f ′(t).

*d) By considering a suitable sequence of functions f , or otherwise, deduce that
there exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) 6 C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for
large |x|.



Appendix A

Background Material: Functional Analysis

A.1 Topological vector spaces

This section is intended to recap some of the basic material in Linear Analysis, and to
give a bit more detail on the functional analytical underpinnings of some of the more
exotic spaces we consider in particular when constructing distributions. The material is
not examinable, but is included here to justify various assertions earlier in the course.

In the Linear Analysis course, the principle objects of study are Hilbert or Banach
spaces. These are vector spaces which are given the additional structure of an inner
product or a norm respectively. This additional structure allows us to make sense of ideas
such as convergence of a sequence, or continuity of a real valued map. Unfortunately,
some of the vector spaces that we require for this course (for example D(U), S and E (U))
are not Hilbert or Banach spaces. We need to add to the vector spaces some additional
structure, which permits us to discuss the notions of convergence and continuity, but
which is not as restrictive as assuming the presence of a norm or inner product. The extra
structure that we shall require is of course a topology, but we shall require the topology
to be in some sense consistent with the vector space structure. We are therefore led to
the idea of topological vector spaces.

A.1.1 Vector spaces and normed spaces

In order to fix notation, let’s recall a few standard definitions.

Definition A.1 (Field axioms). A field Φ is a set together with two operations, addition
+ and multiplication · which satisfy the following axioms:

i) Φ is closed under addition and multiplication: for all a, b ∈ Φ, we have a + b ∈ Φ
and a · b ∈ Φ.

ii) Both addition and multiplication are associative: the following identities hold for all
a, b, c ∈ Φ:

a · (b · c) = (a · b) · c, a+ (b+ c) = (a+ b) + c.

130
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iii) Both addition and multiplication are commutative: the following identities hold for
all a, b ∈ Φ:

a · b = b · a, a+ b = b+ a.

iv) There exist unique, distinct, additive and multiplicative identity elements: there exist
0 ∈ Φ and 1 ∈ Φ with 0 6= 1 such that for all a ∈ Φ we have:

a · 1 = a, a+ 0 = a.

v) There exist additive and multiplicative inverses. For every a ∈ Φ, there exists an
element (−a) ∈ Φ such that

a+ (−a) = 0.

Moreover, for every a ∈ Φ with a 6= 0, there exists an element a−1 such that

a · a−1 = 1.

vi) The multiplication operation is distributive over addition: the following identity holds
for all a, b ∈ Φ:

a · (b+ c) = a · b+ a · c.

Exercise(∗). Show that R, C and the integers modulo p, Zp form fields with
the usual definition of addition and multiplication.

The standard examples of fields that you should keep in mind for our purposes are R
and C. With the definition of a field in hand, we can now define a vector space.

Definition A.2 (Vector space axioms). Let Φ be a field, which we call the scalar field,
and we call elements of Φ scalars. A vector space X over Φ is a set whose elements are
called vectors together with two operations:

i) Addition: to every pair of vectors x, y ∈ X is associated a unique vector x+ y ∈ X
such that for all x, y, z ∈ X:

x+ y = y + x, and (x+ y) + z = x+ (y + z).

Moreover, there exists a unique element 0 ∈ X such that for all x ∈ X:

x+ 0 = x.

Finally, for each x ∈ X, there exists a unique vector (−x) such that:

x+ (−x) = 0.

ii) Scalar multiplication: to every pair (a, x) with a ∈ Φ and x ∈ X is associate a
unique vector ax ∈ X in such a way that

1x = x, a(bx) = (a · b)x,

and such that the distributive laws:

a(x+ y) = ax+ ay, (a+ b)x = ax+ bx

hold for every x, y ∈ X and a, b ∈ Φ.
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Note that the same symbols have different meanings in different contexts: + can mean
either scalar or vector multiplication, while 0 refers to the zero element of both the field
and the vector space.

It is useful to extend the operations of vector addition and scalar multiplication to
act on sets as follows. If a ∈ X, λ ∈ Φ U1, U2 ⊂ X, then we define:

a+ U1 = {a+ x : x ∈ U},
U1 + U2 = {x+ y : x ∈ U1, y ∈ U2},

λU1 = {λx : x ∈ U1}.

Note that 0 + U = U , 1U = U , 2U ⊂ U + U , but that in general 2U 6= U + U .

Definition A.3. Suppose X is a vector space over Φ, where Φ is either R or C. We say
that a subset U ⊂ X is convex if

x, y ∈ U =⇒ tx+ (1− t)y ∈ U for all t ∈ [0, 1].

We say that U is balanced if λU ⊂ U for all λ ∈ Φ with |λ| 6 1.

Exercise A.1. Suppose that λ1λ2 > 0 and that U ⊂ X is a convex subset of a
vector space X. Show that:

λ1U + λ2U = (λ1 + λ2)U.

Finally, we shall define a norm on a vector space

Definition A.4. A norm on a vector space X over Φ, where Φ is either R or C is a
map:

‖·‖ : X → R

such that

i) We have ‖x‖ > 0 for all x ∈ X, with equality if and only if x = 0.

ii) The triangle identity holds for all x, y ∈ X:

‖x+ y‖ 6 ‖x‖ + ‖y‖ .

iii) For any a ∈ Φ and x ∈ X we have:

‖ax‖ = |a| ‖x‖ .

A more general notion of distance than a norm is often useful. We define a metric
space as follows:

Definition A.5. A metric space (S, d) is a set S, together with a function d : S×S → R,
called the metric, which satisfies:
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i) The metric is symmetric:

d(x, y) = d(y, x), for all x, y ∈ S.

ii) The metric is positive definite:

0 6 d(x, y), for all x, y ∈ S,

with equality if and only if x = y.

iii) The triangle inequality holds:

d(x, y) 6 d(x, z) + d(z, y), for all x, y, z ∈ S.

To see that this is a more general notion than a normed space, we have the following
result:

Lemma A.1. If (X, ‖·‖) is a normed vector space, then it is naturaly a metric space,
with the metric:

d(x, y) := ‖x− y‖

Proof. We simply have to verify the three conditions on d. We find:

i) Noting that |−1| = 1, we have:

d(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = |−1| ‖y − x‖ = ‖y − x‖ = d(y, x),

so the metric is symmetric.

ii) Since we know that ‖x‖ > 0, with equality if and only if x = 0, clearly

d(x, y) = ‖x− y‖ > 0

with equality if and only if x− y = 0, which holds if and only if x = y.

iii) Recall the triangle inequality for norms ‖x+ y‖ 6 ‖x‖ + ‖y‖. We calculate:

d(x, y) = ‖x− y‖ = ‖(x− z)− (y − z)‖
6 ‖x− z‖ + ‖y − z‖
= d(x, z) + d(z, y).

Thus d satisfies the conditions to be a metric.
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A.1.2 Topological spaces

The definitions above are purely algebraic in nature. In particular, we have not introduced
any notions of convergence, completeness or continuity for these spaces. The natural
setting in which to do this is that of topology. Let us recall briefly a few definitions and
facts.

Definition A.6 (Topology axioms). A topological space is a set S in which a collection
of subsets τ (called open sets) has been specified, with the following properties:

i) The empty set is open: ∅ ∈ τ

ii) The whole space is open: S ∈ τ ,

iii) If U1, U2 ∈ τ are open sets, then their intersection is open:

U1 ∩ U2 ∈ τ.

iv) If U ⊂ τ is any collection of open sets, then their union is open:⋃
U ∈ τ.

Note that by repeatedly applying iii), we can easily see that any finite intersection of
open sets is open. Let’s recall some standard nomenclature associated with topological
concepts. A set E ⊂ S is closed if its complement Ec = S \ E is open. The closure E of
any set E is the intersection of all closed sets containing E. The interior E◦ of any set E
is the union of all open sets contained in E. Note that the closure is always closed and
the interior is always open. A neighbourhood of a point p ∈ S is an open set containing
p. A limit point of a set E ⊂ S is a point p ∈ S (not necessarily with p ∈ E) such that
every neighbourhood of p intersects E in some point other than p itself.

Lemma A.2. Suppose (S, τ) is a topological space. If U ⊂ S is open then U = U◦. If
E ⊂ S is closed, then E = E and E contains all of its limit points.

Proof. The fact that U◦ ⊂ U follows from the definition of the interior as U◦ is a union
over sets contained in U . Since U is itself an open set contained in U , we also have
U ⊂ U◦. Similarly, E ⊂ E from the definition of the closure. Since E is itself a closed
set containing E, we have E ⊂ E. Now suppose that p is a limit point, and assume for
contradiction that p ∈ Ec. Then since E is closed, Ec is open and hence a neighbourhood
of p. By the definition of a limit point we have E ∩ Ec is non-empty, a contradiction.
Thus p ∈ E.

A base, β for the topology τ is a collection of open sets, β ⊂ τ such that any open set
in τ can be written as a union of elements of β. A collection γ of neighbourhoods of p is
a local base at p if every neighbourhood of p contains a member of γ.

A set K ⊂ S is compact if every open cover of K has a finite subcover. That is to
say that from any collection {Ui}i∈I of open sets such that K ⊂ ∪i∈IUi, we can extract
a finite collection {Uik}nk=1 such that K ⊂ ∪nk=1Uik . A topological space is Hausdorff if
any two distinct points have disjoint neighbourhoods.
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Lemma A.3. Suppose (S, τ) is a Hausdorff topological space, and that K ⊂ S is compact.
Then K is closed.

Proof. Let us fix p ∈ Kc, and consider an arbitrary q ∈ K. By the Hausdorff property
of S, we know that there exist Uq, Vq open, with q ∈ Uq, p ∈ Vq and Uq ∩ Vq = ∅. Now,
{Uq : q ∈ K} is an open cover of K, hence by the compactness of K there is a finite
subcover, i.e. q1, . . . qN such that K ⊂ U = Uq1 ∪ . . .∪UqN . Consider V = Vq1 ∩ . . .∩VqN .
We have that Vp ∪ U = ∅, so that V ⊂ Kc. Moreover, as a finite intersection of open sets
V is open. Writing Kc as the union of the sets V for all p ∈ Kc, we see that Kc is open
and thus K is closed.

Lemma A.4. Suppose (S, τ) is a Hausdorff topological space, and E ⊂ S. Then p is a
limit point of E if and only if every neighbourhood of p contains infinitely many elements
of E.

Proof. If every neighbourhood of p contains infinitely many elements of E, it certainly
intersects E in some point other than p, thus p is a limit point. Conversely, suppose
that p is a limit point and suppose that U is some neighbourhood intersecting E in only
finitely many points, say {x1, . . . , xN}. by the Hausdorff property, we know that there
exist open sets Ui, Vi such that xi ∈ Ui, p ∈ Vi and Ui ∩ Vi = ∅. Then ∩Ni=1Vi ∩U is open,
contains p and doesn’t contain any other points of E. This contradicts the assumption
that p is a limit point.

A sequence (xn)n∈N in a Hausdorff space converges to a point x if every neighbourhood
of x contains all but finitely many of the points xn. If (S1, τ1) and (S2, τ2) are two
topological spaces, then we say that f : S1 → S2 is continuous if f−1(U) ∈ τ1 for all
U ∈ τ2. A homeomorphism f : S1 → S2 is a bijective continuous map whose inverse is
also continuous.

If τ1, τ2 are two different topologies on the same set S such that τ1 ⊂ τ2, then we say
that τ1 is a coarser topology than τ2, or alternatively that τ2 is a finer topology than τ1.
A finer topology has ‘more open sets’. Note that if a sequence converges in τ2 then it
necessarily converges in τ1 but that the converse does not hold. The coarsest topology on
any set S is the trivial topology, whose only open sets are the empty set and S itself. The
finest topology on any set is the discrete topology, for which any subset of S is declared
to be open.

Exercise A.2. a) Suppose that (S, τ) is a topological space, and that β is a
base for τ . Show that:

i) If x ∈ S, then there exists some B ∈ β with x ∈ B.

ii) If B1, B2 ∈ β, then for every x ∈ B1 ∩B2 there exists B ∈ β with:

x ∈ B B ⊂ B1 ∩B2.

b) Conversely, suppose that one is given a set S and a collection β of subsets of
S satisfying i), ii) above. Define τ by:

U ∈ τ ⇐⇒ for all x ∈ U, there exists B ∈ β such that x ∈ B and B ⊂ U.
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i.e. τ is the set of all unions of elements of β. Show that (S, τ) is a topological
space, with base β. We say that τ is the topology generated by β

c) Suppose that β, β′ both satisfy conditions i), ii) above and generate topologies
τ , τ ′ respectively. Moreover, suppose that if B ∈ β then for every x ∈ B
there exists B′ ∈ β′ satisfying

x ∈ B′, and B′ ⊂ B

Then τ ⊂ τ ′.

If E ⊂ S is any subset of a topological space (S, τ), then E inherits a topology, τ |E ,
called the subspace topology given by:

τ |E = {E ∩ U : U ∈ τ}.

If (S1, τ1) and (S2, τ2) are two topological spaces, then S1 × S2 inherits a topology τ
called the product topology, which is generated by the base

β = {U1 × U2 : Ui ∈ τi, i = 1, 2}

In other words, a set U is open in the product topology if it is the union of sets of the
form U1 × U2 with Ui ∈ τi, i = 1, 2.

Exercise A.3. Suppose (S1, τ1), (S2, τ2) and (S3, τ3) are topological spaces,
and that f : S1 × S2 → S3 is a continuous map. Show that for each a ∈ S1 and
b ∈ S2, the maps

fa : S2 → S3,
y 7→ f(a, y),

f b : S1 → S3,
x 7→ f(x, b),

are continuous.
The condition that f is continuous with respect to the product topology is

sometimes called joint continuity, while the continuity of fa, f b is called separate
continuity. Thus joint continuity implies separate continuity. The converse is
not true.

Theorem A.5. Let (S1, τ1) and (S2, τ2) be two topological spaces, and let β1 respectively
β2 be a base. Then the set

β = {B1 ×B2 : B1 ∈ β1, B2 ∈ β2},

is a base for the product topology (S1 × S2, τ).

Proof. Suppose U ∈ τ , and let x = (x1, x2) ∈ U . By the definition of the product
topology, there exist U1 ∈ τ1 and U2 ∈ τ2 with x ∈ U1 × U2 and U1 × U2 ⊂ U . Since
β1 is a base for (S1, τ1), and U1 ∈ τ1, there exists B1 ∈ β1 with x1 ∈ B1 and B1 ⊂ U1.
Similarly there exists B2 ∈ β2 such that x2 ∈ B2 and B2 ⊂ U2. Thus x ∈ B1 × B2 and
B1 ×B2 ⊂ U1 × U2 ⊂ U . Considering these sets as x ranges over U , we see that U may
be written as a union of elements of β and we’re done.
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Example 19. The real numbers R carry a topology, called the order topology, generated
by the base:

βR = {(a, b) : a, b ∈ R, a < b} .

This induces the product topology on Rn = R×· · ·×R. This is called the standard topology
on Rn.

Exercise A.4. Show that the base

βQ = {(p, q) : p, q ∈ Q, p < q} ,

generates the standard topology on R.

With the result of this exercise, we can establish the following very useful fact about
open sets in Rn.

Lemma A.6. Suppose Ω ⊂ Rn is open. Then there exists an exhaustion of Ω by compact
sets. That is to say a family (Ki)

∞
i=1 of compact sets Ki ⊂ Ω such that

Ki ⊂ (Ki+1)◦ ,
∞⋃
i=1

Ki = Ω.

Proof. 1. Recall that by the definition of the product topology, a base for the standard
topology of Rn is given by:

β = {I1 × · · · × In : Ik ∈ βQ}

For any B ∈ β we have B =
⋃
{B′ ∈ β : B′ ⊂ B} since, for example

(p, q) =
∞⋃
n=N

(
p+

1

n
, q − 1

n

)
for some N > [2(q − p)]−1, and taking products of such sets the result follows.

2. Let
β′ =

{
B ∈ β : B ⊂ Ω

}
.

Since β is a base,
⋃
{B ∈ β : B ⊂ Ω} = Ω, thus in view of the discussion above

Ω =
⋃
β′. Moreover, since β can be put into one-to-one correspondence with a

subset of Q2n, we have that β and hence β′ is countable.

3. Let us take an enumeration

β′ = {B1, B2, . . .}.

We define Ki inductively as follows. Pick K1 = B1. This is a closed box in Rn, so
is compact. Now suppose that K1, . . .Kn have been chosen. Since Kn ⊂ Ω, β′ is
an open cover of Kn and so admits a finite subcover. Therefore there exists in such
that Kn ⊂ B1 ∪ . . . ∪ Bin . We define Kn+1 = B1 ∪ . . . ∪ Bin . This is a union of
closed boxes, hence is compact.
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4. By construction we have Ki ⊂ (Ki+1)◦. Moreover Kn+1 6⊂ B1 ∪ . . . ∪ Bin , so
in+1 > in, and thus in →∞ as n→∞. Pick x ∈ Ω. Then x ∈ Bi for some i. Since
in →∞, x ∈ Kn for sufficiently large n, thus

⋃∞
i=1Ki = Ω.

For another example of a topological space, we return to the vector space setting.

Example 20. Let (S, d) be a metric space. The open ball of radius r > 0 about x ∈ S is
defined to be:

Br(x) := {y ∈ S : d(x, y) < r} .

The metric topology is the topology induced by the base:

β = {Br(x) : x ∈ S, r ∈ R+} .

We say that a general topological space (S, τ) is metrizable if there exists some metric d
on S such that the metric topoplogy of (S, d) coincides with τ .

Exercise A.5. Suppose that (S, d) is a metric space. Show that S is Hausdorff
with respect to the metric topology.

An important feature of metric spaces is that the notions of compactness and sequential
compactness are equivalent. We say that a topological space (S, τ) is sequentially compact
if every sequence (xn)∞n=1 with xn ∈ S admits a subsequence (xni)

∞
i=1 such that xni

converge to x ∈ S as i→∞.

Theorem A.7. Let (S, d) be a metric space endowed with the metric space topology.
Then S is compact if and only if it is sequentially compact.

Proof. 1. First suppose S is compact and consider the sequence (xn)∞n=1. We must
exhibit a convergent subsequence. Let us consider the set A = {xn}∞n=1. If A is
finite, then xn must take at least one value an infinite number of times, so has a
subsequence converging to that value, and we’re done.

Now suppose A is infinite. We claim that A has a limit point. Suppose not.
In particular, this means that each y ∈ S has a neighbourhood Uy such that
Uy ∩ A ⊂ {y}. The collection {Uy : y ∈ S} is an open cover of S, hence admits a
finite subcover, say {Uy1 , . . . UyN }. Note that we have

A = S ∩A = (Uy1 ∪ . . . ∪ UyN ) ∩A
= (Uy1 ∩A) ∪ . . . ∪ (UyN ∩A) ⊂ {y1, . . . , yN}

Since A is infinite, this contradicts the assumption that A has no limit points.

Let x be a limit point of A. Since any metric space is Hausdorff, every neighbourhood
of x must contain infinitely many points in A. Define a subsequence as follows. We
pick n1 such that xn1 ∈ B1(x). Suppose we have xnk−1

. We define nk by requiring
xnk > xnk−1

and xnk ∈ Bk−1(x). This can always be done. By construction the
subsequence {xnk}∞k=1 converges to x.
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2. Now suppose that (S, d) is sequentially compact. We first claim that if U is any
open cover of S, then there exists δ > 0 with the property that for each x ∈ S, there
exists U ∈ U with Bδ(x) ⊂ U . Note that while U will depend on x, δ does not.

Suppose not. Then for each n, there exists xn ∈ S such that B 1
n

(xn) is not contained
in any element of U . By the assumption of sequential compactness, we can choose
a subsequence xni → a for some a ∈ S. Now, since U is a open cover, there exists
U ∈ U with a ∈ U . Since U is open, there exists ε > 0 such that Bε(a) ⊂ U .
Now pick i sufficiently large that n−1

i < ε/2 and xni ∈ Bε/2(a). Then we have
B1/ni(xni) ⊂ Bε(a) ⊂ U , a contradiction.

3. Next, we show that if (S, d) is sequentially compact, then for each ε > 0 there exists
a finite covering of S by balls of radius ε. Suppose not, then S cannot be covered
by finitely many balls of radius ε. Construct a sequence as follows: take x1 ∈ S to
be arbitrary. Given x1, . . . xn, choose

xn+1 ∈ (Bε(x1) ∪ . . . ∪Bε(xn))c

which is always possible. Now, by construction (xn) has no convergent subsequence,
since Bε/2(x) contains at most one element of (xn), and we have a contradiction
with the assumption of sequential compactness.

4. Finally we are ready to show that if (S, d) is sequentially compact, then it is compact.
Let U be an open cover of S. Then by 2. above, there exists δ > 0 such that for
any x ∈ S, Bδ(x) is contained in an element of U . By 3. we know that we can
choose x1, . . . xN such that the sets Bδ(xi) for i = 1, . . . , N cover S. Let Ui ∈ U
be such that Bδ(xi) ⊂ Ui. Then we must have

S =

N⋃
i=1

Bδ(xi) ⊂
N⋃
i=1

Ui,

so by construction, {Ui}Ni=1 is a finite subcover of U .

Exercise A.6. Let us take X = Rn, thought of as a vector space over R and
define:

‖(x1, . . . , xn)‖p = (|x1|p + . . . |xn|p)
1
p , p ≥ 1.

a) Show that (Rn, ‖·‖p) is a normed vector space:

i) First check that the positivity and homogeneity property are satisfied.

ii) Establish the triangle inequality for the special case p = 1.

iii) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1+q−1 =
1 then:

ab 6
ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the
concavity of the logarithm
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iv) With p, q > 1 such that p−1 + q−1 = 1, show that if ‖x‖p = 1 and
‖y‖q = 1 then

n∑
i=1

|xiyi| 6 1.

Deduce Hölder’s inequality:

n∑
i=1

|xiyi| 6 ‖x‖p ‖y‖q , for all x, y,∈ Rn.

v) Show that

‖x+ y‖pp 6
n∑
i=1

|xi| |xi + yi|p−1 +
n∑
i=1

|yi| |xi + yi|p−1

vi) Apply Hölder’s inequality to deduce:

‖x+ y‖pp 6
(
‖x‖p + ‖y‖p

)
‖x+ y‖p−1

p

and conclude
‖x+ y‖p 6 ‖x‖p + ‖y‖p .

b) Show that the metric topology of (Rn, ‖·‖p) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Exercise A.7 (?). Let X = C[0, 1], the set of continuous functions on the
closed interval [0, 1]. For f ∈ X, p > 0 define:

‖f‖p =

(∫ 1

0
|f(x)|p dx

) 1
p

a) Show that X is a vector space over R, where scalar multiplication and vector
addition are defined pointwise.

b) Establish Hölder’s inequality:

‖fg‖1 6 ‖f‖p ‖g‖q

for p, q > 1 with p−1 + q−1 = 1.

c) Show that (X, ‖·‖p) is a normed space.

d) Suppose p 6 p′. Show that:

‖f‖p 6 ‖f‖p′
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e) Let τp be the metric topology of (X, ‖·‖p). Show that if p 6 p′:

τp ⊂ τp′ .

f) Consider the sequence of functions:

fn(x) =

{
nγ−1 0 6 x < 1

n
1
nx
−γ 1

n 6 x 6 1

where n = 1, 2, . . .

i) Show that fn ∈ C[0, 1] and

lim
n→∞

‖fn‖p =


0 γ < p+1

p(
p+1
p

) 1
p

γ = p+1
p

∞ γ > p+1
p

ii) By choosing γ carefully, show that if p < p′ then

τp′ 6⊂ τp.

Hint: in parts b), c) follow the same steps as for the finite dimensional case in
Exercise A.6.

Exercise A.8. Verify that if (S, d) is a metric space, then the metric topology
defines the same notions of convergence and continuity as the standard definitions
for a metric space.

A.1.3 Topological vector spaces

Having briefly introduced the concept of vector spaces and topological spaces, we are now
ready to define a topological vector space.

Definition A.7 (Topological vector space axioms). A vector space X over a field Φ,
where Φ is either R or C is called a topological vector space if X is endowed with a
topology τ such that:

i) Every point of X is a closed set,

ii) The vector space operations are continuous with respect to τ .

To put a bit of flesh on the bones of this definition, the first condition implies that for
any x ∈ X, the set {x} is closed, or equivalently X \ {x} should be open. The second
condition should be understood as follows. We require firstly that the map:

+ : X ×X → X
(x, y) 7→ x+ y
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is continuous, where X ×X inherits the product topology from X. Secondly, we require
that the map:

· : Φ×X → X
(a, x) 7→ ax

Where Φ×X is endowed with the product topology, and we take the topology on Φ to
be the standard topology on R or C ' R2 as appropriate.

We say that a subset, E, of a topological vector space is bounded if for every neigh-
bourhood V of 0 we can find s > 0 such that E ⊂ tV whenever t > s.

A useful source of topological vector spaces are the normed spaces that we previously
introduced. We can verify that these indeed satisfy the topological vector space axioms:

Theorem A.8. If (X, ‖·‖) is normed vector space, endowed with the metric topology, then
X is a topological vector space. A set E ⊂ X is bounded if and only if supx∈E ‖x‖ <∞.

Proof. 1. First we note that for each x ∈ X, the set {x} is closed. To see this, suppose
that y 6= x, and set r = 1

2 ‖y − x‖. Then the open ball Br(y) = {z ∈ X : ‖z − y‖ <
r} does not contain x, thus we have shown that X \ {x} is open.

2. Now suppose U is an open set in X and let x, y ∈ X be such that z = x+ y ∈ U .
By the openness of U in the norm topology, there exists r > 0 such that the set
Br(z) ⊂ U . Let W = B r

2
(x)×B r

2
(y), and suppose (x′, y′) ∈W . Clearly∥∥x′ + y′ − z

∥∥ =
∥∥x′ − x+ y′ − y

∥∥ 6 ∥∥x′ − x∥∥ +
∥∥y′ − y∥∥ < r

so that x′ + y′ ∈ Br(z) ⊂ U . Thus the set W ⊂ (+)−1(U) ⊂ X ×X. However, W
is open in X ×X by the definition of the product topology. Since (x, y) ∈ (+)−1(U)
was arbitrary, we deduce that (+)−1(U) is open and so + : X×X → X is continuous.

3. Finally, suppose that U is an open set in X and let x ∈ X, a ∈ Φ be such that
z = ax ∈ U . By the openness of U in the norm topology, there exists r > 0 such
that the set Br(z) ⊂ U . Let W = {b ∈ Φ : |a− b| < r1} × Br2(x), and suppose
(a′, x′) ∈W . Then we have:∥∥a′x′ − z∥∥ =

∥∥a′x′ − ax∥∥ =
∥∥(a′ − a)x′ − a(x− x′)

∥∥
6
∥∥(a′ − a)x′

∥∥ +
∥∥a(x− x′)

∥∥
< r1 (‖x‖ + r2) + |a| r2

Setting r1 = r2 = min{r,1}
4(1+‖x‖+|a|) , we have

r1 (‖x‖ + r2) + |a| r2 6
3r

4
,

and so a′x′ ∈ Br(z) ⊂ U . Thus the set W ⊂ (·)−1(U) ⊂ Φ ×X. However, W is
open in Φ×X by the definition of the product topology. Since (a, x) ∈ (·)−1(U)
was arbitrary, we deduce that (·)−1(U) is open and so · : Φ×X → X is continuous.
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4. Now suppose E ⊂ X is bounded. Then in particular, since B1(0) is an open
neighbourhood of 0, we have that E ⊂ tB1(0) for some t > 0. However, tB1(0) =
Bt(0) = {x ∈ X : ‖x‖ < t}, so necessarily we must have supx∈E ‖x‖ < t < ∞.
Conversely, suppose that supx∈E ‖x‖ = M <∞, and let V be any neighbourhood
of 0. Since V is open in the metric topology, there exists ε > 0 such that Bε(0) ⊂ V .
Let t = 2Mε−1. We have tBε(0) = B2M (0) = {x ∈ X : ‖x‖ < 2M}, thus
E ⊂ tBε(0) ⊂ tV .

Remark. One has to be careful with various notions of boundedness for sets. While for
a normed space the notion of boundedness introduced for topological vector spaces above is
equivalent to the set having finite diameter, this is not true for general metric spaces. See
the remark after Theorem A.18.

We now prove a simple but useful consequence of the topological vector space definition.

Lemma A.9. Let X be a topological vector space. For any a ∈ X and λ ∈ Φ with λ 6= 0,
define the maps:

Ta : X → X,
x 7→ x+ a.

Mλ : X → X,
x 7→ λx.

These are homeomorphisms of X to itself.

Proof. These maps are manifestly bijective, with inverses given by (Ta)
−1 = T−a and

(Mλ)−1 = Mλ−1 . All four maps are continuous by the definition of the topological vector
space, since joint continuity implies separate continuity (see Exercise A.3).

Lemma A.9 tells us that a set E ⊂ X is open if and only if all of the translates a+E
are open. In particular this means that the topology of a topological vector space is
determined by a local base at the origin.

Theorem A.10. Suppose that (X, τ) is a topological vector space, and that β̇ is a local
base at 0. Then the collection

β =
{
a+B : a ∈ X,B ∈ β̇

}
is a base for τ .

Proof. Recall that a collection of open sets β̇ is a local base at the origin if every
neighbourhood of the origin contains a member of β̇. First note that β is a collection of
open sets, since translations of open sets are open. Now suppose that U ∈ τ is an open
set and pick x ∈ U . We have that (−x) + U is a neighbourhood of the origin, and so
there exists B ∈ β̇ such that B ⊂ (−x) +U . Since translation of sets preserves inclusions,
we have x+B ⊂ x+ (−x) + U = U . Thus for any U ∈ τ we have exhibited an element
of β contained in U , so β is indeed a base for τ .

Theorem A.11. Suppose that X is a topological vector space. Then:

a) If U ⊂ X is a neighbourhood of 0 then U contains a balanced neighbourhood of 0.
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b) If U ⊂ X is a convex neighbourhood of 0, then U contains a convex balanced neigh-
bourhood of 0.

Proof. 1. Since scalar multiplication is continuous, there exists δ > 0 and V open such
that αV ⊂ U for all |α| < δ. Let

W =
⋃
|α|<δ

αV.

Then W is balanced and open, and U ′ ⊂ U , establishing a).

2. Now, suppose that U is convex, set

A =
⋂
|α|=1

αU

and choose W as in the previous paragraph. Since W is balanced, α−1W = W
whenever |α| = 1, so W ⊂ αU for all |α| = 1 and thus W ⊂ A. Thus A◦ is a
neighbourhood of the origin. Clearly A◦ ⊂ U . Since U is convex, so is αU for
any α and thus A is an intersection of convex sets hence convex. The interior of a
convex set is convex, thus A◦ is convex. Next I claim that A is balanced. Suppose
0 6 r 6 1 and |β| = 1. To show A is balanced, it suffices to show that rβA ⊂ A.
Note

rβA =
⋂
|α|=1

rβαU =
⋂
|α|=1

rαU.

However, since αU is convex and contains 0, we have rαU ⊂ αU , and it follows
that A is balanced. It follows that A◦ is balanced, convex, open, contains 0 and is
a subset of U .

Lemma A.12. Suppose (X, τ) is a topological vector space. Then:

a) τ is Hausdorff.

b) The set {x} is bounded for any x ∈ X.

c) If E1, E2 are bounded, then so is E1 + E2. In particular, x+ E1 is bounded for any
x ∈ X.

d) If (xn)∞n=1 is a sequence in X such that {xn}∞n=1 is bounded and (an)∞n=1 is a sequence
of scalars with an → 0, then anxn → 0.

Proof. 1. We first show that every neighbourhood, W , of 0 contains a balanced open
set U satisfying U + U ⊂W . To see this, note that 0 + 0 = 0, so by the continuity
of 0, there exist neighbourhoods U1, U2 of 0 such that U1 + U2 ⊂W . We let

U ′ = U1 ∩ U2

which satisfies U ′ + U ′ ⊂W . By Theorem A.11, U ′ has a balanced subset U , and
U + U ⊂ U ′ + U ′ ⊂W .
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2. Now consider x, y ∈ X with x 6= y. Since {y} is closed and x ∈ {y}c, there exists
W , a neighbourhood of x with y 6∈ W . Since −x + W is a neighbourhood of 0,
there exists a balanced U with U + U ⊂ −x + W . Thus x + U + U ⊂ W and in
particular y 6∈ x+ U + U . I claim (x+ U) ∩ (y + U) = ∅. Suppose not, then there
exists a, b ∈ U such that x+ a = y+ b, which implies y = x+ a− b. But a,−b ∈ U ,
so y ∈ x+U +U , a contradiction. We have constructed sets x+U and y+U which
are open, and contain x, y respectively, thus X is Hausdorff and we have established
a).

3. Fix x ∈ X and consider the map fx : R → X given by fx(λ) = λx. This is a
continuous map, so fx−1(W ) is open in R. Since 0 ∈ W , we have 0 ∈ fx−1(W ),
and thus from the definition of an open set in R, the interval (−ε, ε) ∈ fx−1(W ) for
some ε > 0. Thus λx ∈W for λ ∈ (0, ε), or equivalently x ∈ tW for t > ε−1. Thus
we have established b).

4. Let W be any neighbourhood of 0. By paragraph 1. there exists U a neighbourhood
or 0 such that U +U ⊂W . Since E1, E2 are both bounded, there exists s ∈ R such
that t−1Ei ⊂ U for t > s and i = 1, 2. Thus for t > s,

t−1(E1 + E2) = t−1E1 + t−1E2 ⊂ U + U ⊂W,

or equivalently E1 + E2 ⊂ tW and hence E1 + E2 is bounded, which is the first
part of c). The final part of c) follows by applying the result from b).

5. For part d), suppose W is any neighbourhood of the origin in X. As in part 1., we
can take U balanced and open with U ⊂ W . Then there exists s > 0 such that
xn ∈ tU for all n = 1, 2, . . . and any t > s. Since an → 0, there exists N such that
|an| < s−1 for all n > N . Since U is balanced, and we have xn ∈ tU and |tan| < 1
for n > N , we deduce that anxn ∈ U ⊂W for all n > N and we’re done.

Suppose that X is a vector space equipped with a metric d. We say that d is invariant
if

d(x+ z, y + z) = d(x, y),

for all x, y, z ∈ X. We have the following useful result

Lemma A.13. Suppose that X is a vector space, equipped with an invariant norm d,
and let τ be the induced metric topology. Given a sequence (xn)∞n=1 with xn → 0, there
exist scalars αn →∞ such that αnxn → 0.

Proof. 1. First note that if d is invariant, then

d(nx, 0) 6 nd(x, 0).

This is clearly true if n = 1. Suppose it holds for n = 1, . . . k − 1 Then

d(kx, 0) 6 d(kx, x) + d(x, 0)

= d((k − 1)x, 0) + d(x, 0)

6 (k − 1)d(x, 0) + d(x, 0) = kd(x, 0)

and we’re done by induction.
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2. Now note that since xn → 0, for any m ∈ N there exists Nm such that

d(xn, 0) <
1

m2
n > Nm

where we can assume that Nm < Nm+1. We define αn = m for Nm 6 n < Nm+1.
Suppose that Nm 6 n < Nm+1. Then

d(anxn, 0) 6 md(xn, 0) <
1

m
.

Thus as n→∞, we have that anxn → 0, however an →∞.

A crucially important concept which you may have come across when studying metric
spaces is the idea of a Cauchy sequence.

Definition A.8. i) Suppose (S, d) is a metric space. We say that a sequence (xn)∞n=1

is d-Cauchy if for every ε > 0 we can find an integer N such that

d(xn, xm) < ε, for all n,m > N.

A metric space is called complete if every d-Cauchy sequence converges in S.

ii) Suppose (X, τ) is a topological vector space. We say that a sequence (xn)∞n=1 is
τ -Cauchy if for every neighbourhood, U , of the origin we can find an integer N such
that

xn − xm ∈ U, for all n,m > N.

Exercise A.9. Let (X, τ) be a topological vector space

a) Show that if (xn)∞n=1 is a τ -Cauchy sequence, then {xn}∞n=1 is bounded.

b) Fix a local base β̇. Show that a sequence (xn)∞n=1 is τ -Cauchy if and only if
for any B ∈ β̇ we can find an integer N such that

xn − xm ∈ B, for all n,m > N.

Lemma A.14. Suppose that X is a vector space, equipped with an invariant norm d,
and let τ be the induced metric topology. Then a sequence (xn)∞n=1 is d-Cauchy if and
only if it is τ -Cauchy.

Proof. Suppose that (xn) is τ -Cauchy. Then for any ε > 0, there exists N such that for
all n,m > N we have xn − xm ∈ Bε(0), i.e.

ε > d(0, xn − xm) = d(xn, xm),

thus (xn) is d-Cauchy.
Now suppose (xn) is d-Cauchy. Let V be any neighbourhood of 0. Since V is open,

there exists ε > 0 such that Bε(0) ⊂ V . Since (xn) is d-Cauchy, there exists N such that
d(xn, xm) < ε for all n,m > N . Thus

ε > d(xn, xm) = d(0, xn − xm),

so xn − xm ∈ Bε(0) ⊂ V and (xn) is τ -Cauchy.
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We’re now in a position to distinguish various useful classes of topological vector
space. There is some difference of opinion on the definitions below, we follow here the
conventions of Rudin. Here (X, τ) always refers to a topological vector space:

i) X is a locally convex topological vector space if there is a local base β̇ whose members
are convex.

ii) X is locally bounded if 0 has a bounded neighbourhood.

iii) X is locally compact if 0 has a neighbourhood whose closure is compact.

iv) X is metrizable if there exists some metric d on X such that τ is the metric topology
induced by d.

v) X is an F -space if its topology τ is induced by a complete invariant metric.

vi) X is a Fréchet space if it is a locally convex F -space.

vii) X is normable if a norm exists on X such that the metric topology of the norm
agrees with τ .

viii) A normed space (X, ‖·‖), with the metric topology, is Banach if the metric induced
by the norm is complete.

ix) A space X has the Heine-Borel property if every closed and bounded subset of X is
compact.

The space Rn with the norm ‖·‖p introduced in the exercises is an example of a
topological vector space which belongs to all of these classes. The spaces that you studied
in Functional Analysis were mostly Banach spaces, although not all. For example if X is
an infinite dimensional Banach space, then the weak-* topology of X∗ is locally convex,
but not metrisable.

We note that the converse of the Heine-Borel property is always true for a topological
vector space:

Lemma A.15. Suppose (X, τ) is a topological vector space and that K ⊂ X is compact.
Then K is closed and bounded.

Proof. 1. The fact that K is closed follows immediately from Lemmas A.3, A.12.

2. Next, suppose U is a neighbourhood of 0. By the continuity of scalar multiplication,
there exists δ > 0 and a neighbourhood V of the origin in X such that αV ⊂ U
for any |α| < δ. Define W to be the union of these sets as α varies over {|α| < δ}.
Then W ⊂ V is an open, balanced, neighbourhood of 0.

3. Now I claim that
∞⋃
n=1

nW = X.
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To see this, fix x ∈ X. Since the map α 7→ αx is continuous, the set of all α with
αx ∈W is open and contains 0, hence contains n−1 for sufficiently large n. Thus
n−1x ∈ W , or x ∈ nW for large enough n. Note that since W is balanced, in
particular sW ⊂ tW for s < t.

4. Finally, since U = {nW}∞n=1 is an open cover of X, it is also an open cover of K.
Thus there exist n1, . . . , nN such that

K ⊂
N⋃
i=1

niW = nNW ⊂ nNU.

Thus K is bounded.

A.2 Locally convex spaces

We shall now specialise somewhat, to the case of locally convex topological vector spaces.
These can be given a nice description in terms of a family of semi-norms. When that
family is countable, the topology is equivalent to that induced by an invariant metric,
which if it is complete gives a Fréchet space. These can be thought of as generalisations of
the Banach spaces that you may be familiar with from functional analysis. The canonical
example of a Fréchet space that is not a Banach space is C∞(Ω), the space of smooth
functions on an open set Ω. The finite regularity spaces on a compact set Ck(K) are
Banach spaces in a natural way, but this is not true of C∞(Ω).

A.2.1 Semi-norms

A very useful way to construct the topology for a locally convex topological vector space
is via a family of semi-norms.

Definition A.9. A seminorm on a vector space X over Φ (with Φ being either R or C)
is a map p : X → R satisfying:

i) p is subadditive. For all x, y ∈ X we have:

p(x+ y) 6 p(x) + p(y)

ii) For all λ ∈ Φ and x ∈ X we have:

p(λx) = |λ| p(x)

A family of seminorms P is said to be separating if for every x ∈ X with x 6= 0, there is
at least one p ∈P with p(x) 6= 0.

From the definition we can immediately deduce some useful properties:

Lemma A.16. Let X be a vector field over R or C, and let p : X → R be a seminorm.
Then:
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a) p(0) = 0

b) |p(x)− p(y)| 6 p(x− y)

c) p(x) > 0

d) {x : p(x) = 0} is a vector subspace of X.

e) The set B = {x : p(x) < 1} is convex and balanced.

Proof. a) Applying property ii) from the definition of a seminorm with λ = 0 we
immediately have p(0) = 0.

b) From the subadditivity property we have

p(x) = p(x− y + y) 6 p(x− y) + p(y)

so p(x)− p(y) 6 p(x− y). Similarly p(y)− p(x) 6 p(y − x), but p(x− y) = p(y − x)
and the result follows.

c) Applying a), b) with y = 0 gives |p(x)| 6 p(x) which implies p(x) > 0.

d) Suppose p(x) = p(y) = 0 and λ, µ ∈ Φ. Applying c) we have:

0 6 p(λx+ µy) 6 |λ| p(x) + |µ| p(y) = 0,

so that p(λx+ µy) = 0 and thus {x : p(x) = 0} is a vector subspace.

e) It is clear that B is balanced by property ii). To see that B is convex, suppose that
x, y ∈ B and 0 < t < 1. Then

p(tx+ (1− t)y) 6 tp(x) + (1− t)p(y) < 1,

so tx+ (1− t)y ∈ B and B is convex.

Note that these results are already enough to show that a seminorm p with the
property that p(x) 6= 0 whenever x 6= 0, is in fact a norm.

We are now ready to prove an important result that shows that a family of seminorms
specifies a locally convex topology on a vector space. The proof is quite long, and you
may wish to omit it on a first read through. The argument is similar to the proof of
Theorem A.8, which in fact could be understood as a corollary of this result.

Theorem A.17. Suppose that P is a separating family of seminorms on a vector space
X. Associate to each p ∈P and n ∈ N the set:

V (p, n) =

{
x ∈ X : p(x) <

1

n

}
.

Let β̇ be the collection of all finite intersections of the sets V (p, n). Then β̇ is a convex,
balanced, local base for a topology τ on X, which turns X into a locally convex topological
vector space such that:
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a) every p ∈P is continuous

b) a set E ⊂ X is bounded if and only if every p ∈P is bounded on E.

Proof. 1. Let us define β by

β =
{
x+B : x ∈ X,B ∈ β̇

}
.

Since 0 ∈ B for any B ∈ β̇, we immediately have that for any x ∈ X there is an
element of β containing x. Now suppose that B1, B2 ∈ β. We may write

B1 = y +

N⋂
i=1

V (pi, ni), B2 = z +

M⋂
j=1

V (qi,mj),

for y, z ∈ X, pi, qj ∈ P and N,M,ni,mj ∈ N. Fix x ∈ B1 ∩ B2. Clearly x ∈ B
and B ∈ β. I claim that B ⊂ B1 ∩B2 for

B = x+

(
N⋂
i=1

V (pi, n
′
i)

)
∩

 M⋂
j=1

V (qj ,m
′
j)

 ,

provided that n′i,m
′
i are chosen sufficiently large. Since x ∈ B1 ∩B2, we have:

pi(x− y) <
1

n′i
, qi(x− z) <

1

m′j
, for all i = 1, . . . , N, j = 1, . . . ,M

For each i, j, pick n′i,m
′
j sufficiently large that

pi(x− y) +
1

n′i
<

1

ni
, qj(x− z) +

1

m′j
<

1

mj

Now suppose w ∈ B. Then we have that:

pi(w − x) <
1

n′i
, qi(w − x) <

1

m′j
, for all i = 1, . . . , N, j = 1, . . . ,M

Using the subadditivity of pi we have that for each i:

pi(w − y) 6 pi(w − x) + pi(x− y) <
1

n′i
+ pi(x− y) <

1

ni
,

thus w ∈ B1. Similarly, we have for each j that:

qj(w − z) 6 qj(w − x) + qj(x− z) <
1

m′j
+ qj(x− y) <

1

mi
,

Thus the collection β satisfies the conditions of Exercise A.2 and thus defines a
topology τ on X. Moreover, β̇ is a local base for τ and each element of β̇ is convex
and balanced.
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2. Suppose that x, y ∈ X with x 6= y. Then since x − y 6= 0 and P is separating,
there exists p ∈ P such that p(x − y) > 0. Thus, there exists n ∈ N such that
np(x− y) > 1. For this n we have that x 6∈ (y + V (p, n)). Thus we may write {x}c
as a union of sets which are open in τ , hence {x} is closed.

3. Next we must show that addition is continuous. Suppose U is an open set in X,
and pick z ∈ U . Then

N⋂
i=1

V (pi, ni) ⊂ −z + U

for some pi ∈P, ni ∈ N. Suppose that (x, y) ∈ (+)−1(z), i.e. x+ y = z. Let

V1 = x+
N⋂
i=1

V (pi, 2ni), V2 = y +
N⋂
i=1

V (pi, 2ni)

and suppose (w1, w2) ∈ V1 × V2. Then for all i we have

pi(w1 +w2− z) = pi(w1−x+w2− y) 6 pi(w1−x) + pi(w2− y) <
1

2ni
+

1

2ni
<

1

ni

so that V1 + V2 ⊂ U , or alternatively V1 × V2 ⊂ (+)−1(U). Thus we can write
(+)−1(U) as a union of sets which are open in the product topology. This proves
that addition is continuous.

4. Next we must show that scalar multiplication is continuous. Suppose U is an open
set in X, and pick z ∈ U . Then

N⋂
i=1

V (pi, ni) ⊂ −z + U

for some pi ∈P, ni ∈ N. Suppose that (α, x) ∈ (·)−1(z), i.e. αy = z. Let

V = x+
N⋂
i=1

V (pi, n
′
i), D = {β ∈ Φ : |α− β| < ε}

Suppose (β, y) ∈ D × V Then for each i we have:

pi(βy − αx) = pi(β(y − x)− (α− β)x)

<
|β|
n′i

+ εpi(x)

6
|α|+ ε

n′i
+ εpi(x).

Taking ε < (2nipi(x))−1 and n′i > 2(|α|+ (2nipi(x))−1) for each i, we conclude that

(βy − z) ∈
N⋂
i=1

V (pi, ni),

which implies that D× V ∈ (·)−1(U). Thus scalar multiplication is continuous, and
we have established that (X, τ) is a locally convex topological space.
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5. To see that p ∈P is continuous, we must show that p−1(a, b) is open, where a < b.
Suppose x ∈ p−1(a, b), so that a < p(x) < b. Consider

U = x+ V (p, n)

Suppose y ∈ V . Then

|p(y)− p(x)| 6 p(y − x) <
1

n
,

by part c) of Lemma A.16. For n sufficiently large, we have p(y) ∈ (a, b) so that
V ⊂ p−1(a, b) and we’re done.

6. It remains to show that E ⊂ X is bounded if and only if every p ∈P is bounded
on E. First suppose E is bounded and fix p ∈P. Since V (p, 1) is a neighbourhood
of the origin, from the definition of boundedness we have that E ⊂ kV (p, 1) for
some k <∞. But x ∈ kV (p, 1) implies p(x) < k, so that p is bounded on E.

Now suppose that every p ∈P is bounded on E. Let U be a neighbourhood of the
origin. Then

N⋂
i=1

V (pi, ni) ⊂ U

for some pi ∈ P, ni ∈ N. By our assumption, there exist Mi < ∞ such that
pi < Mi on E of 1 6 i 6 N . If n > Mini for all i, then E ⊂ nU , since if pi(x) < Mi,
we have

pi (x) < Mi <
n

ni
i = 1, . . . , N

so that
pi

(
1

n
x

)
<

1

ni
i = 1, . . . , N

and n−1x ∈ U .

Thus we have seen that a separating family of seminorms gives rise to a locally convex
topological space. In fact, the converse is true: given a locally convex topological space,
we can find a (not necessarily unique) separating family of seminorms which generates
the topology in the manner of the previous theorem.

In the case where the separating family of seminorms P is countable, we have an
alternative means of describing the topology.

Theorem A.18. Let
P = {pi}∞i=1

be a countable separating family of seminorms on a vector space X, and let τ be the
topology induced by this family as described in Theorem A.17. Then the locally convex
topological vector space (X, τ) is metrizable, and the topology τ agrees with that induced
by the invariant metric:

d(x, y) =
∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)
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Proof. 1. We first verify that d indeed defines an invariant metric. It is clearly
symmetric since p(−x) = p(x) for a seminorm. We note that the map

F : t 7→ t

1 + t

is smooth, monotone increasing, concave and takes [0,∞) to [0, 1). Thus d(x, y)
is a sum of non-negative terms, so d(x, y) > 0. Equality occurs if and only if
pi(x− y) = 0 for all i, which by the fact that P is separating implies x = y. Next
we claim that F is subadditive. To see this, we note that by the convexity of F ,
together with F (0) = 0 we have for t > 0 and 0 < λ < 1:

F (λt) = F (λt+ (1− λ)0) > λF (t) + (1− λ)F (0) = λF (t).

Then for t, s > 0:

F (t) + F (s) = F

(
(t+ s)

t

t+ s

)
+ F

(
(t+ s)

s

t+ s

)
>

t

t+ s
F (t+ s) +

s

t+ s
F (t+ s) = F (t+ s).

Now, since p is a seminorm we have

p(x− y) 6 p(x− z) + p(z − y)

=⇒ F [p(x− y)] 6 F [p(x− z) + p(z − y)] (Monotonicity of F )

=⇒ F [p(x− y)] 6 F [p(x− z)] + F [p(z − y)] (Subadditivity of F )

Thus we conclude

d(x, y) =
∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)

6
∞∑
i=1

2−i
(

pi(x− z)
1 + pi(x− z)

+
pi(z − y)

1 + pi(z − y)

)
= d(x, z) + d(z, y),

so d is indeed a metric on X. It is manifestly invariant.

2. Now we need to show that the topology induced by d, which we denote τd, agrees
with the topology τ induced by the family of seminorms P. Recall that the open
sets of τd are precisely those sets which can be written as a union of the open balls
Br(x) = {y ∈ X : d(x, y) < r}.

3. From the definition of τ , we have that each pi is τ -continuous on X. Since |F (t)| < 1,
we conclude by the Weierstrass M -test that the sum in d(x, y) converges uniformly.
Hence d is continuous as a real valued function on X×X with the product topology
coming from τ . In particular, the map dx : X → R given by dx(y) = d(x, y) is
continuous, and thus d−1

x (−r, r) = Br(x) is an open set in the τ topology. Thus
τd ⊂ τ .
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4. Now suppose that W is an open set of τ , and that x ∈W . By the definition of τ ,
there exists B such that x+B ⊂W and B has the form

B =
N⋂
k=1

V (pik , nk)

for some pik ∈ P and nk ∈ N, where we recall V (p, n) = {y ∈ X : p(y) < n−1}.
Now suppose d(x, y) < ε2−M . Then in particular, for 0 6 i 6M we have

pi(x− y)

1 + pi(x− y)
6 ε,

so that if ε < 1
2 :

pi(x− y) 6
ε

1− ε
6 2ε.

Thus if we take M > ik and ε < (nk)
−1 for all k = 1, . . . , N we deduce that if

y ∈ Bε2−M (x) then y − x ∈ B and thus y ∈W . Since x was arbitrary we can write
W as a union of open balls for the metric d, and thus τ ⊂ τd.

Remark. 1. Note that while a countable separating family of seminorms gives rise
to a metrizable locally convex topology, it need not be the case that the metric balls
Br(0) are themselves convex. The sets V (p, n) however are.

2. It is straightforward to see that d(x, y) < 1 for any x, y ∈ X, so that any subset of
X has finite diameter. On the other hand, it does not follow that all subsets of X
are bounded in the sense introduced above for a topological vector space.

A.3 The test function spaces

A.3.1 E (Ω) and DK

Let Ω ⊂ Rn be an open subset of Rn. Recall that for a function f : Ω → C, we say
f ∈ C∞(Ω) if Dαf is a continuous function in Ω for all multiindices α. Clearly C∞(Ω)
is a vector space over C, with addition and scalar multiplication defined pointwise: if
f, g ∈ C∞(Ω), λ ∈ C, we define the maps f + g, λf by

f + g : Ω→ C,
x 7→ f(x) + g(x),

λf : Ω→ C,
x 7→ λf(x).

Then f + g, λg ∈ C∞(Ω).
We shall endow C∞(Ω) with a topology which makes it into a Fréchet space with the

Heine-Borel property. By the exhaustion lemma, Lemma A.6, we can find a sequence
of compact sets (Ki)

∞
i=0 such that Ki ⊂ Ω, Ki ⊂ (Ki+1)◦ and

⋃
iKi = Ω. We define a

family of seminorms by:

pn(f) = max {|Dαf(x)| : x ∈ Kn, |α| 6 n} . (A.1)
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The family P = {pn : n ∈ N} is separating. If f 6= 0, then f(x) 6= 0 at some point x ∈ Ω.
For n sufficiently large, x ∈ Kn, and thus pn(f) > 0. Thus the family of seminorms P
induces a topology, τ , on C∞(Ω) which is locally convex and metrizable by Theorem
A.18. When C∞(Ω) is endowed with the topology τ , we use the notation E (Ω). A local
base is given by the sets

VN =

{
f ∈ C∞(Ω) : pN (f) <

1

N

}
, N = 1, 2, . . . .

It’s useful to categorise convergence in this space in terms of more familiar concepts
as follows:

Lemma A.19. A sequence (fn)n∈N in E (Ω) converges to f if and only if Dαfn → Dαf
uniformly on compact sets for each multiindex α.

Proof. By the translation invariance of the topology, we can assume w.l.o.g. that f = 0.
The sequence (fn) tends to 0 in E (Ω) if and only if for each N there exists mN such that
fn ∈ VN for all n > mN .

First suppose fn → 0 in E (Ω). Fix α and let K ⊂ Ω be any compact subset. For
any ε, there exists N such that N > max{|α| , ε−1}, K ⊂ KN . If n > mN then fn ∈ VN ,
which implies

sup
K
|Dαfn| 6 sup

KN

|Dαfn| 6 pN (fn) 6
1

N
< ε,

Thus Dαfn → 0 uniformly on K.
Conversely, suppose that for each multiindex α and compact set K we have that

Dαfn → 0 uniformly on K. Fix N . Then for each α with |α| 6 N we have Dαfn → 0
uniformly on KN . In particular, for each α there exists mα such that if n > mα, we have
that

sup
KN

|Dαfn| 6
1

N
.

Thus if m = max|α|6N mα then for all n > m we have fn ∈ VN and thus fn → 0 in E .

Theorem A.20. The topological vector space E (Ω) is a Fréchet space with the Heine-Borel
property.

Proof. 1. Since we already have that E (Ω) is locally convex and inherits its topology
from an invariant metric, in order to show that E (Ω) is Fréchet, we simply have to
show completeness. A sequence (fn)n∈N with fn ∈ E (Ω) is Cauchy if for any fixed
N , there exists M such that for all i, j >M we have fi − fj ∈ VN . Thus

sup
KN

|Dαfi −Dαfj | <
1

N
, for all |α| 6 N.

Since KN exhaust Ω, this implies that there exist continuous functions gα such
that Dαfn → gα uniformly on compact subsets of Ω. By a standard result, this
implies that there exists a smooth function f such that fn → f and Dαfn → Dαf
uniformly on compact subsets of Ω. Thus every Cauchy sequence has a limit and
E (Ω) is complete.
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2. Now suppose that E ⊂ E (Ω) is closed and bounded. We need to show that E
is compact. By Theorem A.7 it suffices to show that any sequence in E has a
convergent subsequence. By Theorem A.17, the boundedness of E is equivalent to
the existence of MN such that pN (f) < MN for all f ∈ E.

3. In particular, we have that

|Dαf | < MN for |α| = N

holds for all f ∈ E onKN . This in particular implies that for each β with |β| < N−1
the set {Dβf : f ∈ E} is equicontinuous on KN−1, and it is trivially pointwise
bounded by the condition pN (f) < MN .

4. Suppose that (fn)n∈N is any sequence in E. By Arzelà-Ascoli we can extract a
subsequence (fn1

k
)k∈N such that fn1

k
converges uniformly on K0. Suppose now that

an increasing sequence of integers nNk are given with the property that (DβfnNk
)k∈N

converges uniformly on KN−1 for all |β| 6 N − 1. Consider the sequence (fnNk
)k∈N.

Since this is a sequence in E, we know that for each β with |β| 6 N the set
{DβfnNk

: f ∈ E, k ∈ N} is equicontinuous and pointwise bounded on KN . Thus we
can extract a subsequence (fnN+1

k
)k∈N such that (DβfnN+1

k
)k∈N converges uniformly

on KN for all |β| 6 N . Thus by induction, we can find nNk with the required
property for all N .

5. Consider the sequence (Fk)k∈N with Fk = fnkk
where nNk are as constructed above.

Since nN+1
k is a subsequence of nNk , we conclude that DαFk converges uniformly

on compact subsets for any α, and thus for any sequence in E we have exhibited a
convergent subsequence.

If K ⊂ Rn is a compact set, we denote by DK the space of all f ∈ C∞(Rn) whose
support lies in K. If K ⊂ Ω, then DK may be identified with a vector subspace of C∞(Ω).
In fact, this subspace is closed with respect to the E (Ω) topology. To see this, note that
the map δx : E (Ω) → C given by f 7→ f(x) is continuous. Thus the set δ−1

x ({0}) is a
closed set in E (Ω). Since we can write:

DK =
⋂

x∈Ω\K

δ−1
x ({0})

and arbitrary intersections of closed sets are closed, we deduce that DK is closed (and
hence complete in the subspace topology). Thus DK is itself a Fréchet space, when
equipped with the subspace topology, which we denote τK .

A.3.2 D(Ω)

We have described the spaces DK , which consist of smooth functions whose support is
restricted to a given compact set K ⊂ Ω. The set D(Ω) of test functions is the union
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over the sets DK with K ⊂ Ω compact:

D(Ω) =
⋃
K⊂Ω

DK .

In other words, f ∈ D(Ω) if f is smooth, and is supported in some compact subset of Ω.
It is clear that D(Ω) is closed under the natural operations of addition and multiplication
by a complex number, and thus D(Ω) is a vector space over C. We would like to endow
D(Ω) with a topology which turns it into a complete, locally convex, topological vector
space, such that the subspace topology induced on DK agrees with the natural Fréchet
topology, τK introduced above for each compact K ⊂ Ω.

One natural possibility is to consider the norms

‖f‖k = max{|Dαf(x)| : x ∈ Ω, |α| 6 k}.

The family Q = {‖·‖k : k = 0, 1, . . .} is a countable separating family of seminorms and
so defines a locally convex metrizable topology, τQ on D(Ω). A local base is given by:

WN =

{
f ∈ C∞(Ω) : ‖f‖N <

1

N

}
, N = 1, 2, . . . .

The subspace topology induced on DK by τQ is indeed τK . To see this, recall that
τK is defined by the family of seminorms introduced in (A.1). Note that for any fixed
compact K ⊂ Ω there exists N0 such that K ⊂ KN0 . For N > N0 we have ‖f‖N = pN (f)
for all f ∈ DK . Clearly then:

VN ∩DK = WN ∩DK , N = N0, N0 + 1, . . . .

Suppose U is an open set in the subspace topology induced on DK by τQ and pick x ∈ U .
Then −x+ U is a neighbourhood of the origin, and thus there exists n such that

Wn ∩DK ⊂ −x+ U

But Wm+1 ⊂ Wm for all m, so without loss of generality we may assume n > N0. But
then we conclude that

Vn ∩DK = Wn ∩DK ⊂ −x+ U

and so U is open in τK . An identical argument shows the reverse inclusion: i.e. an open
set in τK is open in the subspace topology induced on DK by τQ.

Thus the topology τQ is locally convex, and induces the right subspace topology on
DK . However, it is not complete. To see this, consider Ω = R, and let φ be any non-zero
function with support in [0, 1]. Consider the sequence of functions (fm)m∈N with:

φm(x) = φ(x− 1) +
1

2
φ(x− 2) +

1

3
φ(x− 3) + . . .+

1

m
φ(x−m).

This is a Cauchy sequence with respect to the topology τQ: if n < m, then

‖φn − φm‖k =
1

n
‖φ‖k ,
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thus for any N if n,m > N ‖φ‖N we have φn − φm ∈ WN . On the other hand, the
sequence has no limit in D(Ω), since for sufficiently large m, φm has support outside any
compact set. We thus are led to discard τQ as a prospective topology for D(Ω).

In fact, the topology τQ is too coarse: in a sense, the notion of convergence is too loose.
This suggests that we should seek a finer topology. The topology that we shall introduce
for D(Ω) will in fact be the finest locally convex topology such that the subspace topology
induced on DK agrees with the natural Fréchet topology for each compact K ⊂ Ω.

Definition A.10. Let Ω be a nonempty open subset of Rn.

a) For each compact K ⊂ Ω, τK is the Fréchet space topology on DK introduced above.

b) β is the collection of all convex balanced sets W ⊂ D(Ω) such that DK ∩W ∈ τK for
every compact K ⊂ Ω.

c) τ is the collection of all (possibly empty) unions of sets of the form φ + W with
φ ∈ D(Ω) and W ∈ β.

Theorem A.21. a) τ is a topology for D(Ω) and β is a local base for τ .

b) τ makes D(Ω) into a locally convex topological vector space.

Proof. 1. It is clear from the definition that D(Ω), ∅ ∈ τ and that τ is closed under
arbitrary unions. If we can show that for any V1, V2 ∈ τ and φ ∈ V1 ∩ V2, then

φ+W ⊂ V1 ∩ V2 (A.2)

for some W ∈ β, then we can deduce that V1 ∩ V2 is open and so τ is a topology.
Moreover, setting φ = 0 and V2 = D(Ω) in (A.2) we deduce that any neighbourhood
of 0 contains an element of β and so β is a local base. To show a) then, it is enough
to establish (A.2).

2. From the definition of τ , there exist φi ∈ D(Ω) and Wi ∈ β such that φ ∈ φi +Wi

and φi + Wi ⊂ Vi for i = 1, 2. Choose a compact K ⊂ Ω such that φ, φi ∈ DK .
Since DK ∩Wi is open in DK , we have

φ− φi ∈ (1− δi)Wi (A.3)

for some δi > 0. To see this, recall that DK is a topological vector space, so in
particular scalar multiplication is continuous. Thus for any ψ ∈ DK , the map
Fψ : R→ DK given by t 7→ tψ is continuous. Thus the set A = (Fφ−φi)

−1 [Wi∩DK ]
is open in R. In particular, there exists εi such that (1 − 2εi, 1 + 2εi) ⊂ A,
which is equivalent to t(φ − φi) ∈ Wi ∩ DK for t ∈ (1 − 2εi, 1 + 2εi). But if
(1 + εi)(φ− φi) ∈Wi ∩DK , then (A.3) must hold for some δi > 0.

3. Since Wi is convex, we can use the result of Exercise A.1 to deduce that

φ− φi + δiWi ⊂ (1− δi)Wi + δiWi = Wi
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whence we deduce that
φ+ δiWi ⊂ φi +Wi ⊂ Vi.

Taking W = δ1φ1 ∩ δ2φ2 we have established (A.2) and thus proven part a) of the
theorem.

4. To show that τ makes D(Ω) into a locally convex topological space it is enough to
show that the topological vector space axioms are satisfied. Since β is a local base,
and is convex by construction the result will follow. Suppose that φ1, φ2 ∈ D(Ω)
are distinct, and consider the set:

W = {φ ∈ D(Ω) : ‖φ‖0 6 ‖φ1 − φ2‖0}

This is certainly convex as it is a metric ball. Moreover, since the sets {φ ∈ DK :
‖φ‖0 < r} (and their translations) are open in τK for any r and all compact K ⊂ Ω,
we conclude that W ∈ β. Moreover, φ1 6∈ φ2 +W . Thus the singleton set {φ1} is
closed in τ .

5. To establish the τ -continuity of addition, suppose U ∈ τ is any open set, and
suppose that we have φ1, φ2 ∈ D(Ω) with φ1 + φ2 ∈ U . Since β is a local base,
φ1 + φ2 +W ⊂ U for some W ∈ β. I claim (φ1 + 1

2W )× (φ2 + 1
2W ) ⊂ (+)−1(U).

To see this, note that by the convexity of W :

(φ1 +
1

2
W ) + (φ2 +

1

2
W ) = φ1 + φ2 +W ⊂ U.

Thus (+)−1(U) is open in the product topology and addition is τ -continuous.

6. Finally, to show that scalar multiplication is continuous, suppose U ∈ τ is any open
set, and suppose that we have α ∈ Φ, φ ∈ D(Ω) with αφ ∈ U . Since β is a local
base, αφ+W ⊂ U for some W ∈ β. I claim that for ε, δ sufficiently small, we have
{α′ ∈ Φ : |α′ − α| < δ} × (φ+ εW ) ⊂ (·)−1(U). Note that

α′φ′ − αφ = α′(φ′ − φ) + (α′ − α)φ

Now, by a similar argument to that in paragraph 2. above, the continuity of scalar
multiplication restricted to DK for a compact K which contains the support of φ
ensures we can choose δ > 0 such that δφ ∈ 1

2W . Let us set ε = (2(|α|+ δ))−1. By
the fact that W is balanced and convex, we deduce that

α′φ′ − αφ ∈ 1

2
W +

1

2
W = W,

so that {α′ ∈ Φ : |α′ − α| < δ} × (φ+ εW ) ⊂ (·)−1(U) and scalar multiplication is
indeed continuous.

From now on, whenever we refer to D(Ω), we shall assume that it is given the topology
τ that has just been constructed. The main results of this section (indeed this chapter)
are the following two results which characterise convergence and continuity in D(Ω).
These results justify the approach taken in lectures to disregard a close study of the
topology of D(Ω) and focus instead on sequential definitions of continuity.
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Theorem A.22. a) A convex balanced subset V of D(Ω) is open if any only if V ∈ β.

b) The Fréchet topology τK of any DK ⊂ D(Ω) coincides with the subspace topology that
DK inherits from D(Ω).

c) If E is a bounded subset of D(Ω) then E ⊂ DK for some K ⊂ Ω, and there are real
numbers MN <∞ such that every φ ∈ E satisfies the inequalities

‖φ‖N 6MN , N = 0, 1, . . .

d) D(Ω) has the Heine-Borel property.

e) If (φi)i∈N is a Cauchy sequence in D(Ω), then {φi}i∈N ⊂ DK for some compact K ⊂ Ω,
and (φi) is Cauchy with respect to the norm ‖·‖N for each N = 0, 1, . . ..

f) If φi → 0 in D(Ω), then there is a compact K ⊂ Ω which contains the support of every
φi , and Dαφi → 0 uniformly, as i→∞ for every multiindex α.

g) In D(Ω), every Cauchy sequence converges.

Proof. 1. Since β is a local base, clearly if V ∈ β then it is open. Now suppose V is an
arbitrary convex, balanced, open set. Let K be any compact subset of Ω and pick
φ ∈ DK ∩ V . Since β is a local base, we have φ+W ⊂ V for some W ∈ β. Thus

φ+ (DK ∩W ) ⊂ DK ∩ V.

From the definition of β, we know that DK ∩W ∈ τK , so we have shown that
DK ∩V is open in DK . Since β contains all convex, balanced sets whose intersection
with each DK is open, V ∈ β and we have established a).

2. The previous paragraph shows that any element of τ |DK also belongs to τK , i.e.
any set which is open with respect to the subspace topology is open in the Fréchet
topology. Suppose now that E ∈ τK . To show E ∈ DK ∩W ∈ τK , we have to show
that E = DK ∩ U for some U ∈ τ . Suppose φ ∈ E. Then from the definition of the
topology of τK , there exists N, δ such that:

{ψ ∈ DK : ‖ψ − φ‖N < δ} ⊂ E.

Let:
Wφ = {ψ ∈ D(Ω) : ‖ψ‖N < δ} .

Then Wφ ∈ β, and moreover

DK ∩ (φ+Wφ) = φ+ DK ∩Wφ ⊂ E

Taking:
U =

⋃
φ∈E

(φ+Wφ)

we have U ∈ τ and E = DK ∩ U . This establishes b).
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3. To show the first part of c), we prove the contrapositive. Suppose E ⊂ D(Ω) does
not lie in any DK . Let {Km}m∈N be an exhaustion of Ω. Since E 6⊂ DKm , for each
m, we can find φm ∈ E with suppφm 6⊂ Km. In particular, there exists xm ∈ Ω\Km

with φm(xm) 6= 0. Let

W = {φ ∈ D(Ω) : |φ(xm)| < m−1 |φm(xm)|}.

A short calculation shows W is convex and balanced. Suppose K ⊂ Ω is compact,
then there exists M such that K ⊂ KM . In particular this implies xm 6∈ K for
m >M . Thus DK ∩W is an intersection of finitely many open sets, and so W ∈ β.
However, φm 6∈ mW for any m, so E is not bounded. Thus any bounded set in
D(Ω) belongs to DK for some K. By b), E is thus bounded in DK , and the final
part of c) follows by Theorem A.17.

4. Statement d) follows from c), since DK has the Heine-Borel property (Theorem
A.20). Since Cauchy sequences are bounded (Exercise A.9), c) implies that every
Cauchy sequence (φi)i∈N lies in some DK . By b), (φi)i∈N is Cauchy with respect to
τK , and e) follows. Statement f) is a restatement of e). Finally, g) follows from e)
together with b) and the completeness of DK .

The final major result of this section concerns linear maps from D(Ω) into a locally
convex space. Before we state the theorem, we introduce the notion of a bounded operator
as one which takes bounded sets to bounded sets. That is to say if X,Y are topological
vector spaces, then a linear map Λ : X → Y is bounded if Λ(E) is bounded in Y whenever
E is bounded in X.

Theorem A.23. Let Y be a locally convex topological vector space. Suppose that Λ :
D(Ω)→ Y is a linear mapping. Then the following are equivalent:

a) Λ is continuous.

b) Λ is bounded.

c) If φi → 0 in D(Ω) then Λφi → 0 in Y .

d) The restrictions of Λ to every DK ⊂ D(Ω) are continuous.

a)⇒ b) Let E be a bounded set in D(Ω) and let W be a neighbourhood of 0 in Y . Since Λ
is continuous, there exists a neighbourhood V of 0 in D(Ω) such that Λ(V ) ⊂W .
Since E is bounded, there exists s > 0 such that E ⊂ tV for all t > s. Since Λ is
linear, Λ(E) ⊂ Λ(tV ) = tΛ(V ) ⊂ tW , and hence Λ(E) is bounded.

b)⇒ c) By part e) of Theorem A.22, if φi → 0 in D(Ω), then there exists K ⊂ Ω such
that φi → 0 in DK . Since DK is metrizable, there exist scalars αi →∞ such that
αiφi → 0 in DK and hence in D(Ω) by part b) of Theorem A.22. By the linearity
of Λ, we have

Λφi = α−1
i Λ(αiφi).
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Now (αiφi) is Cauchy in D(Ω), and hence bounded. Since Λ is bounded by
assumption, {Λ(αiφi)} is bounded. As α−1

i → 0, by Lemma A.12, part d), Λφi → 0.

c)⇒ d) By part b) of Theorem A.22, we have that c) implies that if φi → 0 in DK then
Λφi → 0. We work by contradiction. Suppose that the restriction of Λ to DK is
not continuous. Then there exists a neighbourhood W of 0 in Y such that Λ−1(W )
contains no neighbourhood of 0 in DK . Since DK is metrisable, pick a metric
d which generates τK and construct a sequence (xn) by choosing xn such that
d(xn, 0) < n−1 and xn 6∈ Λ−1(W ). Then xn → 0 in DK and hence in D(Ω), but
Λ(xn) 6→ 0, contradicting c).

d)⇒ a) Suppose that U is a convex, balanced, neighbourhood of the origin in Y and set
V = Λ−1(U). Then V is convex and balanced by the linearity of Λ. By part a) of
Theorem A.22, V is open in D(Ω) if DK ∩ V is open in DK for every DK ⊂ D(Ω),
but if Λ is continuous when restricted to each DK , then DK ∩ V is open in DK

from the definition of continuity. Thus V is open. Now suppose that W is any
open set in Y , and suppose φ ∈ Λ−1(W ). Since Y is locally convex, there exists
U , a convex neighbourhood of 0 in U such that Λφ+ U ⊂W . By Theorem A.11,
we may assume that U is balanced. Since Λ is linear, φ+ Λ−1(U) ⊂ Λ−1(W ), and
φ+ Λ−1(U) is open in D(Ω), so Λ is continuous.



Appendix B

Background Material: Measure Theory and
integration

In this appendix we shall briefly review some of the basics of measure theory, including
sigma algebras, measurable spaces, measures and the construction of the Lebesgue measure.
These notes follow parts of the notes from Prof. Norris’ version of the course Probability
and measure, as well as the books Real and complex analysis by Rudin, Real Analysis by
Stein and Shakarchi annd Measure Theory and Integration by M. Taylor.

B.1 Sigma algebras and measures

Given a set E, the basic goal of measure theory is to assign to certain subsets A ⊂ E a
value, µ(A) which represents in some appropriate sense the ‘size’ of A. For example, if E
is finite or countable and A is any subset of E we might set µ(A) to be the number of
elements in A (where µ(A) may be ∞ if A is not finite). In this case µ is defined on all
of the power set 2E . We call µ the counting measure.

For E = R, it is natural to wish to define µ(A) to be the ‘length’ of A. This is
unambiguous if A is some interval, but it turns out that we run into problems trying to
define the ‘length’ of an arbitrary subset of R. As a consequence, we will need to restrict
our attention to a smaller collection of sets than the power set 2R.

Definition B.1. Let E be a set. A collection E of subsets of E is called a σ-algebra1 if
E contains ∅ and is closed under taking the complement and forming countable unions.
That is if A ∈ E then

Ac = {x ∈ E|x 6∈ A} ∈ E ,

and if (An)∞n=1 is a sequence with An ∈ E, then

∞⋃
n=1

An ∈ E .

(E, E) is called a measurable space.

1pronounced “sigma algebra”
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A measure on (E, E) is a set function µ : E → [0,∞] such that µ(∅) = 0 and µ is
countably additive. That is for a sequence (An)∞n=1 with An ∈ E disjoint, we have:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

(E, E , µ) is called a measure space.

Note that (E, 2E) is always a measurable space, since 2E is always a σ-algebra.
Suppose (E, E , µ) is a measure space and that A ∈ E . Then we can define a new measure
space (A, E|A, µ|A) by taking E|A = {B ∈ E : B ⊂ A} and defining µ|A(B) = µ(B) for all
B ∈ E|A.

Exercise B.1. Let E be finite or countable and E = 2E .

a) Verify that if µ is the counting measure, then (E, E , µ) is a measure space.

b) A mass function is a map m : E → [0,∞]. Define a set-function on (E, E) by

µm(A) =
∑
x∈A

m(x).

Show that µm is a measure on (E, E), and moreover if µ is any measure on
(E, E) then µ = µm for some m.

For the examples in Exercise B.1, we can identify in a straightforward way both an
appropriate σ-algebra and measure. In more general situations we may not be so lucky,
so it is very helpful to be able to appeal to abstract results to construct measure spaces
by starting with something simpler. We shall require the following Lemma, whose proof
we defer to an exercise.

Lemma B.1. Suppose that for each i ∈ I, where I is some (not necessarily countable)
index set, Ei is a σ-algebra of the set E. Then the intersection ∩i∈IEi is a σ-algebra.

With this fact in hand we can define the σ-algebra generated by a collection of sets.

Definition B.2. If A is a collection of subsets of E, then the σ-algebra generated by A,
denoted σ(A), is the intersection of all σ-algebras E on E such that A ⊂ E.

Since 2E is always a σ-algebra, and A ⊂ 2E , σ(A) is always well defined. When (E, τ)
is a topological space, with τ the collection of open sets, it is natural to introduce the
Borel algebra2 B(E) := σ(τ). When E = R with it’s standard topology, we often write
B := B(R). A measure defined on the measure space (E,B(E)) is called a Borel measure.
A Borel measure which is finite on compact sets is called a Radon measure.

Exercise B.2. a) Prove Lemma B.1.

b) Let E = {1, 2, 3}. Find σ({1}), and show that σ({1}) 6= 2E .
2The notation B(E) assumes that the topology is obvious from context
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Exercise B.3. a) Show that if U ⊂ R is open in the standard topology, then:

U =

∞⋃
n=1

In,

where each In = (an, bn) with an < bn is an open interval, and the In’s are
disjoint.

b) Show that B = σ(A) when A is given by:

i) A = {(a, b)|a, b ∈ R, a < b}, the collection of all open intervals in R.
ii) A = {[a, b]|a, b ∈ R, a < b}, the collection of all closed intervals in R.
iii) A = {(a, b]|a, b ∈ R, a < b}.
iv) A = {[a, b)|a, b ∈ R, a < b}.
v) A = {(−∞, b)|b ∈ R}.
vi) A = {(−∞, b]|b ∈ R}.
vii) A = {(a,∞)|a ∈ R}.
viii) A = {[a,∞)|a ∈ R, a}.
ix) A = {(a, b)|a, b ∈ Q, a < b}.

[Hint : reduce cases ii)− ix) to case i).]

We have a means of generating a σ-algebra from a smaller collection of sets, A. We’d
like to define a measure by how it acts on A, and then ‘extend’ this measure to act
on σ(A) (or some larger σ-algebra containing A. For this we need both an existence
and a uniqueness result for the extension. We first introduce the idea of π-system and
d-system and establish Dynkin’s π-system Lemma, which will eventually furnish a proof
of uniqueness for extensions of measures.

Definition B.3. Let A be a collection of subsets of E. We say that

i) A is a π-system if it contains the empty set and is closed under pairwise intersection,
i.e.

• ∅ ∈ A,
• A ∩B ∈ A for all A,B ∈ A.

ii) A is a d-system if it contains E and is closed under taking differences, and countable
unions of increasing sets, i.e.

• E ∈ A,
• B \A ∈ A for all A,B ∈ A with A ⊂ B,

•
∞⋃
n=1

An ∈ A for all sequences (An)∞n=1 with An ∈ A and An ⊂ An+1.
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Exercise(∗). Show that if A is both a π-system and a d-system, then it is a
σ-algebra.

Dynkin’s π-system Lemma extends the previous exercise.

Lemma B.2 (Dynkin’s π-system Lemma). Let A be a π-system. Then any d-system
containing A also contains σ(A).

Proof. Let D denote the intersection of all d-systems containing A. Then D is a d-system
and it suffices to show that σ(A) ⊂ D. In order to do this, we show that D is a π-system,
hence it is a σ-algebra containing A and thus it must contain σ(A) from the definition of
σ(A).

We introduce
D′ = {B ∈ D|B ∩A ∈ D for all A ∈ A} .

Clearly A ⊂ D′ because A is a π-system. Next we claim that D′ is a d-system. Clearly
E ∈ D′. Suppose B1, B2 ∈ D′ with B1 ⊂ B2, then for A ∈ A we have:

(B2 \B1) ∩A = (B2 ∩A) \ (B1 ∩A) ∈ D

because D is a d-system and we conclude B2 \ B1 ∈ D′. Now suppose Bn ∈ D′ and
Bn ⊂ Bn+1 and let B =

⋃∞
n=1Bn. Then for any A ∈ A, we have Cn := Bn ∩ A ∈ D,

Cn ⊂ Cn+1 so
⋃∞
n=1Cn = B∩A ∈ D as D is a d-system. We deduce that D′ is a d-system

containing A, hence D′ = D by the minimality of D.
Now, we let

D′′ = {B ∈ D|B ∩A ∈ D for all A ∈ D} .
By the above, we have that A ⊂ D′′, since D′ = D. By the same arguments as above we
can check that D′′ is a d-system, and so D′′ = D and D′′ is a π-system as required.

B.1.1 Construction of measures

As described above, we are going to give a means of constructing a measure by specifying
how it behaves on some suitable collection of sets. First we introduce some notation
concerning set functions

Definition B.4. Let A be a collection of subsets of E containing ∅. A set function is a
function µ : A → [0,∞] with µ(∅) = 0. We say that a set function µ is:

• increasing if
µ(A) 6 µ(B), for all A,B ∈ A, with A ⊂ B,

• additive if, for all disjoint sets A,B ∈ A with A ∪B ∈ A we have:

µ(A ∪B) = µ(A) + µ(B),

• countably additive if for all sequence of disjoint sets (An)∞n=1 with An ∈ A and
∪∞n=1An ∈ A we have:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),
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• countably subadditive if for all sequences (An)∞n=1 with An ∈ A and ∪∞n=1An ∈ A
we have:

µ

( ∞⋃
n=1

An

)
6
∞∑
n=1

µ(An),

We shall also need to define what it means for a collection of subsets to be a ring

Definition B.5. Let A be a collection of subsets of E. We say A is a ring on E if ∅ ∈ A
and for all A,B ∈ A:

B \A ∈ A, A ∪B ∈ A.

We say A is an algebra if ∅ ∈ A and for all A,B ∈ A:

Ac ∈ A, A ∪B ∈ A.

Let us suppose that A is a ring of subsets of E, together with a countably additive
set function µ : A → [0,∞]. For any set B ⊂ E, we can introduce the outer measure

µ∗(B) := inf
∞∑
n=1

µ(An),

where the infimum is taken over all sequences (An)∞n=1 of sets such that An ∈ A and
B ⊂

⋃∞
n=1An. If no such sequence exists we set µ∗(B) =∞. We clearly have µ∗(∅) = 0,

so we have a set function defined on 2E and moreover, µ∗ is increasing. In general,
however, µ∗ will not define a measure on the measure space (E, 2E), in order for µ∗ to be
a measure we must restrict to a smaller σ-algebra. We say that A ⊂ E is µ∗-measurable
if, for all B ⊂ E we have:

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac),

and we denote byM the collection of all µ∗-measurable sets. One of the fundamental
results of measure theory is:

Theorem B.3 (Carathéodory’s Theorem). Suppose A is a ring of subsets of E, and
µ : A → [0,∞] is a countably additive set function. Define µ∗,M as above. The collection
M is a σ-algebra which contains A. The set function µ∗ :M→ [0,∞] is a measure on
(E,M).

We shall establish this result through several Lemmas. First, we establish countable
subadditivity of µ∗.

Lemma B.4. The set function µ∗ : 2E → [0,∞] is countably subadditive.

Proof. Let B = ∪∞n=1Bn. We wish to show

µ∗(B) 6
∞∑
n=1

(Bn).
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We can easily see that if µ∗(Bn) = ∞ for some n, then necessarily µ∗(B) = ∞, so we
can focus on the case where µ∗(Bn) <∞ for all n. Fix ε > 0. For each n we can find a
sequence of sets (An,m)∞m=1 such that An,m ∈ A with Bn ⊂ ∪∞m=1An,m and

∞∑
m=1

µ(An,m) 6 µ∗(Bn) + ε2−n.

Now, B ⊂
⋃∞
n=1

⋃∞
m=1An,m, so we have:

µ∗(B) 6
∞∑
n=1

∞∑
m=1

µ(An,m) 6
∞∑
n=1

µ(Bn) + ε.

Since ε was arbitrary, the result follows.

Next we show that µ∗ extends µ.

Lemma B.5. Suppose A ∈ A. Then µ∗(A) = µ(A).

Proof. It is obvious that µ∗(A) 6 µ(A), by considering the sequence A1 = A, An = ∅ for
n > 1, so it suffices to show µ∗(A) > µ(A). Since µ is countably additive, it is finitely
additive (take all but finitely many elements of the sequence to be the empty set). Since
A is a ring, if A,B ∈ A with A ⊂ B, then B \A ∈ A. By finite additivity of µ:

µ(B) = µ (A ∪ (B \A)) = µ(A) + µ(B \A) > µ(A)

so µ is increasing. Suppose (An)∞n=1 is a sequence with An ∈ A. Let B1 = A1 and

Bn =
n⋃
k=1

Ak \
n−1⋃
k=1

Ak

for n > 1. Then (Bn)∞n=1 is a disjoint sequence, Bn ⊂ An and moreover each Bn ∈ A
since A is a ring. We have:

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) 6
∞∑
n=1

µ(An),

so µ is countably subadditive.
Now, suppose A ∈ A and take any sequence (An)∞n=1 with An ∈ A and A ⊂ ∪∞n=1An.

Note that A ∩An = A \ ((A ∪An) \A), so A ∩An ∈ A. We deduce:

µ(A) = µ

( ∞⋃
n=1

(A ∩An)

)
6
∞∑
n=1

µ(A ∩An) 6
∞∑
n=1

µ(An)

Taking the infimum over all such sequences, we conclude µ(A) 6 µ∗(A) and we’re
done.

Lemma B.6. M contains A.
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Proof. Suppose A ∈ A and B ⊂ E. We need to show:

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac).

Since B = (B ∩ A) ∪ (B ∩ Ac) and using subadditivity of µ∗, it is immediate that
µ∗(B) 6 µ∗(B ∩A) + µ∗(B ∩Ac), so it suffices to show

µ∗(B) > µ∗(B ∩A) + µ∗(B ∩Ac).

If µ∗(B) = ∞ this is trivial, so we can focus on the case µ∗(B) < ∞. Fix ε > 0, then
there exists a sequence (An)∞n=1 with An ∈ A, B ⊂ ∪∞n=1An and

∞∑
n=1

µ(An) 6 µ∗(B) + ε.

We note that:

B ∩A ⊂
∞⋃
n=1

(An ∩A), B ∩Ac ⊂
∞⋃
n=1

(An ∩Ac).

Recalling that An ∩A ∈ A and noting that An ∩Ac = (A ∪An) \A ∈ A we deduce:

µ∗(B ∩A) + µ∗(B ∩Ac) 6
∞∑
n=1

µ(An ∩A) +
∞∑
n=1

µ(An ∩Ac) =
∞∑
n=1

µ(An) 6 µ∗(B) + ε.

Since ε was arbitrary, we’re done.

Lemma B.7. M is an algebra.

Proof. From the definition ofM it is immediate that E ∈M and that A ∈M implies
Ac ∈ M. It remains to show that M is closed under pairwise union, or equivalently
pairwise intersection (since A ∪B = (Ac ∩Bc)c). Suppose that A1, A2 ∈M and B ⊂ E.
Then

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac1)

= µ∗(B ∩A1 ∩A2) + µ∗(B ∩A1 ∩Ac2) + µ∗(B ∩Ac1)

= µ∗(B ∩A1 ∩A2) + µ∗(B ∩ (A1 ∩A2)c ∩A1) + µ∗(B ∩ (A1 ∩A2)c ∩Ac1)

= µ∗(B ∩A1 ∩A2) + µ∗(B ∩ (A1 ∩A2)c)

so A1 ∩A2 ∈M.

Finally, we are ready to prove Carathéodory’s theorem:

Proof of Theorem B.3. We already know thatM is an algebra containing A, so it suffices
to show that if (An)∞n=1 is a sequence of disjoint sets with An ∈ M, and A =

⋃∞
n=1An,

then we have:

A ∈ A, µ∗(A) =

∞∑
n=1

µ∗(An).
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so thatM is closed under countable unions and hence is a σ-algebra, and µ∗ is a countably
additive set function onM, hence a measure. Fix any B ⊂ E. Since the An are disjoint,
we know A1 ∩A2 = ∅ and A1 ∩Ac2 = A1. We deduce:

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac1)

= µ∗(B ∩A1 ∩A2) + µ∗(B ∩A1 ∩Ac2) + µ∗(B ∩Ac1 ∩A2) + µ∗(B ∩Ac1 ∩Ac2)

= µ∗(B ∩A1) + µ∗(B ∩A2) + µ∗(B ∩Ac1 ∩Ac2)

= . . . =
n∑
k=1

µ∗(B ∩Ak) + µ∗(B ∩Ac1 ∩ · · · ∩Acn)

Now, since B ∩ Ac ⊂ B ∩ Ac1 ∩ · · · ∩ Acn, by the fact that µ∗ is increasing we know
µ∗(B ∩ Ac1 ∩ · · · ∩ Acn) > µ∗(B ∩ Ac). Hence, letting n → ∞ and using countable
subadditivity we find:

µ∗(B) >
∞∑
k=1

µ∗(B ∩Ak) + µ∗(B ∩Ac) > µ∗(B ∩A) + µ∗(B ∩Ac) (B.1)

The reverse inequality holds by subadditivity, and so we have

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac)

and thus A ∈M. Setting B = A in (B.1) we deduce:

µ∗(A) =
∞∑
n=1

µ∗(An).

Carathéodory’s theorem gives a way to extend a countably additive set function
defined on a ring A to a measure on σ(A), since we can restrict the outer measure to
σ(A). It is often useful to know whether this extension of µ is unique. We have the
following result:

Theorem B.8. Let µ1, µ2 be measures on (E, E) with µ1(E) = µ2(E) < ∞. Suppose
that µ1 = µ2 on A, where A is a π-system which generates E. Then µ1 = µ2 on E.

Proof. Let D = {A ∈ E|µ1(A) = µ2(A)} be the collection of sets on which the measures
agree. By hypothesis E ∈ D and A ⊂ D. We shall show that D is a d-system, so by
Dynkin’s π-system Lemma we have E = σ(A) ⊂ D and we’re done.

Suppose A,B ∈ E with A ⊂ B, then by additivity of the measures, we have:

µ1(A) + µ1(B \A) = µ1(B) <∞, µ2(A) + µ2(B \A) = µ2(B) <∞,

so that if A,B ∈ D then B \A ∈ D.
Now suppose that we have a sequence (An)∞n=1 with An ∈ D and An ⊂ An+1 and

A = ∪∞n=1An. Then setting B1 = A1 and Bn = An \ An−1 for n > 1, we can write
A = ∪∞n=1Bn, where the Bn are disjoint. Thus:

µ1(A) =
∞∑
n=1

µ1(Bn) =
∞∑
n=1

µ2(Bn) = µ2(A)

and hence A ∈ D. Thus D is a d-system and so E = D and we’re done.
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This result requires that E has finite measure. For many of the situations we’re
interested in this is too restrictive an assumption. We can extend the result for measures
which satisfy a weaker condition.

Corollary B.9. Let µ1, µ2 be measures on (E, E). Suppose that µ1 = µ2 on A, where A
is a π-system which generates E. Suppose also that E =

⋃∞
i=1Bi, where Bi ∈ A and the

Bi’s are disjoint with µ1(Bi) = µ2(Bi) <∞. Then µ1 = µ2 on E.

Proof. For each i, and for any A ∈ E , define µi1(A) = µ1(A ∩ Bi), µi2(A) = µ2(A ∩ Bi).
By assumption we have µi1(E) = µi2(E) <∞ and moreover µi1(A) = µi2(A) for all A ∈ A.
Thus µi1 = µi2 on E . Further, if A ∈ E is any measurable set, then

µ1(A) = µ1

( ∞⋃
i=1

(Bi ∩A)

)
=
∞∑
i=1

µ1(Bi ∩A)

=

∞∑
i=1

µ2(Bi ∩A) = µ2

( ∞⋃
i=1

(Bi ∩A)

)
= µ2(A)

Completeness of measures

A useful feature of the measures obtained from Carathéodory’s theorem is that they have
a property known as completeness.

Definition B.6. Let (E, E , µ) be a measure space. We say µ is complete if for any A ∈ E
with µ(A) = 0, each subset of A also belongs to E.

A subset of a set of measure zero is sometimes known as a null set, so a complete
measure is one for which all null sets are measurable.

Lemma B.10. Suppose (E,M, µ) is a measure space obtained from Carathéodory’s
theorem. Then it is complete.

Proof. Let µ∗ be the outer measure on E whose restriction toM gives µ. Suppose N ⊂ A,
where A ∈ M with µ(A) = 0. Since µ∗ is increasing we have µ∗(N) 6 µ(A) = 0, so
µ∗(N) = 0. For any set B ⊂ E we have:

µ∗(T ∩N) + µ∗(T ∩N c) 6 µ∗(N) + µ∗(T ) = µ∗(T )

again using the increasing property of µ∗. By Lemma B.4 we know µ∗ is subadditive,
hence

µ∗(T ) 6 µ∗(T ∩N) + µ∗(T ∩N c),

and thus N ∈M.
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B.1.2 Lebesgue measure

We specialise now to (arguably) the most important measure, the Lebesgue measure.
This measure gives us the standard notion of volume for sets in Rn. We first introduce
the rectangles in Rn.

Definition B.7. A rectangle in Rn is a set of the form:

R = (a1, b1]× (a2, b2]× · · · × (an, bn],

with ai < bi for i = 1, . . . , n. We define AR to be the collection of finite unions of disjoint
rectangles.

Exercise(∗). Show that:

a) The collection of rectangles is a π-system.

b) AR is a ring.

c) AR generates B(Rn).

The main result we will establish shows:

Theorem B.11. There exists a unique Borel measure µ on Rn such that, for all rectangles
R = (a1, b1]× · · · × (an, bn] with ai < bi for i = 1, . . . , n,

µ(R) = (b1 − a1)(b2 − a2) · · · (bn − an).

The measure µ is called the Lebesgue measure on Rn.

Proof. For any A ∈ AR we can write A = ∪Ni=1Ri for disjoint rectangles Ri := (ai1, b
i
1]×

· · · × (ain, b
i
n]. We define for such A:

µ(A) :=

n∑
i=1

(bi1 − ai1)(bi2 − ai2) · · · (bin − ain).

Note that the decomposition of A into rectangles is not unique, however one can verify
that this is well defined and additive. If we can show that µ is countable additive, then
we can apply Carathéodory’s theorem to establish the existence of the Lebesgue measure.

Suppose that (An)∞n=1 is a sequence of disjoint sets with An ∈ AR, such that A =
∪∞i=1Ai ∈ AR. We wish to show that

∞∑
i=1

µ(Ai) = µ(A)

Set Bn = ∪∞i=nAi, note ∩∞i=1Bi = ∅ as the sets Ai are disjoint. Since AR is a ring,
Bn = A \ ∪n−1

i=1 Ai ∈ AR. By finite additivity of µ we have:

µ(A) =
n−1∑
i=1

µ(Ai) + µ(Bn),
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so it suffices to prove that µ(Bn)→ 0 as n→∞. Suppose not, then there exists ε > 0
such that µ(Bn) > 2ε for all n. For each n we can find Cn ∈ A with Cn ⊂ Bn and
µ(Cn \Bn) 6 ε2−n. Then

µ(Bn \ (C1 ∩ · · · ∩ Cn)) 6 µ((B1 \ C1) ∪ . . . ∪ (Bn \ Cn)) 6
∞∑
n=1

ε2−n = ε.

Since µ(Bn) > 2ε, we must have µ(C1 ∩ · · · ∩ Cn) > ε, so C1 ∩ · · · ∩ Cn 6= ∅ and so
Kn = C1 ∩ · · · ∩ Cn 6= ∅. Now, Kn is a nested sequence of non-empty compact sets, and
so ∅ 6= ∩∞i=1Ki ⊂ ∩∞i=1Bi which is a contradiction.

Thus, we conclude that a Borel measure µ exists on Rn with the required property
acting on rectangles. In order to establish uniqueness, we can invoke Corollary B.9, after
noting that the set of rectangles is a π-system and that moreover we can write Rn as a
countable disjoint union of rectangles, for example by taking the rectangles of the form
z + (0, 1]n, where z ∈ Zn.

We note that the Lebesgue measure is translation invariant: µ(B + x) = µ(B) for
any x ∈ Rn, B ∈ B(Rn). To see this, for fixed x ∈ Rn let µx(B) = µ(B). If B is a
rectangle, then µx(R) = µ(R) (since b1−a1 = (b1−x1)− (a1−x1), etc.) so by uniqueness
µx = µ. We also note that Carathéodory’s theorem actually shows us that the Lebesgue
measure is actually defined onM, a larger σ-algebra than B(Rn). We callM the algebra
of Lebesgue measurable sets. By construction, we have that the Lebesgue measure is
complete when Rn is equipped withM as σ-algebra, however it is not complete on the
Borel algebra. For any Lebesgue measurable subset E ⊂ Rn we can define the natural
restriction of Lebesgue measure to E, which we also refer to as the Lebesgue measure.

Lemma B.12 (Borel regularity of Lebesgue measure). Suppose A ∈ M is Lebesgue
measurable. Then for any ε > 0 there exists an open set O and a closed set C such that
C ⊂ A ⊂ O and:

µ(O \A) < ε, µ(A \ C) < ε.

If µ(A) <∞, then we may take C to be compact.

Proof. First, let us assume µ(A) <∞. From the definition of Lebesgue measurability, we
know that

µ(A) = µ∗(A) = inf
∞∑
n=1

µ(An),

where the infimum is taken over all sequences (An)∞n=1 of sets such that An ∈ AR and
A ⊂ ∪ni=1An. Since each An ∈ AR is a finite disjoint union of rectangles, we may assume
without loss of generality that each An is a rectangle. Fix ε > 0. We can choose An such
that:

inf
∞∑
n=1

µ(An) < µ(A) +
ε

2
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For each rectangle An, we can find a rectangle Ãn with An ⊂ Ã◦n and µ(Ãn) < µ(An)+ ε
2n+1 .

Then let O = ∪∞n=1Ã
◦
n. By construction, A ⊂ O and O is open. Moreover,

µ(O) 6
∞∑
n=1

µ(Ãn) 6
∞∑
n=1

µ(An) +
ε

2

∞∑
n=1

2−n < µ(A) + ε.

We deduce that
µ(O \A) < ε.

Now suppose µ(A) = ∞. Set Ak = A ∩ {|x| 6 k}, then µ(Ak) <∞, so we can find
an open Ok with µ(Ok \Ak) < ε2−k. We set O = ∪∞k=1Ok. Then O is open and A ⊂ O.
Moreover,

O \A = (∪∞k=1Ok) \A =
∞⋃
k=1

(Ok \A) ⊂
∞⋃
k=1

(Ok \Ak)

so that

µ(O \A) 6
∞∑
k=1

µ(Ok \Ak) < ε.

We have thus established the first part of the proof. For the second part, we note that
if A is measurable, then so is Ac, and hence there exists an open O with Ac ⊂ O and
µ(O\Ac) < ε. Set C = Oc. This is closed and C ⊂ A. Moreover, A\C = Cc\Ac = O\Ac
so

µ(A \ C) < ε.

For the final observation, note that if µ(A) < ∞, then since Ak is an increasing
sequence with ∪kAk = A, we have that limk→∞ µ(Ak) = µ(A) < ∞, so there exists
k such that µ(A \ Ak) = µ(A) − µ(Ak) <

ε
2 . Let C ⊂ Ak be a closed set such that

µ(Ak \ C) < ε
2 . We have µ(A \ C) = µ((A \ Ak) ∪ (Ak \ C)) < ε, and moreover C is a

subset of a bounded set, hence compact.

We next show

Lemma B.13. Let A ⊂ Rn. Suppose that for any ε > 0 there exists an open set O and a
closed set C such that C ⊂ A ⊂ O and:

µ(O \ C) < ε.

Then A = B1 ∪N , where N ⊂ B2 where B1, B2 ∈ B(Rn) with µ(B2) = 0.

Proof. For each i, we can find Oi open and Ci closed such that Ci ⊂ A ⊂ Oi and

µ(Oi \ Ci) < 2−i.

We have that B1 = ∪∞i=1Ci ∈ B(Rn) from the properties of σ-algebras. Furthermore, let
B2 = ∩∞i=1(Oi \ Ci). Again B2 ∈ B(Rn), and moreover:

µ(B2) 6 µ (∩ni=1(Oi \ Ci)) 6 2−n+1

for any n, so µ(B2) = 0. Since A \B1 ⊂ B2 we are done.
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Now, noting that the union of a Borel set and a null set is Lebesgue measurable by
the completeness of Lebesgue measure, we have established:

Theorem B.14. Suppose A ⊂ Rn. The following are equivalent:

i) A is Lebesgue measurable.

ii) For any ε > 0 there exists an open set O and a closed set C such that C ⊂ A ⊂ O
and:

µ(O \ C) < ε.

iii) A = B1 ∪N , where N ⊂ B2 where B1, B2 ∈ B(Rn) with µ(B2) = 0.

B.2 Measurable functions

We next wish to introduce the idea of a measurable function between two measurable
spaces. Suppose (E, E) and (G,G) are measurable spaces. We say f : E → G is measurable
if f−1(A) ∈ E whenever A ∈ G. Note the similarity to the definition of continuous maps
between topological spaces. If (G,G) = (R,B), then we simply refer to a measurable
function on (E, E). If3 (G,G) = (R,B[0,∞]), we refer to a non-negative measurable
function. While convenient, this nomenclature has the slightly unfortunate consequence
that a non-negative measurable function need not be a measurable function. If E is a
topological space and E = B(E), then a measurable function on (E, E) is called a Borel
function on E.

Exercise B.4. a) Suppose (G,G) is a measurable space and E is any set. Show
that if f : E → G is any function, the collection:

f−1(G) = {f−1(A) : A ∈ G},

is a σ-algebra, known as the pull-back σ-algebra.

b) Suppose (E, E) and (G,G) are measurable spaces, with G = σ(A) for some
collection A. Further suppose that f : E → G has the property that
f−1(A) ∈ E for all A ∈ A. Show that

{A ⊂ G : f−1(A) ∈ E}

is a σ-algebra containing A and deduce that f is measurable.

c) Suppose (E, E) is a measurable space. Show that f : E → R is measurable if
and only if

f−1((−∞, λ)) := {x ∈ E : f(x) < λ} ∈ E , for all λ ∈ R.

and f : [0,∞] is measurable if and only if

f−1([0, λ)) := {x ∈ E : 0 6 f(x) < λ} ∈ E , for all 0 6 λ <∞.
3We give [0,∞] a topology by saying U ⊂ [0,∞] is open if and only if tan−1(U) is open in the

standard topology of [0, π
2

], where by convention tan(π/2) = +∞.
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Exercise B.5. Suppose E, G are topological spaces equipped with their Borel
σ-algebras.

a) Show that any continuous function f : E → G is measurable. Deduce that
in particular any continuous function f : E → R is a Borel function.

b) Show that if g : G → R is continuous, and f : E → G is measurable then
g ◦ f is measurable.

c) Let G = Rn, with its canonical basis (ei)
n
i=1. Show that f : E → G is

measurable if and only if each component function fi = (f, ei) : E → R is
measurable.

An important feature of the class of measurable functions (and indeed a strong
motivation for the development of the theory) is that it behaves well under limiting
operations.

Theorem B.15. Suppose (E, E) is a measurable space and (fn)∞n=1 is a sequence of
non-negative measurable functions. Then the functions f1 + af2 for a > 0 and f1f2 are
measurable, as are

inf
n
fn, sup

n
fn, lim inf

n
fn, lim sup

n
fn.

In particular, if fn(x)→ f(x), then f is measurable.
The same results hold for (not necessarily non-negative) measurable functions, provided

the limiting functions are real valued (i.e. don’t take the values ±∞).

Proof. By Exercise B.4 we know that f−1
1 ([0, λ))f−1

2 ([0, λ)) ∈ E for any 0 6 λ <∞. Now,
for any 0 6 λ <∞:

(f1 + af2)−1([0, λ]) =
⋃

r∈Q,r>0

[{f < λ− ar} ∩ {g < r}] ∈ E .

so f1 + af2 is measurable. We also note that f2
1 is measurable, since (f2

1 )−1([0, λ)) =

f−1
1 ([0, λ

1
2 )) ∈ E . Combining these two results, and noting

f1f2 =
1

4

(
(f1 + f2)2 − (f1 − f2)2

)
we deduce that f1f2 is measurable. Next, we note that

{inf
n
fn < λ} =

⋃
n

{fn < λ}

so infn fn is measurable. Similarly,

{sup
n
fn < λ} =

⋃
r∈Q,r<λ

(⋂
n

{fn < r}

)
so supn fn is measurable. Finally, we note that lim supn fn = infk gk, where gk =
supn>k fn and lim infn fn = supk hk, where hk = infn>k fn. The last conclusion follows
since if fn(x) converges, then limn fn(x) = lim supn fn(x) = lim infn fn(x).

The proofs in the real valued case follow, mutatis mutandis.
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We establish one further result concerning measurable functions, before moving on to
discuss the interaction between measurable functions and measures.

Exercise B.6. Suppose (E, E) is a measurable space and f is a measurable
function on E. Show that the functions f+, f−, |f | defined by:

f+(x) := max{f(x), 0}, f−(x) := max{−f(x), 0}, |f | := f+ + f−,

are non-negative measurable functions.

Theorem B.16 (Monotone Class Theorem). Let (E, E) be a measurable space and let A
be a π-system generating E. Suppose V is a vector space of bounded functions f : E → R
such that:

i) 1 ∈ V and 1A ∈ V for all A ∈ A;

ii) if fn ∈ V for all n and f is a bounded function such that 0 6 fn 6 fn+1 and fn → f
pointwise, then f ∈ V .

Then V contains every bounded measurable function.

Proof. Let D = {A ∈ E : 1A ∈ V }. Then the assumptions on V ensure D is a d-system
containing A, so D = E . Since V is a vector space, it must contain all finite linear
combinations of indicator functions of measurable sets. If f is a bounded non-negative
measurable function, then fn = 2−nb2nfc is such a function, and moreover fn is an
increasing sequence which tends to f pointwise, so f ∈ V . Since any bounded measurable
function can be written as the difference of two bounded non-negative measurable functions
we’re done.

We shall now see how measurable functions interact with measures. Firstly, we note
that a measurable function can be use to induce a measure on its image, given a measure
on its domain. Suppose (E, E) and (G,G) are measurable spaces, µ is a measure on (E, E)
and f : E → G is a measurable function. We can define a measure on (G,G), f∗µ, called
the push-forward or image measure by:

f∗µ(A) = µ(f−1(A)), for all A ∈ G.

Next we consider convergence in the context of a measurable space (E, E , µ). Given
some property P conditioned on a point x ∈ E, we say that P holds almost everywhere
in E if

µ ({x ∈ E : P (x) is false}) = 0.

For example, we can consider R equipped with the Lebesgue measure, and introduce
the Dirichlet function f(x) = 1 for x ∈ Q, f(x) = 0 otherwise. Then we can say ‘f = 0
almost everywhere’. In circumstances where the choice of measure is ambiguous, one
sometimes writes µ-almost everywhere. We often abbreviate almost everywhere to a.e.

If (fn)∞n=1 is a sequence of measurable functions on (E, E , µ), we say fn → f almost
everywhere if

µ({x ∈ E : fn(x) 6→ f(x)}) = 0.
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Another notion of convergence that we can consider is convergence in measure. We say
that fn → f in measure if

µ ({x ∈ E : |fn(x)− f(x)| > ε})→ 0, for all ε > 0.

The connection between these two notions is captured by

Theorem B.17. Suppose (E, E , µ) is a measure space, and (fn)∞n=1 is a sequence of
measurable functions on E. Then:

i) Suppose µ(E) <∞, then if fn → f almost everywhere, then fn → f in measure.

ii) If fn → f in measure, then there exists a subsequence (fnk)
∞
k=1 such that fnk → f

almost everywhere.

Proof. i) By considering fn − f , assume wlog fn → 0 a.e.. Fix ε > 0, then for any n:

µ

( ⋂
m>n

{|fm| 6 ε}

)
6 µ({|fn| 6 ε})

Now, set An =
⋂
m>n{|fm| 6 ε}. We have An ⊂ An+1 and

x ∈
⋃
n

An ⇐⇒ there exists N such that |fn(x)| 6 ε for all n > N.

Thus as n→∞, we have:

µ(An) > µ ({x : fn(x)→ 0}) = µ(E).

ii) Again, wlog suppose fn → 0 in measure. Set n1 = 1. For each k > 1 we can find
nk > nk+1 such that

µ({|fnk | > 1/k}) 6 2−k.

Now, let
Ak =

⋃
m>k

{x ∈ E : |fnm(x)| > 1/m}.

we have that x ∈
⋂
k Ak if and only if for any k there exists m > k such that

|fnm(x)| > 1/m. Thus x 6∈
⋂
k Ak if and only if there exists k such that for any

m > k we have |fnm(x)| 6 1/m and we conclude fnk → 0 for all x 6∈
⋂
k Ak. Now,

Ak+1 ⊂ Ak so, for any m:

µ

(⋂
k

Ak

)
6 µ (Am) = µ

⋃
m>k

{|fnm(x)| > 1/m}


6
∑
m>k

µ({|fnm(x)| > 1/m}) 6 2m−1

we conclude that µ (
⋂
k Ak) = 0 and thus fnk → 0 a.e..
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Exercise B.7. Let E = [0, 1] be equipped with the Lebesgue measure. Con-
struct a sequence of functions fn : [0, 1]→ [0, 1] such that fn → f in measure,
but (fn(x))∞n=1 does not converge for any x ∈ [0, 1].

A final result concerns the measurability of a function which equals a measurable
function almost everywhere.

Lemma B.18. Let (E, E , µ) be a complete measure space, and let f be a measurable
function on E. If g : E → R is such that f = g almost everywhere, then g is measurable.

Proof. Under the assumptions, N = {f 6= g} is null, hence measurable by the completeness
hypothesis, and µ(N) = 0. Fix a ∈ R. By assumption A = {f < a} is measurable, and if
we can show that B = {g < a} is measurable then we will be done. Now, B ∩Ac ⊂ N , so
by completeness A ∩Bc is measurable, hence

B = A ∪ (B ∩Ac)

is measurable.

B.3 Integration

We now wish to define a notion of integration for measurable functions on some measure
space (E, E , µ). We approach this by first considering the case of non-negative measurable
functions. These can be approximated from below by simple functions, which are finite
linear combinations of characteristic functions on which the integral can be easily defined.

We say f is simple if

f =
k∑

n=1

αn1An

where αn ∈ R and An ∈ E . For a non-negative simple function it is natural to define the
integral as:

µ(f) :=
k∑

n=1

αnµ(An)

Here, by convention 0 · ∞ = 0. Alternative notations which we will make use of are:

µ(f) =

∫
E
fdµ =

∫
E
f(x)dµ(x)

We note that αn, An are not uniquely determined by f , however µ(f) is independent of
the particular representation we choose.

Exercise B.8. a) Show that if 0 6 αn, βn <∞, An, Bn ∈ E satisfy
k∑

n=1

αn1An =
l∑

n=1

βn1Bn ,

then
k∑

n=1

αnµ(An) =

l∑
n=1

βnµ(Bn).
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b) If f, g are simple functions and a, b > 0, show that

i) µ(af + bg) = aµ(f) + bµ(g).

ii) If f 6 g then µ(f) 6 µ(g).

iii) f = 0 a.e. if and only if µ(f) = 0.

For a non-negative measurable function, we define the integral to be:

µ(f) =

∫
E
fdµ = sup{µ(g) : g simple with 0 6 g 6 f}.

By the results of Exercise B.8 this is consistent with the previous definition when f is
simple. Note that µ(f) is permitted to take the value ∞. We also note that if f, g are
non-negative measurable functions with f 6 g, then∫

E
fdµ 6

∫
E
gdµ.

It also follows immediately from the definition that for any ε > 0 there exists a simple
function fε such that ∫

E
|f − fε| dµ =

∫
E

(f − fε)dµ < ε

To define the integral for functions which may take both positive and negative values,
we first recall that if f is measurable then f+, f−, |f | are non-negative measurable
functions. We say that f is integrable if µ(|f |) <∞, in which case we define:

µ(f) = µ(f+)− µ(f−).

Note that f 6 g if and only if f+ 6 g+ and f− > g−, so that f 6 g implies µ(f) 6 µ(g).
In particular, we have that |µ(f)| 6 µ(|f |). By our comment above, for any ε > 0 we can
find a simple function fε such that ∫

E
|f − fε| dµ < ε

since we can approximate both f+ and f− by appropriate simple functions.
If at most one of µ(f+) or µ(f−) is infinite, then we can still define µ(f) by the

same formula, but if both µ(f+) and µ(f−) are infinite then we can’t sensibly assign a
value to µ(f). We can also consider the case where f takes values in Rn. In this case we
pick a basis (ei)

n
i=1 for Rn and write f =

∑n
i=1 fiei. We say f is integrable if each fi is

integrable and we define: ∫
E
fdµ =

n∑
i=1

(∫
E
fidµ

)
ei

This naturally gives a definition for functions taking complex values by the isomorphism
C ' R2.
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B.3.1 Convergence theorems

A fundamental result in the Lebesgue theory of integration is the monotone convergence
theorem, sometimes called Beppo Levi’s Lemma. Suppose (E, E , µ) is a measure space
and that (fn)∞n=1 is a sequence of non-negative measurable functions which is increasing,
i.e. fn(x) 6 fn+1(x) for all x ∈ E and n > 1. Then for each x ∈ E the limit
f(x) = limn→∞ fn(x) exists in [0,∞]. We know that f is measurable, and the monotone
convergence theorem asserts that µ(f) = limn→∞ µ(fn).

Theorem B.19 (Monotone convergence theorem). Let (fn)∞n=1 be an increasing sequence
of non-negative integrable functions on a measure space (E, E , µ) converging to f . Then∫

E
fdµ = lim

n→∞

∫
E
fndµ.

Proof. Let M = supn µ(fn). We wish to show that M = µ(f). Since fn is an increasing
sequence, we have fn 6 f so that µ(fn) 6 µ(f). As this holds for all n, we deduce:

M 6 µ(f) = sup{µ(g) : g simple, g 6 f}.

If we can show that for any simple function g with 0 6 g 6 f we have µ(g) 6 M then
we’re done. Suppose

g =
m∑
i=1

ak1Ak

is such a function, where we may assume Ak ∈ E are disjoint without loss of generality.
We define

gn(x) = min{g(x), 2−nb2nfnc}.

Then (gn)∞n=1 is an increasing sequence of simple functions, satisfying gn 6 fn 6 f and
gn → g. Fix 0 < ε < 1. Define the sets Ak,n by

Ak,n = {x ∈ Ak : gn(x) > (1− ε)ak}

Then since gn is an increasing sequence, we have Ak,n ⊂ Ak,n+1. So by countable additivity
we have µ(Ak,n)→ µ(Ak) as n→∞. By construction we have

1Akgn > (1− ε)ak1Ak,n

so
µ(1Akgn) > (1− ε)akµ(Ak,n)

Now, noting that gn =
∑m

k=1 1Akgn, and using the linearity result of Exercise B.8 we see

µ(gn) > (1− ε)
m∑
k=1

akµ(Ak,n)→ (1− ε)
m∑
k=1

akµ(Ak) = (1− ε)µ(g).

Now, µ(gn) 6 µ(fn) 6M , so we have (1−ε)µ(g) 6M for any ε > 0, hence µ(g) 6M .

A straightforward corollary of this result is the following:



182 Appendix B Background Material: Measure Theory and integration

Corollary B.20. Suppose (fn)∞n=1 is a sequence of non-negative measurable functions
on a measure space (E, E , µ). Then∫

E

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

(∫
E
fndµ

)
.

Another useful corollary:

Corollary B.21. Suppose (fn)∞n=1 is a decreasing sequence of bounded measurable func-
tions on a measure space (E, E , µ). Then∫

E
fdµ = lim

n→∞

∫
E
fndµ.

Proof. We take gn = f1 − fn, since the fn are bounded this is well defined (i.e we don’t
have to assign a value to ∞−∞). Then (gn)∞n=1 is an increasing sequence and we can
apply the usual monotone convergence theorem.

Exercise(∗). Give an example to show that Corollary B.21 fails if the bound-
edness assumption is dropped.

With the monotone convergence theorem in hand, we can readily show that the
integral satisfies the properties we would expect.

Theorem B.22. Suppose f, g are non-negative measurable functions on a measure space
(E, E , µ) and a, b > 0 are constants. Then:

i)
∫
E

(af + bg)dµ = a

∫
E
fdµ+ b

∫
E
gdµ

ii) If f 6 g then
∫
E
fdµ 6

∫
E
gdµ

iii)
∫
E
fdµ = 0 if and only if f = 0 almost everywhere.

Proof. Let

fn(x) = min{2nb2−nf(x)c, n}, gn(x) = min{2nb2−ng(x)c, n}.

Then (fn)∞n=1, (gn)∞n=1 is an increasing sequence of non-negative simple functions tending
to f, g respectively, and clearly (afn+bgn)∞n=1 is an increasing sequence tending to af+bg.
Since these are simple functions, we have:∫

E
(afn + bgn)dµ = a

∫
E
fndµ+ b

∫
E
gndµ

and by the monotone convergence theorem, we can take the limit n→∞ to establish i).
Point ii) we already noted follows directly from the definition of the integral.

Finally, if f = 0 almost everywhere, then we have µ(g) = 0 for any simple g 6 f , and
thus µ(f) = 0. Now suppose f(x) 6= 0 almost everywhere. Then there exists ε > 0 such
that if A = {f > ε} then µ(A) > 0. Then g = 1Aε is a non-negative simple function with
g 6 f and µ(g) = εµ(A) > 0, hence µ(f) > 0.
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We can extend this result to functions taking values in R as follows:

Theorem B.23. Suppose f, g are integrable functions on a measure space (E, E , µ) and
a, b ∈ R are constants. Then:

i)
∫
E

(af + bg)dµ = a

∫
E
fdµ+ b

∫
E
gdµ

ii) If f 6 g then
∫
E
fdµ 6

∫
E
gdµ

iii) If f = 0 almost everywhere then
∫
E
fdµ = 0.

Proof. Note that it follows immediately from the definition that µ(−f) = −µ(f). Suppose
then that a > 0. We have:

µ(af) = µ(af+)− µ(af−) = aµ(f+)− aµ(f−) = aµ(f).

We also note that (f + g)+ − (f + g)− = f + g = f+ + g+ − f− − g−. As a consequence
(f + g)+ + f− + g− = (f + g)− + f+ + g+, where both sides are sums of non-negative
measurable functions, hence:

µ((f + g)+) + µ(f−) + µ(g−) = µ((f + g)−) + µ(f+) + µ(g+)

and on rearranging:

µ(f + g) = µ((f + g)+)− µ((f + g)−) = µ(f+)− µ(f−) + µ(g+)− µ(g−) = µ(f) + µ(g).

Combining our observations gives i). Noting that f 6 g implies 0 6 g − f , we deduce
0 6 µ(g)− µ(f) and thus ii) holds. Finally, if f = 0 almost everywhere, then f+, f− = 0
almost everywhere thus µ(f) = 0.

Suppose (E, E , µ) is a measure space. If A ∈ E and f is integrable, then so is f1A.
Recall also that A inherits a measure space structure in a natural way (A, E|A, µ|A).
It is relatively straightforward to see that f |A is integrable, and that we can define
unambiguously ∫

A
fdµ :=

∫
E
f1Adµ =

∫
A
f |Adµ|A,

By our linearity result i) above, if A, B are disjoint measurable sets, then∫
A
fdµ+

∫
B
fdµ =

∫
A∪B

fdµ.

We also note that by ii) we have that if |f | 6 K almost everywhere and µ(E) <∞, then
f is integrable and ∣∣∣∣∫

E
fdµ

∣∣∣∣ 6 Kµ(E).

A useful consequence of the monotone convergence theorem connects the Lebesgue
integral to the Riemann integral.
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Theorem B.24. Let A = (a1, b1] × · · · × (an, bn] be a rectangle in Rn, and suppose
f : A → R is bounded. Then f is Riemann integrable4 if and only if f is continuous
almost everywhere. If so, f is integrable with respect to Lebesgue measure, µ, on A and
moreover

R

∫
A
f(x)dx =

∫
A
fdµ,

where R
∫

denotes the Riemann integral.

Proof. Since f is bounded, we may assume that 0 6 f 6 K for some K, without loss of
generality. We consider a sequence of partitions Pn of A such that Pn+1 is a refinement
of Pn and the mesh of Pn → 0. Correspondingly, we construct two sequences of functions,
f
n
, fn by

f
n

=
∑
π∈Pn

inf
π
f1π, fn =

∑
π∈Pn

sup
π
f1π

which satisfy
0 6 f

n
6 f

n+1
6 f 6 fn+1 6 fn 6 K.

Since each π ∈ Pn is a rectangle, it is certainly Lebesgue measurable and so f
n
, fn

are in fact simple functions. Moreover,∫
A
f
n
dµ = L(f,Pn),

∫
A
fndµ = U(f,Pn),

where U,L are the usual upper and lower sums associated to a partition. The function f
is Riemann integrable if and only if L(f,Pn), U(f,Pn) have a common limit as n→∞,
i.e:

U(f,Pn)→ R

∫
A
f(x)dx, L(f,Pn)→ R

∫
A
f(x)dx, as n→∞.

(f
n
)∞n=1 is a monotone increasing sequence, bounded above by f , so there exists a bounded

measurable function f 6 f such that f = limn→∞ fn = sup f
n
. Similarly, there exists a

bounded measurable function f > f > f such that f = limn→∞ fn = inf f
n
. By applying

monotone convergence to (f
n
)∞n=1 and (fn)∞n=1 we have:

lim
n→∞

∫
A
f
n
dµ =

∫
A
fdµ 6

∫
A
fdµ 6 lim

n→∞

∫
A
fndµ

We deduce that f is Riemann integrable if and only if∫
A
fdµ =

∫
A
fdµ = R

∫
A
f(x)dx.

This occurs if and only if f = f almost everywhere.
We define the set of boundary points of Pn to be:

Bn =
⋃
π∈Pn

∂π ∩A

4For a discussion of the Riemann integral in Rn see Spivak: “Calculus on maniolds”.
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Clearly µ(Bn) = 0, so the set B = ∪nBn also has measure zero. Suppose x 6∈ B, then
f(x) = f(x) if and only if f is continuous at x. We conclude that f is Riemann integrable
if and only if f is continuous almost everywhere. Since f 6 f 6 f in this case, we deduce
that f is almost everywhere equal to f and the result follows by Lemma B.18.

This result, that Riemann integrability is equivalent to almost-everywhere continuity,
is known as Lebesgue’s criterion for integrability. In practice, many of the explicit integrals
we encounter are Riemann integrals, and this gives us access to the standard toolkit to
compute them. Where there’s no possibility for ambiguity, we will often use the standard
notation

∫
dx or

∫
dnx, etc. to denote Lebesgue integration.

The next convergence result for integrals we shall require allows us to drop the
assumption that our sequence is monotone, but at the cost of a weakened result.

Lemma B.25 (Fatou’s Lemma). Suppose (fn)∞n=1 is a sequence of non-negative measur-
able functions on a measure space (E, E , µ). Then∫

E
lim inf
n→∞

fndµ 6 lim inf
n→∞

∫
E
fndµ

Proof. Let gn = infm>n fm. Then (gn)∞n=1 is an increasing sequence of non-negative
measurable functions, which tends to lim inf fn. Thus by monotone convergence∫

E
gndµ→

∫
E

lim inf
n→∞

fndµ.

On the other hand, for k > n we have:

gn 6 fk,

hence ∫
E
gndµ 6

∫
E
fkdµ for all k > n =⇒

∫
E
gndµ 6 inf

k>n

∫
E
fkdµ.

Now, as n→∞
inf
k>n

∫
E
fkdµ→ lim inf

n→∞

∫
E
fndµ,

and we’re done.

Exercise(∗). Construct a sequence (fn)∞n=1 of functions fn : [0, 1] → [0,∞)
satisfying the hypotheses of Fatou’s Lemma such that the inequality is strict.

The next convergence result we shall establish is an especially useful one, and in
particular will be invoked on many occasions during the course.

Theorem B.26 (The Dominated Convergence Theorem). Suppose that (E, E , µ) is a
measure space and that (fn)∞n=1 is a sequence of measurable functions such that:

i) There exists an integrable function g such that |fn| 6 g.

ii) fn(x)→ f(x) for all x.
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Then f is integrable and: ∫
E
fndµ→

∫
E
fdµ.

Proof. By Theorem B.15, f is measurable, and since |f | 6 g, we further have that f is
integrable. We have

0 6 g ± fn → g ± f,

so that lim inf g ± fn = g ± f . By Fatou and properties of lim inf, lim sup we have:∫
E
gdµ+

∫
E
fdµ =

∫
E

lim inf(g + fn)dµ 6 lim inf

∫
E

(g + fn)dµ =

∫
E
gdµ+ lim inf

∫
E
fndµ∫

E
gdµ−

∫
E
fdµ =

∫
E

lim inf(g − fn)dµ 6 lim inf

∫
E

(g − fn)dµ =

∫
E
gdµ− lim sup

∫
E
fndµ

Rearranging, we have:∫
E
fdµ 6 lim inf

∫
E
fndµ 6 lim sup

∫
E
fndµ 6

∫
E
fdµ,

hence
lim inf

∫
E
fndµ = lim sup

∫
E
fndµ =

∫
E
fdµ,

and we’re done.

We note that the hypotheses can be weakened slightly: suppose the hypotheses hold
almost everywhere, so that X = {x ∈ E : hypotheses fail} has measure zero, then by
applying the Dominated Convergence Theorem to fn1Xc , we can recover the same result.

Exercise B.9. Here µ is the Lebesgue measure on R.

a) Show that f : [0, 1]→ R given by f(x) = 1√
x
is Lebesgue integrable, and that∫

[0,1]
fdµ = lim

ε→0
R

∫ 1

ε

1√
x
dx.

b) Suppose f : [0, 1] → R is Riemann integrable on every interval [ε, 1], ε > 0
and moreover

R

∫ 1

ε
|f(x)| dx 6 C

for some C independent of ε. Show that f is Lebesgue integrable with∫
[0,1]

fdµ = lim
ε→0

R

∫ 1

ε
f(x)dx.

c) Suppose f : R → R is Riemann integrable on every interval [−R,R] and
moreover

R

∫ R

−R
|f(x)| dx 6 C
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for some C independent of R. Show that f is Lebesgue integrable with∫
R
fdµ = lim

R→∞
R

∫ R

−R
f(x)dx.

Give an example of a function such that

lim
R→∞

R

∫ R

−R
f(x)dx

exists, but f : R→ R is not Lebesgue integrable.

B.3.2 Product measures and Tonelli–Fubini

Given two measure spaces (E, E , µ) and (F,F , ν), we wish to construct a measure space
on E × F . We say a subset E × F is a rectangle if it is of the form A×B, with A ∈ E ,
B ∈ F . We denote by E � F the collection of finite disjoint unions of rectangles. Note
that if Ai ∈ E , Bi ∈ F then

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2)× (B1 ∩B2),

(A1 ×B1) ∪ (A2 ×B2) = (A1 ×B1 \B2) ∪ ((A1 ∪A2)× (B1 ∩B2)) ∪ (A2 ×B2 \B1)

where the right-hand side of the second line is a disjoint union of rectangles. Finally, since

(A1 ×B1)c = (E ×Bc
1) ∪ (Ac1 × F ),

we see that E � F is an algebra (hence a ring). We denote by E ⊗ F the σ-algebra
generated by E � F . We define a set function π : E � F → [0,∞] by

π

(
N⋃
i=1

(Ai ×Bi)

)
=

N∑
i=1

µ(Ai)ν(Bi),

where the rectangles Ai × Bi ∈ E × F , i = 1, . . . , N , are assumed to be disjoint. Now
suppose that (Aj ×Bj)∞j=1 is a sequence of disjoint rectangles such that

∞⋃
j=1

Aj ×Bj = A×B ∈ E × F .

We claim that

µ(A)µ(B) =

∞∑
j=1

µ(Aj)ν(Bj).

To see this, we note:

1A(x)1B(y) = 1A×B(x, y) =

∞∑
j=1

1Aj×Bj (x, y) =

∞∑
j=1

1Aj (x)1Bj (y)
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Integrating with respect to x, using Corollary B.20 we see

µ(A)1B(y) =
∞∑
j=1

1Bj (y)

∫
1Ajdµ =

∞∑
j=1

1Bj (y)µ(Aj)

Integrating again with respect to y, by the same argument we find:

µ(A)µ(B) =
∞∑
j=1

µ(Aj)ν(Bj).

Note that this immediately implies that π(C) is well defined for C ∈ E � F , independent
of how C is represented as a finite union of rectangles. We also note that E � F , π satisfy
the conditions of Carathéodory’s theorem, Theorem B.3, thus we can define an outer
measure π∗ on E × F , whose restriction to E ⊗ F gives a measure, which agrees with π
on E � F . We call this measure on E ⊗ F the product measure, µ× ν.

Note that the product measure µ× ν will not in general be unique. However, it will
be if (E, E , µ) and (F,F , ν) are σ-finite. We say (E, E , µ) is σ-finite if there exists a
countable collection {Ai}∞i=1 ⊂ A of disjoint measurable sets, with µ(Ai) <∞, such that
E = ∪Ai. If both (E, E , µ) and (F,F , ν) are σ-finite, then E � F satisfies the conditions
to enable us to apply Corollary B.9 to deduce that µ× ν is the unique measure on E ⊗F
such that

(µ× ν)(A×B) = µ(A)ν(B).

A brief note of caution before we consider integration on product spaces. If E,F
are topological spaces and E ,F are the Borel σ-algebras on their respective spaces, then
E ⊗ F contains the Borel σ-algebra of E × F with the product topology. However, the
two need not be equal in general. One important case where we do have equality is when
E,F are σ-compact metric spaces5. In particular this is the case when E = Rn, F = Rm.
By the uniqueness of Lebesgue measure, we have that the product measure restricted to
B(Rn)× B(Rm) = B(Rn × Rm) is the Lebesgue measure on Rn+m.

We now wish to consider integration of a measurable function defined on E × F . If
f : E × F → R, and x ∈ E, y ∈ F , we define the x−section, fx and y-section, fy as:

fx(y) = fy(x) = f(x, y).

We also introduce the x-section and y-section of a set A ⊂ E × F as:

Ax = {y ∈ F : (x, y) ∈ A}, Ay = {x ∈ F : (x, y) ∈ A}.

Note that Ax ⊂ F , Ay ⊂ E and we have

(1A)x = 1Ax , (1A)y = 1Ay ,

Lemma B.27. If A ∈ E ⊗ F , then Ax ∈ F for all x ∈ E, Ay ∈ E for all y ∈ F . More
generally, if f is E ⊗ F-measurable, then fx is F-measurable and fy is E-measurable.

5A topological space is σ-compact if it is the union of countably many compact sets.
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Proof. Let

C = {A ⊂ E × F : Ax ∈ F for all x ∈ E,Ay ∈ E for all y ∈ F}

Certainly every measurable rectangle is in C. We also have: ∞⋃
j=1

Aj


x

=
∞⋃
j=1

(Aj)x , (Ax)c = (Ac)x,

and similarly for Ay, so that C is a σ-algebra and thus E ⊗ F ⊂ C. For the final part we
note that for

(fx)−1(S) =
(
f−1(S)

)
x
, (fy)−1(S) =

(
f−1(S)

)y
,

whence the result follows.

Next we prove a special case of the Tonelli and Fubini theorems, where we restrict
attention to the characteristic functions of a measurable set/

Lemma B.28. Suppose µ, ν are finite, and let A ∈ E ⊗ F . Then

x 7→ ν(Ax), y 7→ µ(Ay)

are measurable functions, and

(µ× ν)(A) =

∫
E
ν(Ax)dµ(x) =

∫
E
µ(Ay)dν(y).

Proof. Let C consist of all sets A ∈ E ⊗ F for which the conclusion of the Lemma holds.
Clearly C contains all rectangles, and these form a π-system. If we can show that C is a
d-system, then we will be done by Lemma B.2.

Clearly E × F ∈ C. Suppose A,B ∈ C with B ⊂ A. Then(A \ B)x = Ax \ Bx, so6

ν((A \B)x) = ν(Ax)− ν(Bx), hence x 7→ ν((A \B)x) is measurable, and

(µ× ν)(A \B) = (µ× ν)(A)− (µ× ν)(B) =

∫
E
ν(Ax)dµ(x)−

∫
E
ν(Bx)dµ(x)

=

∫
E
ν((A \B)x)dµ(x)

A similar argument for (A \B)y shows A \B ∈ C.
Now suppose An ∈ C with An ⊂ An+1 and let A = ∪nAn. Then by countable

additivity we have (x 7→ ν((An)x))∞n=1 is a monotone increasing sequence of functions
with limit ν(Ax). By monotone convergence we have ν(Ax) is measurable, with∫

E
ν(Ax)dµ(x) = lim

n→∞

∫
E
ν((An)x)dµ(x) = lim

n→∞
(µ× ν)(An) = µ× ν(A),

where in the final inequality we use countable additivity for µ× ν. A similar argument
for µ(Ay) establishes that A ∈ C and we’re done. The extension to the case where µ, ν
are assumed σ-finite is straightforward, and left as an exercise.

6This is where the assumption that ν is finite is required
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Exercise(∗). Show that Lemma B.28 holds if µ, ν are only assumed to be
σ-finite.

We now prove two very closely related results, Tonelli’s Theorem and Fubini’s Theorem.
They are often referred to together as the Tonelli-Fubini theorem.

Theorem B.29 (Tonelli). Assume (E, E , µ), (F,F , ν) are σ-finite measure spaces. Sup-
pose f : E × F → [0,∞] is a non-negative measurable function. Then so are fx, fy, and
setting:

h(x) =

∫
F
fx(y)dν(y), g(y) =

∫
E
fy(x)dµ(x),

we have that h : E → [0,∞], g : F → [0,∞] are non-negative measurable functions on
their respective domains with:∫

E×F
fd(µ× ν) =

∫
E
hdµ =

∫
F
gdν. (B.2)

Proof. Take (fn)∞n=1 a monotone increasing sequence of non-negative simple functions
with fn → f . Letting

hn(x) =

∫
F

(fn)x(y)dν(y), gn(y) =

∫
E

(fn)y(x)dµ(x),

we have ∫
E×F

fnd(µ× ν) =

∫
E
hndµ =

∫
F
gndν, (B.3)

by the previous Lemma and the linearity of the integral. For each x ∈ E, we have
that ((fn)x)∞n=1 is a monotone increasing sequence with (fn)x → fx and similarly for
((fn)y)∞n=1. Thus, we have (hn)∞n=1 is an increasing sequence of functions with hn → h,
and similarly for gn by the monotone convergence theorem. Thus we can pass to the limit
in (B.3) by the monotone convergence theorem to obtain (B.2).

Theorem B.30 (Fubini). Assume (E, E , µ), (F,F , ν) are σ-finite measure spaces. Sup-
pose f : E×F → R is an integrable function. Then fx : F → R is integrable for µ-almost
every x ∈ E, as is fy : E → R for ν-almost every y. Thus

h(x) =

∫
F
fx(y)dν(y), g(y) =

∫
E
fy(x)dµ(x), (B.4)

are defined almost everywhere. We have that h : E → R, g : F → R are integrable
functions on their respective domains, and:∫

E×F
fd(µ× ν) =

∫
E
hdµ =

∫
F
gdν. (B.5)

Proof. Write f = f+ − f−, with f± non-negative and integrable. By Tonelli applied to
f± we find h±, g± such that∫

E×F
f±d(µ× ν) =

∫
E
h±dµ =

∫
F
g±dν.
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The first integral is finite by assumption, so we must have that h±, g± are finite almost
everywhere, and moreover are integrable. Thus h = h+ − h− and g = g+ − g− satisfy
(B.4) and we also deduce (B.5).

In the particular case where E = Rn, F = Rm equipped with their Borel sets and
Lebesgue measure, then we conclude that if f : Rn × Rm → R with∫

Rn+m
|f(x, y)| dxdy <∞

then ∫
Rn

(∫
Rm

f(x, y)dy

)
dx =

∫
Rm

(∫
Rn
f(x, y)dx

)
dy =

∫
Rn+m

f(z)dz

with obvious notation.
In combination, Tonelli–Fubini together with the Dominated Convergence Theorem

are very powerful, and typically suffice for the majority of convergence related results
that we require in standard analysis.

Exercise B.10. Let (fn)∞n=1 be a sequence of measurable functions fn : Rm → R
such that

∞∑
n=1

∫
Rm
|fn| dx <∞.

Show that:

f(x) =

∞∑
n=1

fn(x)

converges for a.e. x ∈ Rm, and∫
Rm

fdx =

∞∑
n=1

∫
Rm

fndx.

B.4 The Lp-spaces

Given a measure space (E, E , µ), we say that a measurable complex-valued7 function f
belongs to Lp(E,µ) for some p 6 1 <∞ if

‖f‖Lp :=

(∫
E
|f |p dµ

) 1
p

= (µ(|f |p))
1
p <∞.

We say that f ∈ L∞(E,µ) if f is bounded almost everywhere, that is there exists
0 6 K <∞ such that

µ({|f(x)| > K}) = 0.

If so, then we define

‖f‖L∞ := inf{K : µ({|f(x)| > K}) = 0}.

We can show:
7We can also assume f is real-valued
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Lemma B.31. For 1 6 p 6∞, the function f 7→ ‖f‖Lp defines a seminorm on L∞(E,µ).
That is:

i) ‖·‖Lp is non-negative:

‖f‖Lp > 0, for all f ∈ Lp(E,µ).

ii) ‖·‖Lp is homogeneous:

‖λf‖Lp = |λ| ‖f‖Lp , for all f ∈ Lp(E,µ), λ ∈ C.

iii) ‖·‖Lp satisfies the triangle inequality:

‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp , for all f, g ∈ Lp(E,µ).

Proof. See Exercise B.11.

We note that the crucial property that is missing and prevents Lp(E,µ) from being a
normed space is positivity, i.e. that ‖f‖Lp = 0 if and only if f = 0. By Theorem B.22, we
know that ‖f‖Lp = 0 if and only if f = 0 holds almost everywhere. In order to construct
a normed space, we must quotient out the elements of Lp(E,µ) which satisfy ‖f‖Lp = 0.
To do this, we introduce an equivalence relation according to:

f ∼ g ⇐⇒ f − g = 0 a.e.

It is straightforward to see that ∼ defines an equivalence relation on Lp(E,µ) and
moreover, by the reverse triangle inequality

f ∼ g =⇒ ‖f‖Lp = ‖g‖Lp .

Thus we can define a new space

Lp(E,µ) = Lp(E,µ)/ ∼,

and ‖·‖Lp descends to a norm on the quotient space by:

‖[f ]∼‖Lp := ‖f‖Lp .

In practice, we usually elide the distinction between the function f ∈ Lp(E,µ) and the
equivalence class of functions [f ]∼ ∈ Lp(E,µ), so it is standard to speak of a function f
belonging to Lp(E,µ). One should always remember, however, that in general statements
about elements of Lp(E,µ) hold at most almost everywhere. It is immediate that we have

Lemma B.32. The space Lp(E,µ), equipped with the norm ‖·‖Lp, is a normed vector
space.

In the case where E = Rn equipped with the σ-algebra of Lebesgue measurable sets
and the Lebesgue measure, we typically write Lp(Rn) instead of Lp(Rn, dx) to denote the
associated spaces.
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Exercise B.11. Let (E, E , µ) be a measure space. Show that ‖·‖Lp defines a
seminorm on Lp(E,µ) for 1 6 p 6∞:

a) First check that the homogeneity and non-negativity properties are satisfied.

b) Establish the triangle inequality for the special cases p = 1,∞.

c) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1
then:

ab 6
ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the
concavity of the logarithm

d) With8 p, q > 1 such that p−1 +q−1 = 1, show that if ‖f‖Lp = 1 and ‖g‖Lq = 1
then ∫

E
|fg| dµ 6 1

Deduce Hölder’s inequality:∫
E
|fg| dµ 6 ‖f‖Lp ‖g‖Lq , for all f ∈ Lp(E,µ), y ∈ Lq(E,µ).

e) Show that if f, g ∈ Lp(E,µ)

‖f + g‖pLp 6
∫
E
|f | |f + g|p−1 dµ+

∫
E
|g| |f + g|p−1 dµ

Apply Hölder’s inequality to deduce:

‖f + g‖pLp 6 (‖f‖Lp + ‖g‖Lp) ‖f + g‖p−1
Lp

and conclude
‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp .

This is Minkowski’s inequality.

Exercise B.12. a) Suppose that µ(E) <∞. Show that if f ∈ Lp(E,µ), then
f ∈ Lq(E,µ) for any 1 6 q < p, with

‖f‖Lq 6 µ(E)
p−q
qp ‖f‖Lp .

b) Suppose that f ∈ Lp0(E,µ) ∩ Lp1(E,µ) with p0 < p1 6 ∞. For 0 6 θ 6 1,
define pθ by

1

pθ
=

1− θ
p0

+
θ

p1
.

Show that f ∈ Lpθ(E,µ) with

‖f‖Lpθ 6 ‖f‖
1−θ
Lp0 ‖f‖

θ
Lp1 .

8We permit p, q to take the value ∞ with the convention ∞−1 = 0
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B.4.1 Completeness

The most important property of the Lp-spaces is that in fact, they are complete, i.e. they
are Banach spaces. To establish this, we first prove the following result.

Lemma B.33. Suppose (E, E , µ) is a measure space and 1 6 p <∞. Let (gn)∞n=1 be a
sequence with gn ∈ Lp(E,µ) such that

∞∑
n=1

‖gn‖Lp <∞

then there exists f ∈ Lp(E,µ) such that

∞∑
n=1

gn = f,

where the sum converges pointwise almost everywhere, and in Lp(E,µ).

Proof. Fix representative9 functions g̃n ∈ Lp(E,µ) corresponding to each gn ∈ Lp(E,µ).
Define hn, h : E → [0,∞] by

hn =
n∑
k=1

|g̃k| , h =

∞∑
k=1

|g̃k| .

Note that (hn)∞n=1 is a monotone increasing sequence of non-negative measurable functions,
converging pointwise to h, so by the monotone convergence theorem we have∫

E
hpdµ = lim

n→∞

∫
E
hpndµ.

By Minkowski’s inequality we see

‖hn‖Lp 6
n∑
k=1

‖gk‖Lp 6 K =:
∞∑
k=1

‖gk‖Lp .

It follows that h ∈ Lp(E,µ) with ‖h‖Lp 6 K, which in particular implies that h is finite
almost everywhere. At each point x such that h(x) < ∞, we have that

∑∞
k=1 g̃k(x)

converges absolutely, hence converges by the completeness of C. We deduce that
∑∞

k=1 g̃k
converges pointwise almost everywhere and we define:

f(x) =

{ ∑∞
k=1 g̃k(x) if the sum converges

0 otherwise

Now, we have that |f | 6 h, which implies ‖f‖Lp 6 ‖h‖Lp 6 K, and moreover:∣∣∣∣∣f −
n∑
k=1

g̃k

∣∣∣∣∣
p

6

(
|f |+

n∑
k=1

|g̃k|

)p
6 (2h)p.

9We typically don’t state this point explicitly, but on this occasion we will make the distinction
between Lp and Lp
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Since hp is integrable, by the Dominated Convergence Theorem (Thm B.26) we deduce
that ∫

E

∣∣∣∣∣f −
n∑
k=1

g̃k

∣∣∣∣∣
p

dµ→ 0, as n→∞,

which implies
∑∞

k=1 g̃k converges to f in Lp. Noting that a different choice of represen-
tatives g̃n will result in hn, h, f which differ from those defined above only on a set of
measure zero, since the union of countably many sets of measure zero also has measure
zero we are done.

With this result in hand, we are able to establish

Theorem B.34 (Riesz-Fischer Theorem). Suppose (E, E , µ) is a measure space and
1 6 p 6∞. Then Lp(E,µ) is complete.

Proof. To prove completeness, suppose (fn)∞n=1 is a Cauchy sequence with respect to the
Lp-norm. It suffices to show there exists f ∈ Lp(E,µ) with fn → f in Lp. We split the
cases p <∞ and p =∞.

1. First suppose 1 6 p <∞. Then by the Cauchy property we can find a subsequence
(fnk)∞k=1 such that ∥∥fnk+1

− fnk
∥∥
Lp
< 2−k.

Set gk = fnk+1
− fnk . By construction we have:

∞∑
k=1

‖gk‖Lp <
∞∑
k=1

2−k = 1,

so by Lemma B.33 there exists g ∈ Lp(E,µ) such that

∞∑
k=1

gk = g

with the sum converging pointwise a.e. and in Lp. Noting that fnj+1 = fn1 +
∑j

k=1 gk,
we deduce that (fnk)∞k=1 converges in Lp to some f ∈ Lp(E,µ). It follows by a standard
argument using the fact it is a Cauchy sequence that (fn)∞n=1 converges to f in Lp.

2. Now consider the case p =∞. Since (fn) is Cauchy in L∞(E,µ), for each m ∈ N there
exists n such that for any j,m > n we have

|fj(x)− fk(x)| < 1

m
for all x ∈ N c

j,k,m

where µ (Nj,k,m) = 0. Let
N =

⋃
j,k,m

Nj,k,m,
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then µ(N) = 0 and further we have that for any m ∈ N there exists n ∈ N such that
for j, k > n:

sup
x∈Nc

|fj(x)− fk(x)| < 1

m
, (B.6)

so by the completeness of C we have that for each x ∈ N c we have fj(x)→ f(x) for
some f(x) ∈ C We let f(x) = 0 for x ∈ N , so that f : E → C. Sending k → ∞ in
(B.6) we see that for j > n

sup
x∈Nc

|fj(x)− f(x)| < 1

m
,

whence we conclude that ‖f‖L∞ <∞ and fj → f in L∞.

Note that we have in fact proved the stronger result:

Corollary B.35. Suppose (fn)∞n=1 is a Cauchy sequence in Lp(E,µ) for 1 6 p 6 ∞.
Then there exists a subsequence (fnk)∞k=1 which converges pointwise almost everywhere.

B.4.2 Density

It is often useful, when discussing topological spaces to identify dense subsets consisting
of ‘nice’ or ‘concrete’ objects, for example elements of Q can be easily discussed, while
a general element of R is typically expressible only as some limit of elements of Q. In
the main body of the course we shall establish that C∞c (Rn) is dense in Lp(Rn). For a
general measure space, we don’t necessarily have a notion of continuity or smoothness,
but we can show

Theorem B.36. Let S be the set of all complex, measurable, simple functions on E such
that:

µ({x : s(x) 6= 0}) <∞.
Then S is dense in Lp(E,µ) for 1 6 p <∞.

Proof. Clearly S ⊂ Lp(E,µ). Now, suppose f > 0 with f ∈ Lp(E,µ) and let

fn(x) = min{2nb2−nf(x)c, n}.

We have fn ∈ S and 0 6 fn 6 f , so that fn ∈ Lp(E,µ). Further, we know that
fn(x)→ f(x) and moreover

|f − fn|p 6 |f |p ,
so by the Dominated convergence Theorem (Thm B.26) we deduce∫

E
|f − fn|p dµ→ 0

hence fn → f in Lp. A general (i.e. complex valued) element of Lp(E,µ) may be written
as:

f = f+
r − f−r + i(f+

i − f
−
i ),

where f±r , f
±
i are non-negative elements of Lp(E,µ), hence the result follows.
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