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Chapter 1

Lebesgue Integration Theory

1.1 Introduction

This course can be thought of as “putting the function into functional analysis”!. The
course Linear Analysis builds on earlier material in the Tripos to describe how a vector
space structure (the linear part) interacts with a topological structure (the analysis part).
This leads to a very beautiful abstract theory of Banach and Hilbert spaces, as well as
other more general topological vector spaces. In this course, we shall see how many of
these abstract results relate to more concrete spaces, in particular spaces of functions.

You are (hopefully) familiar from Part IB with the space C°([a,b]) of continuous
functions f : [a,b] — C, equipped with the norm:

[fllco = sup [f(z)].

a<lz<b

The completeness of this space follows from standard results concerning the uniform
convergence of sequences of uniformly continuous functions, hence this is a Banach space.
This space and its generalisations are important in many applications (for example in the
proof of the Picard-Lindel6f Theorem, and the Schauder Theory for elliptic PDE).

Other spaces of functions naturally arise in many settings. For example, when studying
Fourier series defined on [a, b], it is natural to consider the space of continuous functions
f :]a,b] — C equipped with the norm:

1= ( b If(:r)Ide>é-

This norm comes from an inner product in a natural way. This space is not complete:
we can construct a sequence of continuous functions f; such that (f;);en is Cauchy with
respect to the L? norm, but for which there is no continuous function f such that f; — f
in L2. One might hope to fix this by considering the space Z([a,b]) of Riemann integrable
functions, however, we encounter two issues. Firstly, there are non-zero f € Z%([a, b]) such
that || f]|;2 =0, so ||-|| ;2 ceases to be a norm. In order to avoid this we can work instead

!More ambitiously, one could attempt to “put the fun into putting the function into functional
analysis”, but we do not aim so high.
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with the space R([a,b]) = Z([a,b])/ ~ where we quotient by the equivalence relation
f~gif||f —gll;2 =0. The second issue is more serious: even working with the space
R([a,b]), we do not find completeness with respect to the L? norm.

Exercise(x). a) Find a sequence of continuous functions f; : [a,b] — C such
that (f;)ien is Cauchy with respect to the L? norm, but for which there is
no continuous function f : [a,b] — C such that f; — f in L.

b) Find a sequence f; € R([a,b]) such that (f;)en is Cauchy with respect to
the L? norm, but for which there is no f € R([a,b]) such that f; — f in L2

The solution to this problem is hopefully familiar to you. We should abandon the
Riemann integral and work instead with the Lebesgue integral. This brings in our second
pre-requisite course, Probability and Measure. The construction of the theory of measures
and the Lebesgue integral is considerably more involved than that of the Riemann integral,
however the pay-off is that the resulting theory of integration is much more powerful. In
this course, we shall briefly review the theory of Lebesgue integration that you should
have learned last term, before moving on to make use of measure theory, in combination
with functional analysis, to understand various function spaces with importance in many
branches of analysis.

1.2 Spaces of differentiable functions

Before reviewing integration, we briefly state some facts about the spaces of smooth
functions. Let Q C R™ be an open set. We denote by C*(Q) the space of all k-times
continuously differentiable complex valued functions on €2, and by

() = () CH®),
k=0

the set of smooth functions on €.

When dealing with partial derivatives of high orders, the notation can get rather messy.
To mitigate this, it’s convenient to introduce multi-indices. We define a multi-index a to
be an element of (Z()", i.e. a n—vector of non-negative integers a = (aq,...,a,). We
define |a| = a1 + ...+ oy, and

Oelf (0N (2N (2"
oz N 8331 8%2 8l‘n ’

in other words, we differentiate a; times with respect to z1, as times with respect to xo
and so on. When it’s unambiguous on which variables the derivative acts, we will also
use the more compact notation:

0
Di = 5
&xi
and o
(0%
pei=

.—%.
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For a vector z € R", we will also use the notation:
a® = (21)* (w2)"2 - - (2n) ™"
finally, we define
al = arlag! - ayl.

The spaces C*(Q2) and C°°(f) are vector spaces over C, where addition and scalar
multiplication are defined pointwise. If ¢1, 2 € C*(Q2) and A € C, we define the maps

¢1 + P2, Ap1 by
d1+ds : Q2—C, Ay Q—C, (11)
x = ¢1(x) + do(z), x = Ap1(x). '
Exercise(*). Show that with the definitions (1.1) the space C*(Q) is a vector
space over C, and that C'(2) is a vector subspace of C*(Q) provided k < I < oo.

Definition 1.1. If ¢ € C°(), the support of ¢ is the set:
supp¢ = {z € Q: ¢(z) # 0},

where the closure is understood to be relative® to Q. That is supp ¢ is the closure of the
set on which ¢ is not zero. We say that ¢ has compact support if supp ¢ is compact.

For 0 < k < 0o, we define C*() to be the subset of C*(2) consisting of functions
with compact support. C*(Q) is a vector subspace of C*(Q).

Theorem 1.1. There exists a function 1) € C2°(R™) such that

i) =0
ii) (0) # 0
iii) suppy C B1(0) :={x e R" : |z < 1}
iv) We have:
Y(x)dr = 1.
Rn
Proof. First, we note that the function:
0 t<0
1) =
x(t) { e t>0

is smooth, i.e. x € C®(R). Moreover, y > 0 and x(1) # 0. We define ¢y(z) =
X (1 -2 |m|2> Since the map « ~— |z|? is smooth, 1y € C(R™). We set:

Yo(x)
Y(z) = —~—r.
) = e d@)ds
It is easy to verify that v satisfies conditions i) — iv). O

2If Q C R™ is open, and A C Q, then the closure of A relative to € is the intersection of  with the
closure of A as a subset of R™. Note that the closure of A relative to {2 may not be closed as a subset of
R™.
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Corollary 1.2. For Q C R™ open, CZ°(Q2) is not the trivial subspace {0} C C>°(2).

Proof. Since € is open, there exists €, z such that the ball B.(z) = {y € R" : |y — z| < €}
is contained in Q. The function y — ¢ [e"(y — z)] is easily seen to belong to C2°(2). O

Exercise(x). Construct explicitly a function ¢ € CS°(R™) such that
Ho<uv<l

ii) supp¢ C Ba(0)

i) ¢(x) =1 for |z| < 1.

Suppose Q C €, where both are open subsets of R™. If ¢ € C*(Q), then we can
extend ¢ to a function on ' by setting ¢ = 0 on Q' \ . This extended function will
be smooth in €’ and we do not alter the support, so in this way we see that C¥(Q) is a
vector subspace of C*(Q).

The following result is useful:

Lemma 1.3. Suppose Q C R™ is open and K C Q is compact. Then d(K,00Q) > 0,
where:

d(K,00) = xe]i{Igl/fE@Q |z —yl.

Proof. K is compact, so K C Bp(0) for some R > 0. Let Qr = QN Br(0). Qg is
open and bounded, with K C Qg. It suffices to show that d(K,9Qr) > 0. Since Qg is
bounded, 0 is compact. Therefore the map:

f : KX@QR%RZ(),
($,y)’—> ‘x_yla

is a continuous map on a compact set, hence it achieves its minimum d at (zg, yp). Suppose
that d = 0, then x¢ = yo, but xop € K C Qg and yp € 0Qr C Q% a contradiction. Thus
d > 0 and we’re done. ]

Corollary 1.4. If ¢ € C*(Q), extend ¢ to R™ by ¢ = 0 on Q°. Define 1,0 by:

¢  Q—C,
y = ¢y — o). (1:2)

Then there exists € > 0 such that T,¢ € C*(Q) for all x € B.(0).

Proof. We have
SUpp Tz = supp ¢ + x

Since supp ¢ is compact, supp 7, ¢ is just a translate of a compact set, so is compact as a
subset of R™. We need to check that supp 7,¢ C Q. We have d(supp ¢, 9Q2) =6 > 0. Set
€ = 0/2. Then we have, by Lemma 1.3

supp ¢ + Bc(0) C

but if x € B(0), then supp 7,¢ C supp ¢ + B(0) and we’re done. O
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1.3 Review of integration

In this section we will briefly recall the main definitions and theorems of the theory
of measure and Lebesgue integration. We shall focus on the Lebesgue measure on R”.
Appendix B gives a much fuller account of the theory, and in particular contains proofs
of the results claimed below.

We start with the basic definition of a measure space.

Definition 1.2. Given a set E, a collection of subsets £ of E is called a o-algebra if:
i)beé&

ii) A€ & implies A={reFE:xg A} €&

ii) A, € € for n € N implies U, A, € E.

The pair (E,E) is called a measurable space and elements of £ are called measurable sets.
A measure on (E, &) is a function p: E — [0,00] such that:

i) u(@) =0
ii) If Ay € € for n € N are disjoint, then p(UnAyp) = >, n(A4y).
A triple (E, &, ) is called a measure space.

A simple example of a measure space is given by taking £ = 2F and p(A) = #A.
This is the counting measure. Given any collection A of subsets of E, we can define o(A),
the g-algebra generated by A to be the intersection of all g-algebras containing A. If £
is a topological space, the Borel algebra is the g-algebra generated by the open sets of F,
written B(E).

A particular case of interest is £ = R"™, on which we can define a o-algebra M, and
measure A with the following properties:

i) B(R") c M
ii) If Ais arectangle, i.e. A = (a1,b1] x -+ X (an, by], then A(A) = (b1 —ay) - (b —ay).

iii) A € M if and only for any € > 0 there exists an open set O and a closed set C' such
that C C A C O and
AMO\C) <e.

Since any open set in R” is the countable union of disjoint rectangles these conditions
determine M, X uniquely. We note that if A(A) < oo, then the set C in iii) above may
be assumed to be compact. Property iii) is sometimes referred to as Borel regularity. We
call M the g-algebra of Lebesgue measurable sets, and A is the Lebesgue measure. For
the Lebesgue measure, we often denote A\(A) by |A|, and p by dz.

Definition 1.3. A function f : E — G which maps between two measurable spaces (E,E),
(G, G) is measurable if f~Y(A) € € for all A € G. Special cases include:
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a) If (G,G) = (R, B(R)), we simply say f is a measurable function on (E,E).

b) If (G,G) = ([0,00],B([0,0¢])) we say f is a non-negative measurable function on
(E,E).

¢) If E,G are topological spaces with their Borel algebras then we say f is a Borel function
on E.

The class of measurable functions is closed under vector space operations, products
and limits.
A simple function is a function of the form

N
f= Z apl
k=1

for Ay € £ and ay constant (typically in [0,00], R or C). All simple functions are
measurable. For a non-negative simple function we define the integral

N
p(f) —/ fp =" apu(Ay),
E k=1
where 0 - oo = 0 by convention. For a non-negative measurable function we define
u(f) = /E fdp == sup {u(g) : g simple and 0 < g < f}.

A measurable function is integrable if pu(|f]) < oo, in which case we can write f = f*— f~
with f* non-negative and u(f*) < co. Then

u(f) = /E fdu = u(fH) — u(f).

The integral satisfies all the usual basic properties (linearity, additivity etc.), and agrees
with the Riemann integral when both are defined. We can also state two important
theorems for interchanging limits and integrals.

Theorem 1.5 (Monotone convergence). Let (f,)22; be an increasing sequence of non-
negative measurable functions on a measure space (E,E, u) which converge to f. Then

lm [ fady = / fd

Theorem 1.6 (Dominated convergence). Let (f,)22; be a sequence of measurable func-
tions on a measure space (E,E, 1) such that

i) fn — [ pointwise ae.

i) |fnl < g ae for some integrable g.
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Then:
lim | fody = / fu

Associated to each measure space (E, &, i) are scale of Banach spaces.

Definition 1.4. For 1 < p < oo, and f : E — C measurable, we define:

1l = ( / If!pdu>p-

I 1l oo :essEsup|f] =inf{C: |f] < C ae}.

while for p = oo we set

The space LP(E, ) is then defined to be
LP(E,p) ={f : E — C measurable : | f||;, < oo}/ ~

where we quotient by the equivalence relation f ~ g if f = g ae.
If E is a topological space and B(E) C &, we define LT (E, i) to consist of measurable

loc.

functions (modulo ~) such that flg € LP(E, ) for all compact K.
When our measure space is (R", M, \) we will often write LP(R"™) := LP(R"™, \).

Theorem 1.7. The space LP(E, ) equipped with the norm ||-||;, is a Banach space for
I<p<oo

It is useful also to note that the set S of complex valued simple functions on E such
that

n({a s s(z) # 0}) < oo

is dense in LP(E, u) for 1 < p < oo.

Exercise 1.1. Suppose f,g: F — C are measurable functions on some measure
space (E,E, ). Show that:

a) [fgllr < 1f 1l lgll e where 1< p, g, < oo satisfy p~ + ¢~ =77

[You may wish to first establish the special case r = 1./

b) I1f + gllpe < I fllze + lgllLe for 1< p < oo

Exercise 1.2. a) Suppose that pu(F) < oo. Show that if f € LP(E, ), then
f € LYE,p) for any 1 < g < p, with

[fllza < p(E) @ [|f]l Lo -
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b) Suppose that f € LPO(E, u) N LPY(E, p) with pp < p1 < 0o. For 0 < 6 < 1,

define py by
1 1-6 6

Po Po b1
Show that f € LP?(E, u) with

1F 1l oo < LA zm0 A1 %0

c¢) Show that for p; # pa we have LP1(R"™) ¢ LP2(R™). For which p;,ps do we
have LP* (R™) C L2 (R™)?

loc. loc.

Exercise 1.3. Let R be the set of rectangles of the form (a1, b1] x - - - X (ap, by,
with a;,b; € Q, and let Sg be the set of functions of the form

N
= (+iB)g,
k=1

for Ry € Rg and ag, B € Q. For 1 < p < oo show that Sgp is dense in LP(R")
and deduce that LP(R™) is separable. Show that L>°(R™) is not separable.
[Hint: for the last part exhibit an uncountable subset X C L*°(R™) such that

1f = gll e zn) > 1 for any f.g € X, f # ] .

1.4 Convolution and mollification

In this section, we are going to establish some results concerning mollification of functions
in LP(R™). The final result will be to establish the density of C2°(R") in LP(R"™) for
1 < p < oco. We first establish an important fact about the spaces LP(R™): namely that
the translation operator is continuous on these spaces. More concretely, for any z € R”
we set 7, f(x) = f(x — z). We then show:

Lemma 1.8. Suppose p € [1,00) and g € LP(R"). Let {2;}32; C R" be a sequence of
points such that z; — 0 as j — co. Then:

72,9 = gHLP(R") — 0.

Proof. 1. First, suppose g = 1g, where R = (a1,b1] X (ag,b2] X ... X (an,by] is a
rectangle, with side-lengths I,,, = b,, — a,, for m = 1,...,n. Now, since when a
box is translated by a vector z; each side is translated by a distance of at most |z,
and has area at most I"-.  where I,,4; is the longest side-length we can crudely
estimate

1
HTZJg gHLP R7) 2n|z]|Ir7rllax
Note that this estimate requires p < oo: it does not hold for p = co. We conclude
that:

]1320 |79 - gHLP(R") = 0.
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2. Now suppose g = 1 4, where A is a measurable set of finite measure. Fix € > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K C A and an
open U D A such that |U \ K| < €P. Since U is open, we can write U as a union of

open rectangles:
U= |J R

acd
Since K is compact, it is covered by a finite subset of these:

N
Kc|JRi =B
i=1
Now, note that K C B C U, so the symmetric difference AAB C U \ K. Thus?
114 = 15| Logny = |AAB|Y? < ¢. By the paragraph 1 above, we know that there
exists J such that for all j > J we have:
715 - ]IBHLP(R") <€
Therefore:
[ ]]'AHLP(R") =04 =7 lp + 75— 1p + 15 - ]IAHLP(R")
<74 - TZJ']IBHLP(R") + |7 1n — ]IBHLP(R") 15 = Lall ooy
=214 - ]lB”LP(R") + Hsz]lB - ]lBHLp(Rn)
< 3€

for all j > J. Thus
Jim 7,9 = gl 1o ny = O-
3. Now suppose ¢ is a simple function, g = Zf\i 19il4,, where g; € C and A; are
measurable sets of finite measure. Then we have:

N

HTng - gHLp(Rn) < Z |gl| HTZj]]‘Ai — ﬂAi
=1

Lp(R)

S0 as j — oo we have:

Jggo 729 = gHLP(R") =0

4. Now suppose that g € LP(R™). Fix € > 0. Recall that there exists a simple function
g=>1" gl with g; € C, |A;| < oo such that ||g — §||Lp(Rn) < €. By the previous

part, we can find J such that Hrzjg . gHLp( < e forall j = J. Now:

R™)
72,9 — gHLP(R”) =9 — 720+ -G+ 5 - gHLP(R")
< |9 - TngHLP(]R”) + |75 - gHLP(]R") +119 = 9ll o)
=2lg = 9l ey + 72,9 — QHLP(Rn)
< Je

3This is another point at which p # oo is crucial.
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Thus, we conclude that
jlggo |79 — gHLP(R”) =0

and we're done. O

If f, g are functions mapping R” to C, then we define the convolution of f and g to
be:

(fxg)(z) = - f(y)g(x — y)dy,

provided the integral exists. This will happen if (for example) f € L'(R") and g €
L>*(R,).

Lemma 1.9. Suppose f,g,h € C°(R™). Then:

frxg=g*f, frx(gxh)=(fxg)*h

and

/n(f*g)(x)dx = f(x)dfﬂ/ng(x)d:z.

R

Proof. With the change of variables y = x — z, we have?

(o)) = [ 1=y = [ f@=20== g5 )

Next, we calculate:

[f % (gx b)) (z) =

(y)g(w — y)dy> h(z — w)dw
)

= [(fxg) x| (z

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f,g,h € C2°(R™) to invoke Fubini’s theorem (Theorem B.30)

41f you're worried about a missing minus sign from the change of variables when n is odd, observe:

/: k(z)dz = [:)o k(-y)d(—y) = — /O;OO k(—y)dy = /: k(—y)dy.
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when passing from the second to third line. Finally, we calculate:

fyg(x — y)dy) dx

(
~ [ ([ rwata - spas) ay
(

) f(y)/ng(Z)dZ) dy
f@ids [ g2y

where again, the fact that f,g € C°(R"™) allows us to invoke Fubini. O]

The assumption that the functions are smooth and compactly supported is certainly
overkill in this theorem. It would be enough, for example, to consider functions in C?(R"),
or even weaker spaces, provided we can justify the application of Fubini’s theorem.

Exercise(x). Suppose that f,g,h € C°(R™).

a) Show that for any multi-index «, we have that D*f € LP(R™) for 1 < p < oo,
i.e. that

||Daf“Lp(Rn) = (/]R" |D* f(z)|P d:v) ' < .

b) Define
F : R"xR"
(z,y) = f(2)g(y — ).
Show that F € L}(R™ x R").
¢) For each x € R", set

G, : R"xR"
(y,2) = f(y)g(2)h(z —y — 2).

Show that G, € L*(R™ x R™).

1.4.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f % ¢ is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 1.10. Suppose f € L} . (R™) and g € C*(R™) for some k > 0. Then f*g €
Ck(R™) and
D(f +g) = fx D%,

for any multiindex with |a| < k.
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Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof. We introduce the difference quotient

fz + hei) — [(x)
- :

Lemma 1.11. a) Suppose f € CO(R") and {2;}2; C R" is a sequence with z; — 0 as
1 — 00. Then for any x € R":

Alf(z) =

i) 7, f(T) — f(z) as j — oo.
it) |72, f(x)] < (supgn | f]) Lp,(0) (@), for some R >0 and all j.

b) Suppose f € CL(R™) and {h;}32, C R s a sequence with hj — 0 as j — oco. Then for
any x € R":
i) A?]f(x) — D;f(x) as j — oo.
ii) ‘A?’f(x)’ < (supgn [Dif|) 1,0y (), for some R >0 and all j.

Proof. a) i) Recall 7, f(x) = f(x — z;). Clearly since z; — 0, f(z — z;) = f(z) as
j — oo by the continuity of f.

ii) Since z; — 0, there exists some p > 0 such that z; € B,(0) for all j. Now

supp 7; f = supp f + z; C supp f + B,(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp 7., f C Br(0). Thus 7, f = 7, fl, ) and we estimate:

|72, (@)] = |72, f (@) L) (@) < SUp | £ L5 0) (7).
b) Suppose f € CL(R™) and {h;}321 C R is a sequence with hj — 0 as j — oo. Then for
any x € R™:

i) From the definition of the difference quotient and of the partial derivative:

flx + hjei) — f(2)
h

ii) Since hj — 0, there is some p > 0 such that |h;| < p for all j. We have:

Al f(z) =

— D, f(x), as j — 00.

h.
supp A, f C supp 7_p,e, f Usupp f = (supp f — hje;) Usupp f
C (suppf + B,;(O)) Usupp f
- BR(O)

for some R > 0 since the union of two bounded sets is bounded. Thus A?j f=

A?j J1p,0)- We also observe that by the mean value theorem, for any h € R,
there exists s € R with |s| < |h| such that

f(x+ he;) — f(x)
h

= Dif(z + se;)
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thus
A f(@)| < sup|Dif].
]Rn

Putting these two facts together, we readily find:
h; h;
AV T(@)] = | A (@) L0 () < 5p D1 L0 (x).
O

Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 1.10. 1. First we establish the result for ¥ = 0. We need to show
that if f € L}, (R™") and g € C2(R") then f x g is continuous. To show this, it
suffices to show that f x g(z — 2z;) = f* g(x) for any x € R" and any sequence
{#j}72, with z; — 0. Now, note that

frg(x—z)= - fW)g(z =z —y)dy = f( )72;9(x — y)dy.

Now, sending 7 — 0o, we are done, so long as we can Justlfy interchanging the limit
and the integral. Note that for any fixed x and all j:

| F(y)7, 9( —y)\ésﬂé}rp!g!ﬂsR(oﬂx—y)lf(y)\

for some R by the previous Lemma. Since f € L}  (R") the right hand side is
integrable, and so by the dominated convergence theorem:

lim f*g(x—z) = /R lim f(y)7.,9(z dy—/ f(y y)dy = fxg(x).

j—ro0 n j—00

2. Now suppose that f € L} (R™) and g € C}(R"). Clearly f* D;g is continuous by
the previous argument. To show f x g € C'(R"), it suffices to show that for any
z € R™ and any sequence {h;}72; C R with h; — 0 we have:

lim Al f  g(2) = f » Digl(a).

Note that
Al fxgla) = f*g(ﬁhjzi)_f*g(x)
:/nf(y> (9<$+hj€i —}?j)—g(w—y)>dy
f( VAN g(z — y)dy

so that again we are done prov1ded we can send j — oo and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim A" 4 g(z) = /Rhmf() Sg(a — y)dy = f * Digla).

j—ro0 n j—00
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3. The case where g € C¥(R™) with k > 1 now follows by a simple induction. O

Exercise(*). Show that f x g € C*(R") under the hypotheses:
a) fe LY (R"), g€ C*R™) with supgn |D%| < oo for all |a| < k.
b) f € L'(R™) with supp f compact, g € C*(R™).
We have shown that when two functions are convolved, loosely speaking the resulting

function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.

Lemma 1.12. Suppose f € LI _(R™) and g € CF*(R™) for some k > 0. Then?

loc.
supp (f x g) C supp f + suppg.
Proof. Recall:

frg(z)= . f(W)g(z —y)dy.

Clearly, if f * g(z) # 0, then there must exist y € R™ such that y € supp f and
x—y=z€suppyg. Thus r = y + z with y € supp f and z € suppg. This tells us that:

{x e R": fxg(x) # 0} Csupp f + suppg.
Since supp f is closed and supp g is compact, we know that supp f + supp g is closed, thus

supp fxg ={z € R": fxg(z) # 0} Csupp f +supp g,
which is the result we require. O
Exercise(x). a) Prove the following identities for r,s > 0 and z € R™:

i) By(x) 4+ Bs(0) = Brys(z)
ii) By(z)+ Bs(0) = By1s(x)
iii) By(z) + Bs(0) = By1s(x)

Suppose that A, B C R™. Show that:

b) If one of A or B is open, then so is A + B.

d

)

¢) If A and B are both bounded, then so is A + B.
) If A is closed and B is compact, then A + B is closed.
)

e) If A and B are both compact, then so is A + B.

Exercise(*). Show that if f € C¥(R") and g € CL(R") then f x g € C*(R").
Conclude that C2°(R"™) is closed under convolution.

5Strictly speaking, we haven’t defined the support of a measurable function. We can do this in several
ways, but the simplest is to define:

supp f = m{E CR": Eis closed, and f =0 a.e. on E}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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1.4.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 1.13. Suppose ¢ € C°(R™) satisfies:
i) >0

i) supp ¢ C B1(0)

i) [pn ¢(x)dz =1

Such a ¢ exists by Theorem 1.1. Define:

o) = 50 (1)
Then:
a) If f € CE(R™), then ¢ * f is smooth, and
D (pex f) = Df as € — 0,
uniformly on R™ for any multi-index with |a| < k.
b) If g € LP(R™) with 1 < p < 00, then ¢ * g is smooth, and

bexg— g in LP(R™) as € — 0.

¢) Suppose f € C*(R™) with supg. |D* f| < oo for |a| < k, and suppose g € L*(R™) with
920, [png(x)dz =1. Set ge(y) = e "g (e 'y). Then f*g. € C*R"), and
D% (f xgc) (x) = D*f(x) as € — 0,
for any x € R™ and any multi-index with |a| < k.

Proof. a) Note that the rescaling of ¢ to produce ¢, is such that a change of variables
gives:

gbe(y)dy =1
RTL

By Theorem 1.10, we have that D*(¢. x f) = ¢e * D f for any |a| < k. Using these
two facts, we calculate:

DY(¢e x f)(z) — D f(x) = - be(y)D* f(x — y)dy — D f () - be(y)dy
= Lo de(y) [Df(x —y) — D f(x)] dy

- / 6() [D°f(x — €2) — D*f(x)] d=
B1(0)
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where in the last line we made the substitution y = €z, and noted that ¢ has support in
B1(0), so we can restrict the range of integration. Now, since ¢ > 0, we can estimate:

[D*(¢e f)(x) = D*f(2)| < / ¢(2) |D*f(x — e2) = D*f(x)| dz

B1(0)
< sup [Df(x—ez) — Df()] x / o(2)dz
z€B1(0) B1(0)

= sup |Df(z —ez) — D"f(z)|
z€B1(0)

since fR” ¢ = 1. Now, since D f is continuous and of compact support, it is uniformly
continuous on R™. Fix € > 0. There exists § such that for any v,w € R"™ with
|z —y| < &, we have

ID° f(v) - DOf(w)] < &
For any = € R", taking ¢ < 0, and v = z — ez, w = x with z € B;(0) we have
|lv —w| < 4, sor
[D*f(x —ez) = Df(z)| <€

holds for any = € R", z € B1(0). We have therefore shown that for any é > 0, there
exists & such that for any € < d we have:

sup |[D%(¢e * f)(z) — D f(z)| <€
zeR"

This is the statement of uniform convergence on R".

b) Noting that LP(R™) C L} (R™) by an application of Hélder’s inequality (see Exercise
1.2), Theorem 1.10 immediately establishes the smoothness of ¢. x g. To establish
convergence as € — (0, we shall require certain measure theoretic results. First
we require Minkowski’s Integral Identity (see Exercise 1.4). This states® that for
F:R"™ x R" — C a measurable function, we have the estimate:

L ") < [ [ reara] o

Now, following the calculation in the previous proof, we readily have that:

/n F(z,y)dx

(¢ * 9)(x) — g(2)] < - ¢(2) lg(x — ez) —g(z)| dz

SThere is more general statement for a map F : X x Y — C, which is measurable with respect to the
product measure p X v where (X, u) and (Y, v) are measure spaces.
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Integrating and applying Minkowski’s integral inequality, we have:

6020~ gl = | [ 10 x)@) - st aa]
b 1
d:v]

Il %

< [ | L oeriste - - g ] a:

= [ 0 17eeg = oy (1.3)

¢(2)lg(x — €2) — g(x)| dz
R™

To establish our result it will suffice to set € = €;, where {¢;}32; C R is any sequence

with €; — 0, and show that Hgbgj *g— gHLP(R") — 0. Note that since HTejngLp(Rn) =

||gHLP(Rn) we have:
(=) ||7e129 = 9l oy < 26(2) 91l oy

so the integrand is dominated uniformly in j by an integrable function. Now by
Lemma 1.8, as y varies, 7, : LP(R") — LP(R"™) is a continuous family of bounded
linear operators. This means that for each z € R"™ we have:

=0.

lim H’TE
Jj—00

79~ gHLP(]R")

Thus we can apply the Dominated Convergence Theorem (Theorem B.26) to the
integral on the right hand side of 1.3, and conclude that

lim |6, 9 = 91| 1o ny = O-

Again, by Theorem 1.10, we have that DY(f x g.) = D*f * g. for any |a| < k. By a
change of variables, we calculate:

D2(f 9@ = |
Now, clearly for each fixed x € R™:

9(2) D f(x — ez) = g(2) D f(x)

for z € R™ as € — 0. Furthermore,

9(2) D f(z — e2)| < g(2) sup [ D f]

n

ge(y) D f( — y)dy = / 9(2)D° f(z — e2)dz

n

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

D(f % g0)(x) = D*f(x) / g(2)dz = D* f(z)

n

as € — 0.
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The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 1.14. Suppose Q C R" is open, and K C Q is compact. Then there exists
X € C°(Q) such that x =1 in a neighbourhood of K.

Proof. By Lemma 1.3, there exists € > 0 such that d(K,02) > 4e. We define K, =
K + By:(0). As the sum of two compact sets, K, is compact. Moreover, K. C €. Suppose
¢ is as in Theorem 1.13. Consider:

X = e x L.
We have by Theorem 1.10 that x € C*°(R") and from Lemma 1.12 we deduce:

supp x = K, + supp ¢ C K + Ba.(0) + B.(0) = K + B3.(0) C Q.

Thus x € C°(2). Now, suppose x € K + B¢(0). Then = + B(0) C K, and so:
x(@) = | o)l (@ —y)dy

— / be) L. (z — y)dy
<(0)

:/) Pe(y)dy = 1.
<(0)
Thus x(z) =1 for z € K + B¢(0), which is a neighbourhood of K. O

The following exercise establishes results required for the proof of Theorem 1.13.

Exercise 1.4. a) Suppose 1 < p < oo and let ¢ satisfy p~! +¢~' = 1. Show
that for a measurable function f : R" — C:

115 =suw{ [ 17@gte]de s g < L@, ol < 1

b) Now suppose p < oo and assume F' : R™ x R” — C is integrable. Set
G(y) = Jgn F(z,y)dx. Show that if ||g|;, <1 then

[ ictawiar< [ | [ 1Fesral e

Deduce Minkowski’s integral inequality

[/ /nF(x,y)dxpdy]és/n [/H‘F(l‘ay)!pdy];dx.

Exercise 1.5. Let I = (0,1) and 1 < p < co. Exhibit a sequence (f;)52; with
fj € LP(I) such that f; — 0 in LP(I), but fj(x) does not converge for any x.
Does such a sequence exist if p = o0?
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1.5 Lebesgue differentiation theorem

The fundamental theorem of calculus is a fundamental result in the theory of Riemann
integration. It comes in two (related) flavours.

Theorem 1.15 (Fundamental Theorem of Calculus). Suppose that f : [a,b] — R is
continuous, and define the function F : [a,b] — R by:

Flz) = / " e,

Then F is differentiable on (a,b), and:

From this one can deduce the alternative form of the Fundamental Theorem of
Calculus, relating the integral of a function to its anti-derivative.

Corollary 1.16. Suppose that f : [a,b] — R is continuous and that F : [a,b] — R is
continuous on [a,b], differentiable on (a,b) and satisfies F'(x) = f(x) for all z € (a,b).
Then:

b
/ F(t)dt = F(b) — Fla).

We seek to generalise Theorem 1.15 in the setting of the Lebesgue integral. First, we
note that the result implies

F — F(x — I el
f(o) = tim TN —F@ ) /
r—0 2r r—0 21 -
1
= lim —— ft)dt
r=0 | By (2)| J B, (2)
where we have used that the ball of radius r about x is simply B,(z) = (z —r,x 4+ r) in
one dimension. Rearranging, we can further conclude

1
im———— [ (f(t) — f(2))dt =0.
r—=0 | B ()] J B, (2)
This statement is meaningful in dimensions higher that one. In fact we shall prove
something slightly stronger

Theorem 1.17 (Lebesgue differentiation theorem). Let f : R™ — C be integrable. Then
for almost every x € R™ we have

1
lim ——— [f(y) = f(z)[ dy = 0. (1.4)
r=0 | By ()| /B, (2)

Note that it suffices for f to be defined on an open set 2 C R", and we obtain the
same differentiability result at almost every x € () by considering flg. We say that a
point x such that (1.4) holds is a Lebesgue point of f. In order to establish this result, we
first introduce a related quantity for which we are able to prove an estimate.
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Definition 1.5. Given an integrable function f : R™ — C, the Hardy-Littlewood Mazimal
function M f is defined to be

1
Mf(z) =sup ——F—
r>0 | Br(®)] /B, ()
The Hardy-Littlewood Maximal function and its generalisations are of use in many
contexts in mathematics, in particular in harmonic anaysis. For our purposes, a key result
is that it satisfies a weak L'-bound.

1f(y)| dy.

Lemma 1.18 (Weak L'-bound for Mf). Suppose f € L'(R") forn > 1. Then Mf is
measurable, finite almost everywhere, and there exists a constant C,, depending only on n
such that:

Cn
{2 : Mf(z) > A < == £l (1.5)
for all A > 0.

Proof. Let Ay = {x : M f(z) > A}. Then for each x € A) there exists a radius r, such

that
1

|Br, ()] /5, @

We claim A) is open, which implies M f is measurable. To see this, suppose x € Ay with
corresponding 7, and let (z,,,)>°_; be a sequence with z,, — x and x,,, € Ax. Then by
the dominated convergence theorem we have

|f(y)ldy > A (1.6)

1 1
TR fW)ldy = |f(y)] dy,
|Br, (%)] JB,, (@m) | By, (z)| JB,, )
however, by assumption
1 1
[f(y)ldy < A |f(y)ldy > A,

|Br, ()] JB,, (2m) |Br, ()] JB,, ()

a contradiction.

Fix K C Ay a compact set. Since K is covered by Uyea, By, (), we can pick a finite
subcover of K, say K C UfilBl-, where B; = B, (x) for some z. By Wiener’s covering
Lemma (see Exercise 1.8) there is a disjoint subcollection B;,, ..., B;, such that

ik
n
K| < i| <37 |By|.
j=1

Now, each B;; satisfies (1.6), so we have

3" 3"
K| < Z/ Dy < 517l

Where in the final inequality we use that the B;; are disjoint. Since this holds for all
compact K C Ay, (1.5) follows. Finally, note that {M f = oo} C {Mf > A}, which
implies [{M f = oo}| < C/X for all A, thus [{M f = oco}| = 0. O
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With this result in hand, we are now ready to establish the Lebesgue differentiation
theorem.

Proof of Theorem 1.17. For each A > 0 define:

Ay=<z eR": limsup ———
{ r—0 | Br(2)] By (x)

[f(y) — f(z)|dy > 2>\}

If we can show that |Ay| = 0 for all A, then we will be done, as the set of x € R™ which
are not Lebesgue points for f is precisely U2 ;A 1.
Fix € > 0. We can find g € C2°(R") such that ||f — g||;1 < e. We estimate:

1 1
- _ dy < ———
Bo@)] Sy W IO S B

1
+ 1B, (z)| /Br(x) lg(y) — g(z)|dy + |g(z) — f(z)]

1f(y) —9(y)| dy

We can bound the first term by

1
T fly) —gly)| dy < sup
Bo@)] Sy @ 9N S SUDBTS

= M[f —g](z)

1f(y) — 9(y)| dy

Now, since g is continuous, we have

lim sup

e g(y) —g(z)|dy =0,
R TN ST BT(x)I (y) — g(=)]

hence

msup —— [ [f(y) — f(@)|dy < M[f - g)() + | (2) — g(a)].
r—0 ’B’r(x)| By (x)

Now, if z € A), then we must either have M[f — g](x) > X or |f(z) — g(x)| > A. By
Lemma 1.18 we know

C, Che

o s MIF —gl() > A} < S0~ gl < 2

9

and by Tchebychev’s inequality we know

(s 1f(@) — ga)] > A} < 129l

<
A A

we conclude that

1+C,
Ayl < €.
| Ay 3
Since € was arbitrary, we conclude |A)| = 0, and we're done. O

Exercise 1.6. Suppose 1 < p < 0.
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a) Suppose f € LP(R™). Show that

1A%

o /@) > A} < 25

This is known as Tchebychev’s inequality, the p = 1 case is Markov’s inequal-
1ty.

b) We say that a measurable f : R” — C is in weak-LP(R"™), written f €
LP(R™) if there exists a constant C' such that

o s @) > A< S

Show that LP(R™) C LP*(R"™), and that the inclusion is proper.

Exercise 1.7. Suppose that f € L"(R") for some 1 < r < oo. Show that

[f [l oo = limp—soo 1] £o-
[Hint: you may find the estimates in Ezercises 1.2b), 1.6 a) useful.|

Exercise 1.8. a) Let Bj,...,By be a finite collection of open balls in R™.
Show that there exists a subcollection B;,, ..., B;, of disjoint balls such that

N k
UBicJBB)),
i=1 j=1

where 3B is the ball with the same centre as B but three times the radius.
Deduce
N k
UBi|<3"> |By].
j=1

i=1
b) (*) Suppose {B; : j € J} is an arbitrary collection of balls in R™ such
that each ball has radius at most R. Show that there exists a countable
subcollection {B; : j € J'}, J' C J of disjoint balls such that

UBiclJ6GB).

1€ icJ’

These are Wiener and Vitali’s covering Lemmas, respectively.

Exercise 1.9. Suppose f : R — C is integrable and let F(z) = [*__ f(t)dt.
Show that F is differentiable with F'(z) = f(x) at each Lebesgue point x € R.
Deduce that F' is differentiable almost everywhere.

Exercise 1.10. Suppose ¢ € L®(R") satisfies ¢ > 0, supp ¢ C B1(0), and
Jon @dz = 1. Set ¢c(x) = e "¢(e1x). Show that if f € LY(R"), and z is a
Lebesgue point of f,

dex f(z) = f(z), as € — 0.



1.6 Littlewood’s principles: Egorov’s Theorem and Lusin’s Theorem 23

1.6 Littlewood’s principles: Egorov’s Theorem and Lusin’s Theorem

In his 1944 “Lectures on the Theory of Functions”, J. E. Littlewood stated three principles:

“Every (measurable) set is nearly a finite sum of intervals; every function
(of class LP) is nearly continuous; every convergent sequence of functions is
nearly uniformly convergent.”

The first of these results may be stated more precisely in our language as follows:

Lemma 1.19. Suppose |A| < co. Then for any € > 0 there exists a set B, which is a
finite union of rectangles, such that

|AAB| < e.

This follows straightforwardly from the basic properties of Lebesgue measurable sets.
The third of Littlewood’s principles follows from

Theorem 1.20 (Egorov’s Theorem). Suppose (fr);2, is a sequence of functions defined
on a set E C R™ with |E| < 0o, and suppose that fi, — f almost everywhere on E. Then
given € > 0 we can find a closed set Ac C E such that |E — A¢| < € and f — f uniformly
on A..

Proof. By discarding a set of measure zero if necessary, we can assume without loss of
generality that fy(z) — f(x) for all z € E. For each n,k € N let

1
Ep = {weE: |fi(x) — f(z)| < —, forall j > k}
n
Fixing n, we note that E}! C Ej' ; and that U2 | E})' = E. By countable additivity, we

have |E}'| is an increasing sequence, with |E}'| — |E| as k — oo. Pick k;, such that
‘E \ E%ﬂ < 27", By construction we have:

1
|fj(a:)—f(x)]<ﬁ, for all j > k, and x € E} .

Now pick N such that > 7 \ 27" < €/2 and let
o0
A= () Ep,.
n=N

Now we observe

|E\ ALl < Z |E\ B} | < e/2.

Next. suppose that § > 0. Pick n > N such that 1/n < §, and note that x € A, implies
z € EY . We deduce that |f;(z) — f(z)| < for all j > k;, and hence f; — f uniformly
on AL Fmally, we can pick a closed set Ac C AL such that |AL\ A < €/2 and hence
|E — A | <e O
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The final of Littlewood’s principles is given flesh by

Theorem 1.21 (Lusin’s Theorem). Suppose f is measurable and finite valued on E,
where E C R™ with |E| < co. Then given € > 0 we can find a closed set Fe C E with
|E\ Fe| < € such that f|g, is continuous.

Proof. Suppose first f is a simple function

m
f=> ala,
k=1

where |Aj| < oo and the Ay, are disjoint with £ = U | A, (if necessary, we add the term
0Lf-1(g) to arrange this). For any € > 0, we can pick compact sets K C Ay with

€
|AR \ Ki| < —.
m

Let B = U}" | K}. Then |E \ B| < e. Since the sets K}, are compact and disjoint (hence
min, ; dist(K;, K;) > 0), and f is constant on each K}, we have that f is continuous on
B.

Now let f,, be a sequence of simple functions such that f, — f ae. Then we can
find C,, such that |C| < 27" and f, is continuous outside C,,. By Egorov’s theorem, we
can find a set A./3 such that f, — f uniformly on A./3 and |E\ Ag/g‘ < €/3. Let N be
sufficiently large that "7 \ 27" < €/3.

Fe/ = Ae/3\ fj Cn
n=N

Now, |E \ F!| < 2¢/3 and moreover, for n > N the functions f,, are continuous on F/, so
since they converge uniformly to f, we have that f is continuous on F!. Finally, picking
F. C F! closed with |F!\ F.| < ¢/3 we’re done. O

Remark. Note that Lusin’s Theorem asserts that f|g, is continuous, which means that f
s continuous if we think of it as defined only at points of Fe. This is not the same as the
statement that f (defined on E) is continuous at points of F,. For example if f = g,
then flr\q = 0 is continuous, however f is nowhere continuous.



Chapter 2

Banach and Hilbert space analysis

2.1 Hilbert Spaces

2.1.1 Review of Hilbert space theory

We will briefly review the theory of Hilbert spaces in order to fix conventions. A (complex)
inner product space is a complex vector space H, equipped with an inner product
(,-) : H x H — C such that

i) (-,-) is sesquilinear!:
(z+y,2) = (2,2) + (, 2) (@, y+2) = (z,9) + (z,2)
(az,y) =a(z,y) (z,0,y) = afz,y).
for all x,y,z € Hya € C

ii) (-,-) is hermitian and positive:

(z,y) = (y,2),  (z,2) >0
for all x,y € H, with equality in the second expression iff x = 0.
We define [|-]| : ¢ — +/(z, x).

Lemma 2.1. The map ||-|| : H — [0,00) is a norm on H, which satisfies the Cauchy-
Schwarz inequality:

|(z,y)| < |lz] ||yl for all x,y € H, with ‘=" iff v = ay, for some o € C,
and the parallelogram identity:

2 2 2 2
2[jz 1"+ 2lyll” = ll= + ylI” + l= — o

IThere is a choice of convention over whether the first or second entry is anti-linear. Our choice here
is that typically used in quantum mechanics, in pure maths the opposite convention is often used. What
matters, however, is to be consistent!

25
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Proof. Positivity and homogeneity of ||-|| are immediate from the definition. Fix z,y € H.
For any t € R we have that ||z 4 ty||* > 0, so expanding using we see

] + 2tR(z,y) + £ [|y||* > 0.

A non-negative definite quadratic must have non-positive discriminant, hence we must have
(R(x, 1)) < ||lz||? |ly]|*. Replacing & — ez for suitable 6, we deduce the Cauchy-Schwarz
inequality. Now, we compute:

2 2 2 2 2 2 2
lz +ylI* = llz]* + 2R(z, y) + [y < lllI* + 2 l2]* [y + lyl* = (=l + lly])

so taking square roots the triangle inequality follows. The parallelogram law can be easily
verified by expanding the right-hand side. O

Definition 2.1. A Hilbert space is a complex inner product space (H,(-,-)), such that
the associated metric ||| is complete.

Thus a Hilbert space is a special case of a Banach space, however the presence of
the inner product gives the space a more geometric character. In particular, we have a
natural notion of ‘orthogonality’. If K C H, we write

Kt={xecH:(2,2)=0, forall z € K}.
Note that KN K+ c {0} and K ¢ M = M+ c K+
Lemma 2.2. For any K C H, K+ is a closed subspace.

Proof. For any z € H, the map A, : H — C given by z — (2, z) is a bounded linear map.
The linearity follows from properties of the inner product, and boundedness follows as:

[Azz| = [(z, 2)] < 2] [|]]
by Cauchy-Schwarz. Thus Ker A, is a closed subspace of H for any z € H. By definition

K+ = ﬂ Ker A,
zeK

so K1 is a closed subspace. O

An important result concerns closed, convex sets in a Hilbert space (see Definition
A.3)

Theorem 2.3. Let K be a nonempty, closed, convex set in a Hilbert space (H,(-,-)).
Then K contains a unique element of least norm.

Proof. Let d = inf{||z|| : z € K'}. For any z,y € K the parallelogram identity applied to
x/2, y/2 gives:

:U—i-yHQ

1 o 1, o 1 0
1z = ol = Sl + 5 Iyl — | 5
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The convexity of K implies (z +y)/2 € K, so
2 2 2
lz =yl < 21lz]* + 2y ]| — 4d*. (2.1)

We immediately deduce that if ||z|| = ||y|| = d, then = = y, so the infimum of the distance
can be attained by at most one point. Now suppose (x,)5  is a sequence with z, € K
and ||x,|| — d. By (2.1) we have:

|z = 2] < 2l|zal® + 2||l2m|* — 4d°

which implies (z,) is Cauchy, hence z,, — z for some = € H. Since K is closed, z € K,
and since the norm is continuous ||z|| = d and we’re done. O

Noting that K is closed and convex if and only if K + y is closed and convex, we
immediately deduce

Corollary 2.4. Let K be a nonempty, closed, convex set and let x € H. There is a
unique y € K which minimises ||z — y||.

A more important corollary of this result concerns orthogonal projection onto closed
linear subspaces.

Lemma 2.5. Let L be a closed linear subspace of H. There exists a bounded linear
operator P : H — L such that

i) Pt =z ifx €L,
i) x — Px € L+,
i) Pr=0 ifxc Lt
w) |[Pxf| < [l

Proof. For any « € H, let Pz be the unique point in L which minimises ||z — Px/||. It is
immediate that Px = z if x € L. Now, suppose y € L and consider ||x — Pz — tay|| for
t € R, where « is chosen to satisfy R(ay,z — Pz) = |(y,x — Px)|, |a] = 1. We find

lz = P — tay||* = |lo = Pz|® +2t|(y, & = Px)| + ¢ ||y|* > |« — Pa||?

so |(y,z — Px)| = 0, and hence 2 — Pz € L. This immediately implies that if z € L,
then Pz € L N L+ = {0}. Next, we note that

|z = & = Pz + Pz||* = ||z — Pz||* + || Pz||?,

from which the bound on || Pz|| follows. Finally, to see that L is linear, for A € C, x,y € H
write P(z + A\y) = P(x) + AP(y) + z for some z € L. We observe:

I(x +Ay) = Pz + Ay)||* = [lz — P(z) + Ay — P(y)) - =|I”
= [lz = P(z) + Ay — P(y)]| + |2

which is clearly minimised for z = 0, hence P(x + Ay) = P(z) + AP(y). O
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An immediate corollary of the result is
Corollary 2.6. If L is a closed linear subspace of H, then
H=Lo L

Proof. Given z € H we can write z = Pz + (z — Px) with Px € L, (v — Pz) € L+, and
certainly € L N Lt if and only if z = 0. O

We also have the following useful characterisation of K++ := (K+)+

Corollary 2.7. If L is a closed linear subspace of H then L'+ = L. If K C H is any
set, we have K = span K. In particular, K is dense in H if and only if K+ = {0}.

Proof. Clearly L C L*+. Suppose z € L+, then z = z +y with € L, y € L' by the
previous Corollary. Thus 0 = (z,y) = (x + y,y) = Hsz, soy=0and z =z € L, thus
Lt c L.

Now consider an arbitrary K C H. It is clear from the definition of the orthogonal
complement that span K ¢ K1+, Since K C span K, we deduce span K + c K+ and
Kt cspan K i span K, making use of the fact that span K is a closed subspace. [

The final result of this section shows that for a Hilbert space H, we can describe the
dual space H' in a straightforward fashion. Recall that for a topological vector space X,
the dual space X' is defined to be the set of continuous linear maps A : X — C, sometimes
known as the continuous linear functionals on X. We saw in the proof of Lemma 2.2 that
to any z € H we can associate a continuous linear map A, : x — (z,2). The following
result, known as Riesz representation theorem shows that in fact any element of H' must
be of this form.

Theorem 2.8 (Riesz representation theorem for Hilbert spaces). If A : H — C is a
continuous linear functional on H, then there is a unique z € H such that A = A, .

Proof. If Ax = 0 for all z, take z = 0, otherwise let
L ={x: Az =0}

L is a subspace by the linearity of A, and it is closed by the continuity of A. Moreover,
since Az # 0 for some x, L cannot be trivial, as H = L @ L' and L # H.
Pick y € L+ such that ||y|| = 1 and for any = € H let

w = (Az)y — (Ay)z.
Clearly Aw =0, so w € L, and as a result (y,w) = 0, which implies
Az = (Ay)(y, =) = ((Ay)y, )

so taking z = (Ay)y we have established A = A,. To see that z is unique, suppose
A, = A/, then for any z € H we have:

(z—2',2) =0,

in particular this holds for x = z — 2/, so that z = 2/ O
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2.1.2 The Hilbert space L?

Given any measure space (E, &, i), the space L?(E, 1) is naturally a Hilbert space, with
inner product given by:

(f,9)r2 rz/Efgdﬂ~

We will mostly focus on the cases where F is R™ (or a subset) equipped with Lebesgue
measure, although for some purposes it is convenient to keep the discussion more general.

Orthogonal systems of functions and their completeness

Suppose S = {u;}jes is a subset of a Hilbert space H indexed by some (not necessarily
countable) set J. We say S is orthogonal if (uj,ur) = 0 for all j, k € J with j # k. We
say S is orthonormal if additionally |lu;|| =1 for all j € J. We say that S is complete
if Span S = H, where Span S is the set of finite linear combinations of elements of S.
An orthonormal set which is complete, we refer to as an orthonormal basis. For many
purposes, we can take the set J to be N, thanks to the following result

Theorem 2.9. A Hilbert space H is separable if and only if it admits a countable set S
which is orthonormal and complete.

Proof. If S is countable and complete, then the set
{(a1 +iB1)s1 + - + (an + iBn)snls; € S, , 85 € Q}

is countable and can be seen to be dense by the completeness of S, hence H is separable.
Conversely, if H is separable, then it has a countable dense subset D. By applying the
Gram-Schmidt process to this set we can find a countable orthonormal set S such that
Span S = Span D, and thus Span S = H. O

A useful result concerning orthonormal sets is the following

Lemma 2.10. Suppose {u]} °, is an orthonormal set. Then for any x € H:

Proof. For each j pick 0; such that (e'%u;,z) = |(uj,z)|. Consider

n

2 n n
— > (g, )yl =zl =2 [(ug 2)* + ) |(uy, @)
i=1 j=1

SO
n
DM@ ) < el
7j=1

and taking the supremum over n we’re done. O



30 Chapter 2 Banach and Hilbert space analysis

Since we know that L?(U) is separable for U any subset of R", we deduce that L?*(U)
admits a complete countable orthonormal basis. We give some examples of orthogonal
sets of functions.

Example 1. Consider L?([0,1]) equipped with Lebesgue measure. The set S = {e=?™ne},
is an orthonormal set. By the Stone—Weiserstrass theorem, any function f € C°([0,1])
can be approzimated uniformly by a finite linear combination of elements of S. Since we
can approzimate any element of L?([0,1]) by a continuous function by Theorem 1.18, we
deduce that S is complete. We will see another proof of the completeness of the set S later
in the course.

Example 2. Let v be the function given by:

1 0<z<3
P(z) =4 —1 i<l
0 otherwise

and define Yy 1 by

bon(@) == 25 9(2" — k)
Then {Ynk tnkez is a complete orthonormal basis for L*(R) (see Ezercise 1.11). This is
known as the Haar system. It is the simplest example of a wavelet basis, which give an

(imperfect) localisation of a function in both space and frequency. Such bases are widely
used in signal processing.

Example 3. Consider the space L*(R, 6_‘”2dx), which is a Hilbert space equipped with
the Gaussian-weighted inner product

(f,9) Z/RJ”(ar)g(x)ex2d;c.

Applying the Gram-Schmidt process to the linearly independent set {1, z, 2%, 23,...} we
can construct a sequence of polynomials Hy(x) of degree k such that

/ Hk(x)Hl(:I:)e_x2dx =0
R

for all I < k. For historical reasons, the normalisation is usually chosen such that the
coefficient of x* in Hy(z) is 2F, but this is purely a convention. The set {Hp 2, is a
complete orthogonal set for L*(R, e*’”Qd:r;), known as the Hermite polynomials. We will
justify this assertion later in the course.

Exercise 1.11. Let S = {9y, 1 }n kcz be the Haar system, as defined in lectures.
a) Show that
/ ¢N1,/€1 (x)d)m,ka (:L‘)d:E = 5mn25k1k2'
R

b) Show that 1; € Span S for any finite interval I, where the closure is under-
stood with respect to the L? norm.

¢) Deduce that S is an orthonormal basis for L?(R).
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2.1.3 The Radon—Nikodym Theorem

An important application of the Riesz representation theorem for Hilbert spaces in the
context of measure theory is the Radon—Nikodym theorem, which is important in its own
right and will moreover will be valuable when we come to study the dual spaces to the
LP spaces. We first introduce some nomenclature.

Definition 2.2. Suppose (E, &) is a measurable space, equipped with measures p,v. We
say v is absolutely continuous with respect to p, written v < p, if for any measurable set

A
w(A)=0 = v(4)=0.

We say u, v are mutually singular, written p 1 v if there exists a measurable set A such
that
H(A) = 0 = v(A°)

With this definition in hand, we can state

Theorem 2.11 (Radon—Nikodym Theorem). Suppose (E,E) is a measurable space, with
finite measures p, v such that v < . Then there exists a non-negative w € L'(E, u) such

that
V(A):/wd,u
A

for any A € €. In particular this implies

| Paavte) = [ P@yul)duta)

for any non-negative measurable F'.

Proof. Let
a=p+2v, B =2u+v,

then «, 8 are finite measures on (E, &) in an obvious way. On the Hilbert space H =
L*(E,a) = L*(E,u) N L*(E,v), we consider the map A : H — C given by:

A(f) = /E fds.

Noting that |[A(f)| < [p|fldB < 2 [5|flda < 2y/a(E) 1/l 22 a), We see that A is
bounded on H, and it is manifestly linear, so by Riesz representation theorem (Thm 2.8)
there exists g € H such that for any f € H we have

Lﬂ@%@—[ﬁ@mmmw

Rearranging, we deduce

| reg-nav= [ 12— gan (2:2)
E E
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for all f € H. Taking f = 14, for A; = {z € F: g(z) < ;- %} we deduce p(Aj) =
v(Aj) =0, and so g > % p-ae and v-ae. Similarly by considering A; = {z € E : g(x) >
2+ %} we see that ¢ < 2 p-ae and v-ae. Thus by redefining g on a set which is null with
respect to all measures in the problem, we may assume % <g(x) <2forall z € E. By
the monotone convergence theorem, we can deduce that (2.2) holds for any non-negative
measurable f.

Let Z = {g(z) = 3}. Setting f = 1 in (2.2) we see that (Z) = 0. Since v < p we
deduce that v(Z) = 0, so given a non-negative measurable function F', we can define

2g(z) — 17 2g(z) — 1

for all z € Z¢ and set f(z) = w(z) = 0 otherwise. Applying (2.2) and using u(2) =
v(Z) =0, we deduce

/EF(x)dy(a;):/ F(z)dv(zx)

E\Z

f(x)

— [ seg-viv= [ - g
E E
~ [ F@uw@dn) = [ P
E\Z E
Setting F(x) = 1 shows w € LY(E, ). O
Exercise 1.12. (*) Suppose (E, ) is a measurable space, with finite measures
W, v. Show that v may be uniquely written as v = v, + v;, for measures v,, Vs
such that vs L p and v, < p.

[Hint: Return to the proof of the Radon—Nikodym theorem, but drop the assump-
tion that v < pf

2.2 Dual spaces

Given a topological vector space? X, we define the dual space X’ to be the set of continuous
linear functions A : X — C. This is a vector space with the obvious operations:

(A1 + als)(z) := A1 (z) + alg(z), forallze X,A;,Ar € X',aeC.
If X is a normed space, we can equip X’ with a norm by setting

[Allxr = sup [A(z)].
zeX,|z]|=1

Often (though not always), we will take X to be a Banach space.

Exercise 2.1. Let X be a normed space. Show that X’ equipped with its norm
forms a Banach space. If X is the completion of X with respect to the metric
induced by its norm, show that X' = X ",

2See Definition A.7
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Exercise 2.2. Suppose X is a Banach space. Show that if A € X’ with A #0
then A is an open mapping (i.e. A(U) is open whenever U C X is open).

An important fact concerning the dual of a Banach space is that it separates points.
That is

Lemma 2.12. Let X be a Banach space. Suppose x,y € X with x # y. Then there exists
A € X' such that A(x) # A(y).

We shall not prove this result at this stage, it will follow as a corollary of the
Hahn—Banach theorem which we shall prove later.
Suppose X is a Banach space. Given x € X, there is a natural map:

fr + X' =C
A — Ax).
This is a bounded linear map, thus belongs to X”. Furthermore, if f;(A) = f,(A) for all
A then x = y by Lemma 2.12, thus we have a natural injection of X into X” given by

x +— fp. If this map is surjective, then we say that X is reflezive, and write X = X" (by
a slight abuse of notation).

2.2.1 The dual of LP(R")

Suppose f € LP(R™) for some 1 < p < 00, and let ¢ be such that p~! 4+ ¢~! = 1. Then by
Holder’s inequality, we know that if g € LY(R™) we have:

< lgllza [/l o

[ st@)s @iz

This tells us that the map A, : LP(R™) — C given by:

A= [ g@rf(a)da

is a bounded linear map from LP(R"™) to C, thus A, € LP(R™)’. Furthermore, it can be
shown (Exercise 1.4) that [|[Ag||,,» = [|g|| ;. Thus the map

k: LIR"™) — LP(R"™)
g — Ay

is linear, isometric and injective. We see that LI(R™) C LP(R")’ in a natural way.

For the case p = ¢ = 2, we know by Riesz representation theorem that in fact?
L?(R™) = L%(R™)’. It is a very natural question to ask whether this happens for other
values of p. In fact, it is true for all values of p except one.

Theorem 2.13. [The dual of LP(R")] Let 1 < p < oo, and let q satisfy p~' +q¢ ' = 1.
Then L1(R™) = LP(R™), where we understand elements of LY(R™) as linear maps on
LP(R™) according to the map k described above.

3Being pedantic, one should say that Riesz representation theorem gives an isometric bijection
between L*(R™) and L*(R™)’, but we will leave this as understood.
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Note that this result asserts that L'(R"™) = L>°(R"), however it makes no statement
about L>(R")’. In fact, L>°(R™) # L!(R™). We also comment that the result holds more
generally for the spaces LP(E, i), where p is a o-finite measure on E, but for simplicity
we stick to the case of R™.

The main work of the proof of Theorem 2.13 has already been done in the proof of
the Radon—Nikodym theorem, which is the key result we shall require. We first simplify
the problem by reducing to the case of positive real linear functionals. Let LP(R™;R)
denote the subset of LP(R™) consisting of functions taking values in R almost everywhere.
Clearly LP(R™;R) is a vector space over R, and any element f € LP(R™) can be written
uniquely as f, +if; with f., fi € LP(R™;R). Given a bounded (complex-)linear map
A : LP(R™) — C, we can define two bounded (real-)linear maps A,, A; : LP(R™;R) — R
by:

M) = RS, M) = SA(S)

and we can recover A from A, A; by:

A(fr + Zfz) = AT(fT) - Az(fz) +1i (Ar(fz) + Az(fr)) :

We say that a real-linear map u : LP(R™;R) — R is positive if u(f) > 0 for all
f = 0. We claim that any bounded real-linear map u : LP(R™;R) — R may be written
as u = uy — u_, where uy : LP(R";R) — R are bounded, positive, real-linear maps (see
Exercise 2.3). In view of these facts, in order to prove Theorem 2.13 it will suffice to
establish:

Lemma 2.14. Let 1 < p < oo, p ' + ¢! = 1. Suppose u : LP(R*;R) — R is a
bounded, positive (real-)linear map. Then there exists a non-negative g € LY(R™; R) with
9l Lo = llull zey such that:

for all f € LP(R™;R).

Proof. Let p = e~17*dz be the Gaussian measure on the Lebesgue sets of R™, which has
the property that u(R™) < oo. Define, for a measurable set A:

_ =2

v(A) :==ule » 1y).

Clearly v(A) € [0,00] and v(0) = 0. Further, if B = U, A,, for disjoint measurable 4,,
setting By, = UF_, A,, we have

|| ||
e lp—e v lp|| =[u(B\BpF -0

Lp

so by the continuity and linearity of u, we have v(By) — v(B). Thus v defines a measure
on the Lebesgue sets of R™. Further v(R™) < oo and moreover v < p since if u(A) =0
then

2
_l=|

e T]IA

Lp
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By the Radon—Nikodym theorem, we deduce that there exists a non-negative G €
LY(R™, ;1) such that

v(A) = / G(z)dp = / G(m)e*mzdx.
A A
|=|?
Now by linearity, we deduce that if f =e » F for some simple function F' then we have

u(f) = | [flx)g(x)de.
R”

=2 =2
where g(x) = e ¢« G(z). Now, functions of the form e~ » F, with F' simple, are dense

in LP(R™;R) and moreover we know from the boundedness of u that

[ 1t@g@lds = [ 17@lgade = ull 1) < ol 1710

This implies that

Sup{/Rn f(x)g(x)|dz : f € LP(R™R), || f]|» < 1} < Jlull o

By Exercise 1.4 we deduce that g € LY(R™;R) with ||g||; s < |lu|/;». On the other hand
lgllLa = llull;pr follows from Holder and we're done. O

Exercise 2.3. Let u: LP(R";R) — R be a bounded, linear functional.
a) For f € LP(R™;R), f > 0, define
u(f) =supfu(g) : g € LP(R™;R),0 < g < f}.
Show that 0 < @(f) and u(f) < a(f) < ||lul|p || f]|;», and establish

u(f + ag) = a(f) + au(g)
for all f,g € LP(R™;R) with f,g >0 and a € R, a > 0.

b) For f € LP(R"™;R), define w(f) = a(f)—a(f~), where f(z) = max{0, f(z)},
f~(x) = max{0,—f(x)}. Show that w is linear and bounded, and that w
and w — u are positive.

¢) Deduce that u = uy —u_, where uy are bounded, positive, linear functionals.

2.2.2 The Riesz Representation Theorem for spaces of continuous functions

Another space whose dual space can be conveniently described is C?(R"), the space of
continuous, compactly supported, functions on R" equipped with the supremum norm.
By a similar reduction to §2.2.1, we can reduce to the problem of understanding positive
bounded functionals on C?(R™; R).

A classical result known, somewhat confusingly, as the Riesz Representation Theorem
shows that any positive functional on C?(R™; R) can be represented as integration against
a suitable measure. To motivate this result, we first suppose that we are given a o-algebra
M on R" and a measure p such that u(R™) < co. We will also require that the measure
space is regular:
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Definition 2.3. Suppose that E is a topological space, and £ is a o-algebra on E which
contains the Borel algebra. Then a measure pu defined on (E,E) is reqular if for any A € €,
and any € > 0 we can find a closed set C and an open set O such that C C A C O and:

w0\ C) < .

Since B(R") C M, we know that any f € CO(R™R) is measurable. The map
A : CO(R™;R) — R given by:

A(f) = o f(@)dp(z) (2.3)

is then a positive, bounded linear map. Now, suppose we are given the map A, can we
recover the measure u? We note that, if we could set f = 14 for A € M, then

A1) = [ Lale)du(e) = p(4)’,
however 14 ¢ CO(R";R). At least for certain sets, however, we can approximate 1 4

from below by elements of C?(R";R). Suppose O C R™ is open, and for k& € N let
O = O N{|z| < k}. Define:

1, z € Oy, d(z,0) > k!
Xk(x) =< kd(z,0f) z € O, d(z,0f) < k™1
0 x € 05

Then xi € C?(R™;R) and yx(z) increases monotonically to 1. Thus, by the monotone
convergence theorem,

wO) = lim | xp(z)du(z) = Lm Alxx).

k—o0 Rn

This shows in particular that
u(O) = sup{A(g) : g € CJ(R™;R), 0 < g < Lo} (2.4)

Now, since p is regular, it suffices to know how to compute u(O) for open sets in order to
find p(A) for any A € M. We have shown:

Lemma 2.15. Suppose we are given a o-algebra M containing B(R™) on R™ and a
regular measure p such that p(R™) < co. Then A : CO(R™;R) — R given by (2.3) defines
a bounded, positive, linear operator. Furthermore, p is uniquely determined by A.

Riesz Representation Theorem makes the stronger statement that all positive bounded
linear operators take the form (2.3) for some regular measure.

Theorem 2.16. Given a positive bounded linear operator A : CS(R”;R) — R, there
exists a o-algebra M on R™, containing B(R™), and a unique regqular measure p such that
u(R™) < oo and:

A = [ f@yinte).
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We shall not include the proof of this result here, as it is fairly long and technical,
and not especially enlightening. The main idea is to use (2.4) to define 1 on open sets,
and then use Carathéodory’s Theorem (or some equivalent approach) to complete this
measure. Those interested in the proof will find it in Chapter 2 of Rudin’s Real and
Complex Analysis.

2.2.3 The strong, weak and weak-*x topologies

If X is a Banach space, then X’, with the dual norm, is also a Banach space. Thus both
spaces are naturally equipped with a topology which makes them topological vector spaces.
For certain purposes, however, we may wish to introduce an alternative topology on X or
X'. For example, a hugely useful result in the analysis of R™ is the Bolzano—Weierstrass
theorem:

Theorem 2.17. Let (x)72, with xj, € R™ be a bounded sequence. Then (x1)72, has a
convergent subsequence.

This result is not true when R"” is replaced by an infinite dimensional Banach space,
so the closed unit ball in such a space is not compact. This is quite inconvenient for many
problems: for example in the calculus of variations one often wishes to minimise some
continuous function defined on a Banach or Hilbert space. Without compactness as a
tool, this can be difficult to achieve.

Exercise 2.4. Suppose X is a normed space, and V' C X is a closed proper
subspace of X and let 0 < o < 1. Show that there exists x € X with ||z =1
such that ||z —y|| > « for all y € V. Deduce that the Bolzano—Weiserstrass
theorem does not hold if X is an infinite dimensional Banach space.

[The first result above is known as Riesz’ Lemma]

One way to restore (a version of) compactness for the closed unit ball in X is to
consider a different topology defined on X. In order to describe new topologies on X we
will make use of seminorms. For full details of this discussion, see §A.2

Definition 2.4. A seminorm on a vector space X over a field ® = C or R is a map
p: X — R satisfying:

i) p(z +y) < plx) +ply), for allz,y € X,
it) p(Ax) = | A p(z) for allz € X, A € ®,
iti) p(x) >0 for all x € X.

A family & of seminorms is said to be separating if for every x € X with x # 0, there
exists p € & with p(x) # 0.

Strictly speaking, condition i) follows from 7) and i) (check this!), but we include
it in the definition for convenience. Given a separating family of seminorms, we can
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construct a topology 74 as follows. First, for p € &2, n € N, we define the set V(p,n) C X
by
1
V(p,n) := {ZL‘ eX :pl)< }

n

We let 3 be the collection of finite intersections of V(p,n)'s,and f={z+ B:B¢€ ﬁ}

Theorem 2.18. Let &2 be a separating family of seminorms. The collection of sets 3, as
described above, is a base for a Hausdorff topology T on X such that the vector space
operations are continuous, and each p € & is continuous.

A topological space (X, T4) constructed in the manner above is known as a locally
convex topological vector space. If &7 = {p;}22, is countable, then the topology is a metric
topology, with metric given by:

Z o—i pi(z — y)
1+ pz xr — y)
If this metric is complete, we say that (X, 74) is a Fréchet space.

Exercise 2.5. Let & be a separating family of seminorms on a vector space X.
Show that a sequence (xj)72 with x; € X converges to z € X in the topology
T if and only if p(xp — x) — 0 for all p € 2.

For a Banach space X, a trivial family of separating seminorms is given by &2 = {||-||}.
The topology 75 := 7% induced by this family is simply the usual norm topology. In this
context, we sometimes refer to this as the strong topology on X. A sequence (xj)32,
with x; € X converges to x in the strong topology if

|lxx — x| — 0.

An alternative topology on X is given by making use of X’ to construct a family
of seminorms. It is straightforward to verify that if A € X’ then pp : x — |A(z)| is a
seminorm. Setting

sz{pA:AEX'}

we have a family of seminorms. Moreover, it is separating, since X’ separates points of
X. Thus 7, := 7 makes X into a locally convex topological space. This topology is
known as the weak topology. With respect to the weak topology, the elements of X’ are
still continuous, however convergence of sequences in the weak topology differs from the
strong topology. A sequence (xy)52, with x, € X converges to = in the weak topology if

|A(zp —x)| — 0, forall Ae X'

When (z1,)32, converges to x in the weak topology, we write z, — .
Now, X’ is a Banach space itself in a natural fashion, and so has its own associated
strong and weak topologies. It also has a further topology, known as the weak-x topology
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(pronounced ‘weak star’). To define this topology, we note that for each z € X, we can
define a seminorm p, : X’ — R by p,(A) = |A(z)]. Setting

P ={p, :x € X}

we have a family of seminorms, which is separating since if A € X', A # 0, then there
exists € X such that A(xz) # 0. The associated topology we denote T,. A sequence
(Ar)72, with Ay € X' converges to A in the weak-* topology if:

|Ak(z) — A(z))| — 0, forall z € X.

When (Ag)$2, converges to A in the weak-* topology, we write Ay — A. Note that if X
is reflexive, then X” = X, and the weak and weak-* topologies coincide.

Exercise 2.6. Suppose that X is a Banach space, and let (A;)72, be a sequence
with A € X’. Show that:

(*) Show the stronger statement that 7, C 7, C 75, Where Ty, 7y, Ts are the
weak-*, weak and strong topologies on X’ respectively.

As an example, suppose that 1 < p < co. Then we know that LP(R™)" = L?(R") with
pt4+q 7t =1. If (f;)22, is a sequence of functions f; € LP(R™), then of course f; — f in
L? if:

Ifi = flle = O

On the other hand, f; — f in L? if

/ g(z) fi(z)dr — g(x)f(x)dx, for all g € LY(R"™).
n R
If 1 < p < oo, LP(R™) is reflexive, so the weak- topology that arises from viewing
LP(R™) as the dual of LI(R"™) agrees with the weak topology. We have not identified any
space X such that X’ = L'(R"), so no weak-* topology on L' is available to us. Since
LY(R™)" = L°(R™), we can consider the weak-* topology on L>(R™). We have f; = f
in L™ if:
/ g9(z) fi(z)dr — g(x)f(z)dx, for all g € L'(R™).

n R”

Since we don’t have a concrete realisation of L (R™)’, we don’t have a simple description

of weak convergence in this space (other than the abstract condition A(f;) — A(f) for all
A € L*°(R™)).

Exercise 2.7. For a bounded measurable set £ C R™ of positive measure, and
any f € L} (R"), define the mean of f on E to be:

loc.
]{5 f(:n)d:x:|;?| /E F(a)da.



40 Chapter 2 Banach and Hilbert space analysis

Suppose 1 < p < oo and let (f;)52; be a bounded sequence in LP(R™). Show
that f; — f for some f € LP(R") if and only if

]{3 £ (@)dz — ][E F(z)dz

for all bounded measurable sets © C R™ of positive measure.

Exercise 2.8. Suppose (H, (-,-)) is an infinite dimensional Hilbert space and
let (x;):2, be a sequence with z; € H.

i) Show that x; — « if and only if (y,z;) — (y,x) for all y € H.
ii) Show there exists a sequence such that z; — 0, but z; /4 0.
iii) Suppose x; — x. Show that

|| < lim inf [|;]] ,
1—00
and ||z;|| — ||z| iff z; — «.

2.2.4 Compactness, Banach—Alaoglu

As we have discussed above, if X is an infinite dimensional Banach space, then the closed
unit ball B = {x : ||z|| < 1} is not compact. This is unfortunate, and we would like to
try and restore compactness in some way. There are essentially two (related) approaches:
we can either restrict our attention to a subset of B for which we have compactness, or
else we can weaken the topology on B.

To explain this, let us recall the Arzela—Ascoli theorem. We set I = [0, 1]

Theorem 2.19. Suppose (fr)52, s a sequence of continuous functions fi, : I — C which
is bounded, i.e. for all k:

sup | fi(z)| < M
zel

and equicontinuous: for all € > 0, there exists 6 > 0 such that for all k and all |x — y| < §
we have

[fe(@) = fe(y)] <e
Then (fi)32, admits a uniformly convergent subsequence.

To put this into the language we have been discussing, recall that for 0 < v <1, we
say a continuous function f : I — C is y-Holder continuous if

x J—
fllgns =sup @)+ sup LSO o
z€l eyelaty 1T — Y|

The set C%7(I), of y-Holder continuous functions, is a Banach space with this norm, and
C97(I) € C°(I). A consequence of the Arzela—Ascoli theorem is the following:

Corollary 2.20. The closed unit ball in C%Y(I) is compact in the C°-topology.
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Proof. Since the C%-topology is a metric topology, compactness is equivalent to sequential
compactness. If ()22, is a sequence with f € C%7(I) satisfying

[fillgon < 1,

then (fr)72, is a bounded equicontinuous sequence of functions, so admits a uniformly
convergent subsequence, i.e. a subsequence which converges in the C%-topology to some
f. Tt is a short exercise to check that f € C% with || f|| o < 1. O

This gives us a paradigmatic example of a compactness result for Banach spaces: the
closed unit ball is compact, but only in a weaker topology than the strong topology. The
central result is the Banach—Alaoglu theorem:

Theorem 2.21. Let X be a normed space, and let B = {A € X' |Allx < 1} be the
closed unit ball in X'. Then B is compact in the weak-+ topology on X'.

This result in its full generality is typically proven using Tychonoff’s theorem, which
relies on (a version of) the axiom of choice. We will content ourselves with the proof in the
case where X is a separable Banach space for which it is possible to give a constructive
proof. The majority of the applications of Banach—Alaoglu that arise in (for example)
the calculus of variations or PDE are covered by this special case.

We first note that if X is a separable Banach space, then the weak-* topology on B
is in fact a metric topology.

Lemma 2.22. Let X be a separable Banach space, with a countable dense subset D =
{zi}2,. Let & = {pr}2, be the family of seminorms on X' defined by:

Pk A= |Alxg)],

and let T4 be the associated topology. Then 7'97|§/ = Tws In particular, the weak-*

5
topology on B’ is a metric topology.

Proof. From the definition of the topologies, it is immediate that every open set in 7 is
open in Tyu, thus 75|z C Tys|g . For any x € X, n € N let

Viz,n) = {A €T M) < ;}

In order to show 7 ’E’ D Tws|w it suffices to show that for any z € X, n € N, we can

find z € D, m € N such that

5

V(xg,m) C V(x,n).

Fix z € X. For any € > 0, there exists x; € D such that ||z — z;|| <e. If A € V(z;,m),
then:

1
[A(@)] = [Alz = i) + Alza)] < A2 = 2l + [Alzi)] <e+ —.

Taking € < 1/(2n), m > 2n we have A € V(x,n) and we're done. O
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This result is useful in two ways. Firstly, we see that a sequence (A;)72; with A; € B
converges to A in the weak-* topology if and only if:

Aj(zg) = A(xy) as j — oo, for all k.

Secondly, since the weak-* topology on Bis metric, compactness is equivalent to sequential
compactness. We can establish sequential compactness with a very similar method to the
proof of the Arzela—Ascoli theorem.

Theorem 2.23. Let X be a separable Banach space. Let (Aj);% be a sequence with
Aj e B'. Then there exists a subsequence (Aj )32, and A € B’ such that Aj A

Proof. Let D = {x}}32, be a countable dense subset. Consider the sequence (A;(z1))72;.
This is a uniformly bounded sequence of complex numbers, since:

A ()] < A H[al] < ]

Thus, by Bolzano-Weierstrass, there exists a subsequence (Aj, (z1))72, and a number
A(z1) € C with |A(z1)| < ||x1]| such that:

Mgy (1) = Alay).

We write Aj == Aj,, then (ALj);-”;l is a subsequence of (Aj)jx:)r By a similar argument,
we can find a subsequence (Ay,;, )72 of (A1,7)72; such that Ay, (v2) — A(x2). We write
Ag := Ay j,. Continuing in this fashion, we construct for each I > 1 a sequence (A;;)524,
and a complex number A(z;) with [A(z;)| < ||| with the property that (A;;)72, is a
subsequence of (Aj—1;)72;, and Ay ;(xg) — A(zy) as j — oo for all I < k.

Now, consider (A;;)72;. This is a subsequence of (A;)72; with the property that for
each x € D we have:

Am(aj) — A(:L')

If we can show that there exists A € B’ with A(z) = A(z) for all z € D, then we are done.
We first claim that A : D — C is uniformly continuous. Fix ¢ > 0, and suppose z,y € D
with ||z —y|| < §. Since Aj;(z) — A(z) and Aj;(y) — y, there exists & such that for all
J = k we have |Aj;(x) — A(z)| < § and |A;;(y) — A(y)| < §. For such a j we estimate:

[A(z) = Ay)| < [A(@) = Agy (@) + [A4(y) = M)+ [Ag(z —y)l < e

we conclude that A : D — C is continuous. Thus A extends to a continuous function
A : X — C. We abuse notation and drop the tilde at this point. Next, we claim A is
linear. Suppose z,y € X and a € C and for z = z 4 ay estimate:

[A(2) = A(z) — aA(y)| < [A(z) = A(Z)| + |A(2) — A)] + |a] |A(y) = A(Y)]
+[AZ) = A (D] + [Ae) = Ay ()] +[al [A(Y) — Aj(y)]
+ ‘Aj,j(z' — g — ay’)’ )

By choosing 2’,1/, 2’ € D sufficiently close to x,y, z respectively we may arrange that the
first and final line are arbitrarily small. Taking j sufficiently large we see that the middle



2.3 Hahn-Banach 43

line can also be made arbitrarily small. We conclude that A(z + ay) = A(x) + aA(y).
Thus A : X — C is a continuous linear map. Finally, since D is dense in X we have:

A= sup [A(z)|= sup [|A(z) <1
zeX [z <1 z€D, [z <1

Hence A € B O
As a corollary, we find the following compactness result for the Lebesgue spaces:

Corollary 2.24. Suppose 1 < p < 0o, and let (fj)?‘;l be a sequence of functions f; €
LP(R™) satisfying
1fill o < K.

Then there exists f € LP(R™) and a subsequence (fj, )5, such that ||f|» < K and

| s@i@ie~ [ @

R?’L
for all g € L4(R™), where p~1 + ¢~ =1.
Proof. Apply the previous result to f;/K. O

Note that we do not have a corresponding compactness result for L'(R™). It is
possible to gain some compactness by considering L!(R™) as a subspace of the dual space
of CY(R™), however the limiting objects constructed in this way are typically measures,
not elements of L!(R™).

Exercise 2.9. Construct a bounded sequence (f;)2; of functions f; € LY(R)
such that no subsequence is weakly convergent.

2.3 Hahn—-Banach

The next result we shall cover is the Hahn—Banach theorem. This modest-seeming result
permits us to extend a bounded linear functional defined on a subspace, M, of a vector
space X into a bounded linear functional defined on the whole space. While it seems like
this should be straightforward, in full generality it requires the axiom of choice (or at
least some method of transfinite induction). We will proceed modestly by first showing
that we can extend a linear functional in one direction.

We first show that we can reduce to the case of a real vector space. Suppose X is a
complex vector space. We note that X is also a real vector space in a natural fashion. A
real-linear map ¢ : X — R is a map satisfying:

Uz + ay) =L(z) +al(y), forallz,y € X, a€eR.

Suppose A : X — C is a complex-linear map, then ¢(z) = R(A(x)) defines a real-linear
map on X. Conversely, given a real-linear map ¢ : X — R, we have that:

A(z) = l(x) —il(ix)
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defines a complex-linear map A : X — C, with ®(A(z)) = ¢(z). Thus provided we can
establish a result which allows us to extend linear functionals in a bounded fashion on a
real vector space, we immediately have a corresponding result for the complex setting.

At this point we should address our use of the word ‘bounded’ above. When X
is a Banach space, then we have already discussed what it means for a functional to
be bounded. It turns out to be useful to consider a slightly more general notion of
boundedness at this stage, however. For this we introduce

Definition 2.5. A sublinear functional on a real vector space X is a map p: X — R
satisfying

p@+y) <plx) +ply),  plz)=1tp(x),
for any x,y € X andt > 0.

For example if A : X — R linear, then p(z) = |A(x)| is sublinear. Any semi-norm
(hence any norm) is sublinear, but the converse doesn’t hold, so be careful!

We first show that we can extend a linear functional ¢ defined on a subspace in one
direction, maintaining a bound by a sublinear functional p. We will work with one-sided
bounds of the form ¢(z) < p(x), but we note that this implies the two-sided bound

—p(=2) <l(z) < p().

Lemma 2.25. Let X be a real vector space, p : X — R sublinear and M C X a subspace.
Suppose £ : M — R is linear and satisfies £(y) < p(y) for ally € M. Fizx € X \ M,
then setting M = span {M,x}, there exists a linear operator £ : M — R such that

0(2) <p(z) forall ze M.

and .
Uy) =L(y), forallye M.

Proof. Any z € M can be uniquely written as z = Az +y for y € M, so to define the
extension ¢, by linearity it suffices to specify ¢(x) = a as then {(Ax + y) = a + £(y).
Suppose y,z € M, then

Ly) +4(2) =Ly +2) <ply+2) <ply—2) +p(z+ 1)

and hence
Uy) —ply —x) < plz+x) —£(2). (2.5)
Let

a=sup ({(y) —p(y — x)).
yeM

This is well defined by (2.5) and further we deduce
ly) —a<ply—=), Lz)+a<p(z+a)

for all y,z € M. If A > 0, replace z with A~y and multiply by A. If A < 0 replace y with
—X~1y and multiply by —\ to deduce

U(y) + aX < ply + \z),
holds for all y € M, X € R. O
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Now, if dim X/M is finite, this result allows us to iteratively extend ¢ : M — R to the
whole space in a finite number of steps. If X is infinite, but separable, then it’s possible to
construct an extension inductively (try it!). If, however, X is not infinite, then (speaking
loosely) it’s not possible to exhaust X with a countable number of finite extensions. We
require some way to make an inductive type argument in a non-countable setting. There
are several approaches to this, all of which require the axiom of choice. We shall use
Zorn’s Lemma?. For this we require some background.

Exercise(x). Suppose X is a separable real Banach space. Prove the Hahn—
Banach theorem on X without invoking the axiom of choice through Zorn’s
Lemma (or equivalent).

2.3.1 Zorn’s Lemma

Zorn’s Lemma is a statement concerning partial orderings of a set S.

Definition 2.6. Let S be a set. Then a partial order on S is a binary relation <
satisfying, for any a,b,c € S:

i) a <a foralla € S. (Reflexivity)
it) If a < b and b < a, then a = b. (Antisymmetry)
iti) If a <b and b < ¢, then a < c. (Transitivity)

A set with a partial order is called a partially ordered set, or poset. Note that we do
not assert that for any a, b either a < b or b < a. If this does hold, we say < is a total
order.

A subset T of a partially ordered set which is totally ordered is called a chain. An
element u € S is an upper bound for T'C S if a < w for all a € T. A maximal element of
S is an element m € S such that m < x implies z = m.

Example 4. a) If S is any set, then the power set 2° is a poset, with < given by inclusion,
.e. A B iff AC B. S is a mazimal element.

b) The real numbers with their usual order is a totally ordered set, with no maximal
element.

¢) The collection S of open balls in R™ is a poset with order given by inclusion. The
subset

T={B,(0)cR":0<r<1}
is a chain. B1(0) is a mazimal element, and B2(0) is an upper bound.

Zorn’s Lemma can now be stated as:

4For a good discussion of how and why Zorn’s Lemma is useful, see Prof. Gower’s blog:
https://gowers.wordpress.com/2008/08 /12 /how-to-use-zorns-lemma/
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Proposition 1. Let (S, <) be a partially ordered set in which every chain has an upper
bound. Then (S, <) contains at least one mazximal element.

We shall not prove this claim. In fact, it is equivalent (within the Zermelo-Fraenkel
framework) to the axiom of choice, so we can reasonably treat Zorn’s Lemma as an axiom
itself. The proof of the Hahn—Banach theorem we give below is a typical application of
Zorn’s Lemma.

Theorem 2.26 (Hahn-—Banach). Let X be a real vector space, p : X — R sublinear, and
M C X a subspace. Suppose £ : M — R is linear and satisfies {(y) < p(y) for ally € M.
Then there exists a linear operator £ : X — R such that

U(z) < p(z) forallzelX.

and

Ly) =Ly), forallye M.

Proof. We consider the set S of extensions of £ to a linear subspace of X. That is a pair
(N, 0*) € S if:

N is a linear subspace of X containing M.

: N — R is a linear map.

iv

)
i) £

iii) *(z) < p(z) for all z € N
) £*(y) =L(y) for all y e M

S is a poset, with the partial ordering given by (N1, /1) < (N, {ls) if Ny is a subspace of
Ny and ¢1(x) = l3(z) for all x € Ny. Suppose that T' is a totally ordered subset of S. We
define (N, L) € S by:
N= |J W
(N,£*)eT

and for any z € N, we define L(z) = £*(x), where (N,¢*) € T with x € N. This
is well defined since T is totally ordered, and moreover we have (N, ¢*) < (N, L) for
all (N,¢*) € T, thus T has an upper bound. By Zorn’s Lemma, S has a maximal
element, (A, E) We claim that .4/~ = X. Suppose not, then there exists z € X \ A
and we can extend £ to a functional /* on .4* = span {,/V x} by Lemma 2.25. Then
(N, 0) < (N, 0%), but (AN, €) # (AN*, %), contradicting the maximality of (.4, £). Thus
{: X — R is the extension we seek. O

Notice that this proof of the Hahn—Banach theorem is non-constructive: while we
assert the existence of at least one extension, the proof provides no mechanism to construct
a particular example. This is typical of proofs which invoke the axiom of choice through
Zorn’s Lemma (or otherwise).

Corollary 2.27. Let X be a Banach space over ®, where ® =R, or C, and M C X be
a subspace. Let~A : M — @ be a bounded linear operator. Then there exists a bounded
linear operator A : X — ® with [|All,; = ||Allxr such that A(y) = A(y) for ally € M.
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Proof. If ® = R, then we may apply the previous result with p(z) = ||A]|||z]|.

If ® = C, then recall that we may write A(x) = ¢(x) — il(ix) for a real-linear map
{(z) = R(A(x)). Further, by noting that |A(z)| = £(e?z) for suitable §, we can see that
for any subspace N C X

sup  [A(z)| = sup |f(z)],
zeN,||lz|<1 zEN,|lz| <1
and we may apply the ® = R result to /. O

We will now establish some more geometric consequences of the Hahn—Banach theorem
that go by the name of separation theorems. The first of these is related to the hyperplane
separation theorem, which states that given two disjoint convex sets in R™ we may find a
co-dimension one plane such that the sets are on opposite sides of the plane. The theorem
(as with many of our results on Banach spaces) can be generalised to other topological
vector spaces. Those interested in more general statements may wish to consult Rudin’s
“Functional Analysis”.

Theorem 2.28. Suppose A and B are disjoint, nonempty, conver sets in a real or
complex Banach space X.

a) If A is open, there exist A € X' and v € R such that
R(Az) <v < R(Ay) (2.6)

forallxz € A, y € B. If B is further assumed to be open the second inequality may be
taken to be strict.

b) If A is compact, B is closed then there exist A € X' and v1,v2 € R such that

R(Az) <7 < 72 < R(Ay).

Proof. We first observe that it suffices to establish the result for real scalars. If we have
done so then for X a complex Banach space we may find a real-linear ¢ : X — R which
separates A and B as required, and we may then set A(z) = {(z) — il(ix).

a) Pick ap € A,bgp € B and let g = by — ap. Let C = A — B + xp. This is a convex
neighbourhood of 0 in X, and since A, B are disjoint xg ¢ C. Let p(z) = inf{t > 0 :
t~lz € C}. By Exercise 2.10 this is a sublinear function satisfying p(x) < k||z| for
some k > 0 and p(y) < 1 for y € C. Since z¢ ¢ C we have p(zg) > 1.

Let M be the subspace generated by xg and on this space define the linear functional
f(teg) = t. If t > 0 then f(txg) = t < tp(xg) = p(txy), while if ¢ < 0 then
f(txg) =t < 0 < p(txo), so f < p on M. By the Hahn-Banach theorem we can
extend f to a linear functional A satisfying —k||z|| < —p(—2z) < A(z) < p(z) < k||z|,
so A e X'

Now suppose a € A,b € B. Then

Aa—Ab+1=Ala—-b+xz9) <pla—b+x9) <1
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since a — b+ x9 € C. Thus Aa < Ab. This implies that A(A) and A(B) are disjoint
convex subsets of R. A(A) is open since every non-constant linear functional is an
open mapping by Exercise 2.2. We may take v to be the right end-point of A(A) and
(2.6) follows. If B is open, then so is A(B) and we can replace the < in (2.6) with <.

b) Since now A is compact and B is closed, we have inf{|ja —b||:a € A,b € B} =d > 0.
Let V' = B4(0) and consider A 4+ V. This is open, convex and disjoint from B.
2

Applying part a) with A + V in place of A shows there exists A € X’ such that
A(A + V) and A(B) are disjoint convex subsets of R with A(A + V) to the left of
A(B). Since A(A+ V) is open and A(A) is a compact subset of A(A + V), the result
follows. O

This result immediately gives the proof of Lemma 2.12, which states that X’ separates
points in X: we set A = {x}, B = {y} and apply part b). Another consequence is

Corollary 2.29. Suppose M is a subspace of a Banach space X and xo € X. If xg is
not in the closure of M then there exists A € X' such that Axg =1 and Ax = 0 for every
r e M.

Proof. Applying part b) of the previous Theorem with A = {z¢} and B = M, there exists
A € X' such that Azg and A(M) are disjoint. But A(M) must be a proper subspace of
the scalar field, so must be {0}. The desired functional can be obtained by dividing A by
Amo. ]

Exercise 2.10. Let X be a Banach space and suppose A C X is a convex
neighbourhood of 0. For z € X define pa(x) = inf{t > 0: ¢t~z € A}. Show
that 114 is sublinear and satisfies pa(z) < k||z|| for some k > 0. Show further
that pa(y) <1 for y € A.

A s called the Minkowski functional of A

Exercise 2.11. Let {z1,...2,} be a set of linearly independent elements of a
Banach space X. Let aq,...,a, € C. Show that there exists A € X’ such that
A(x;) = ai, fori=1,... ,n.

Exercise 2.12. Let M be a vector subspace of the Banach space X, and suppose
that K C X is open, convex and disjoint from M. Show that there exists a
co-dimension one subspace N C X which contains M and is disjoint from K.
This ts Mazur’s theorem.

Exercise 2.13. let X be a reflexive Banach space, and suppose ¥ C X is a
closed subspace. Show that Y is reflexive.
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Test functions and distributions

3.1 The space 2(0)

Given an open set §2, we are familiar with C°°(Q2) and CZ°(2) as sets and we can equip
them with the algebraic structure of a vector space. We want to discuss notions of
convergence and continuity in these spaces, and for this we shall require a topology. The
topologies we require are locally convex, so can in principle be described by a family of
semi-norms, however in the case of C2°(£2), it turns out to be quite subtle to do this.
Appendix A develops the topology in detail, for those who are interested. We shall simply
quote the following result:

Theorem 3.1. The set C2°(2) can be endowed with a topology T, such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to T.

ii) A sequence {¢; 721 C C(Q) tends to zero with respect to the topology T if there
exists a compact K C Q such that supp ¢; C K for all j € N and for each multi-index
a we have:

sup [D%¢;| — 0,
rxeK

as j — oo. Similarly, ¢; — ¢ with respect to T if ¢p; — ¢ — 0.
We denote the set C°(Q) equipped with the topology T by Z(€2).

This topology is not a metric topology, so the description of the convergent sequences
is not the whole story, but for the purposes that we require, it will suffice. In particular,
for linear maps from 2(2) into a locally convex vector space sequential continuity is
equivalent to continuity.

Example 5. Suppose ¢ € 2(Q). Let § be such that T,¢0 € D(Q) for |x| < 6. If
{xi1}72, CR" is a sequence with |z| < 6, and x; — 0, then

To, @ — @, as | — oo.

49
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To see why this is so, recall that there exists € > 0 such that supp ¢ + Bac(0) C . Suppose
that |x| < e. Then

supp 7,¢ = supp ¢ + & C supp ¢ + B(0) C supp ¢ + Ba(0) C Q.

Thus for i large enough, supp 7,,,¢ C K :=supp ¢ + Bc(0), where K is a compact subset
of Q. Now for any multi-index o, D¢ is a continuous function defined on a compact set,
hence is uniformly continuous. In particular this implies that

sup | D*¢(y + x1) — D*¢(y)| — 0, as z; — 0,
K

which immediately gives us that 7,,¢ — ¢ in 2(Q).

Example 6. Suppose ¢ € 2(2). For h > 0 sufficiently small, we define the forward
difference quotient:

1
Al) = (Tohesd = 9)
with {e;}I, the standard basis on R™. Then

Alg = D;g, as h — 0.

By the same argument as for the previous example, there exists a compact K C § such
that supp A?(Z) C K for h sufficiently small. By the mean value theorem, for each x € K,
there exists t; € (0,h) such that

_ D¢(x + he;) — D*g(x)
h

Fiz e > 0. Since D;D*¢ is continuous on K (hence uniformly continuous), there exists
6 > 0, independent of x such that If t, < § we have

DOAL() — DiDOG(x + toe)

|D;DYp(x + tre;) — D;DY¢(x)| < e.
If we take h < 4§, then t, < d for all x and we conclude:

sup |D;DY¢(x + tye;) — D;D¢(x)| < e,
zeK

which implies

sup [D*Alg(z) — DD ()| — 0 as h — 0.
zeK

Example 7. Fiz ¢ € Z(R) with ¢(z) # 0. The sequence:

¢j(x) = ;qb(a:—j), ji=1,2,...

does NOT converge in 2(R). We have that

sup |[D“¢| — 0, as j — oo,
R

but there is no compact set which contains the support of ¢; for all j.
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3.2 The space &()

The set C*°(Q2) can be given a topology in a fairly natural way. We recall that given
2 C R™ open, we can find a sequence of compact sets K; C € such that K; C K7, ; and
) = UK;. We define a family of semi-norms on C*°(2) by & = {pn}3_,, where for
N=0,1,2,...

pn(¢) = sup  [D%(z)|.
zeKN,|a|<N

This is a separating family of seminorms, giving rise to a topology 74 such that vector
space operations are continuous. We denote the set C2°(2) equipped with the topology
T by &(§). We can characterise the convergent sequences:

Theorem 3.2. A sequence {¢j};'>i1 C &(Q) converges to zero if for every compact K C )
and for each multi-index o we have:

sup [D%¢;| — 0,
zeK
as j — oo. Similarly, ¢; — ¢ if p; — ¢ — 0.

Since & is countable, the topology of &(2) comes from a translation invariant metric,
and moreover one can verify that it is complete, hence &(Q2) is a Fréchet space.

Example 8. Recall that C°(2) C C®(Q). If {¢i}2, C CX(2) tends to 0 in 2(2),
then ¢; — 0 in &(Q). In fact, we can say more: the inclusion map 1 : 2(Q) — E(Q) is
continuous.

Example 9. Fiz ¢ € 2(R) with ¢(z) # 0, and consider the sequence:

¢j(x) =jd(x—j), F=12,...

This converges to 0 in &(R). For any compact K, supp ¢; N K = 0 for j sufficiently large,
i.e., the support of ¢; eventually leaves any compact set. This shows that the topology of
2(9) is not simply the induced topology of C°(QY) thought of as a subspace of &(Q).

Exercise(x). a) Suppose ¢ € &(R"™). Let {x;};°, C R" be a sequence with
x; — 0. Show that
Te, @ — @, as | — oo.

in &(R™), where 7, is the translation operator defined in equation (1.2).
b) Suppose ¢ € &(R"™), show that
Ahg = D;o, as h — 0,

in &(R"), where A” is the difference quotient defined in Example 6.
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3.3 The space .7 (R")

The spaces 2(Q2) and &(Q2) are both defined on arbitrary open sets in R™. The final
space of functions that we wish to consider is a subspace of &(R"™) consisting of functions
which are rapidly decreasing near infinity.

Definition 3.1. A function ¢ € C*°(R") is said to be rapidly decreasing if:

sup |(1+ |.T|)NDQ¢($)‘ < 00
TER™

for all multi-indices o and all N € N.

Notice that rapidly decreasing functions and their derivatives decay faster than any
inverse power of |z| as || — oc.

Example 10. i) Suppose ¢ € C°(R™), then ¢ is rapidly decreasing.
it) The function x — e~lel® s rapidly decreasing.

The set of rapidly decreasing functions can be endowed with a topology as follows.
We define a family of semi-norms by & = {pn}3_;, where

pn(¢) = sup |1+ [z)VD%(x)|.
z€R™, |a|<N

This is a separating family of seminorms, giving rise to a topology 74 such that vector
space operations are continuous. We denote the set of rapidly decreasing functions
equipped with the topology 74 by .#(R™) or .. This is known as the Schwartz class of
functions. We can characterise the convergent sequences:

Theorem 3.3. A sequence {¢; 721 of rapidly decreasing functions tends to zero in & if
for every multi-index o and N € N we have:

sup ‘(1 + |x|)NDa¢j(m)‘ — 0,
TER™

as j — oo. Similarly, ¢; — ¢ with respect to T if ¢p; — ¢ — 0.

As for &(R™), the topology on .# is induced by a complete translation invariant
metric, so that . is a Fréchet space. The topology is not induced by a norm, so it cannot
be given a Banach space structure.

Lemma 3.4. The spaces Z(R"), . and &(R™) satisfy:
2(R") Cc ./ C &R).
Moreover, the inclusion map is continuous in each case.

Exercise 3.1. a) Show that . is a vector subspace of &(R"). Show that if
{¢; };";1 is a sequence of rapidly decreasing functions which tends to zero in
<, then ¢; — 0 in &(R™).
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b) Show that Z(R") is a vector subspace of .. Show that if {¢;}32; is a
sequence of compactly supported functions which tends to zero in Z(R"™)
then ¢; — 0 in .77

¢) Give an example of a sequence {¢;}72; C C2°(R") such that

i) ¢; = 0in .7, but ¢; has no limit in Z(R").

ii) ¢; = 0in &(R™), but ¢; has no limit in ..
Exercise 3.2. For each X € {Z(R"),.”,&(R")}, suppose ¢ € X and establish:
a) If z; € R", 2y — 0, then

Te,® — @, in X as [ — oo,
where 7, is the translation operator defined by 7,¢(y) := ¢(y — ).
b) If by € R, hy — 0, then
A?lqb — Do, in X as | — oo,

in X, where Al'¢ := h™1 [1_p..¢ — ¢] is the difference quotient.

3.4 Distributions

The theory of distributions (sometimes called generalised functions) allows us to consider
familiar functions as sitting within a larger class of objects, which are in some sense easier
to manipulate, and in which certain equations are easier to solve. This is a familiar idea
in the context of complex numbers, which are introduced to extend the real numbers such
that every polynomial has a root.

To motivate the idea, recall the general linear PDE of order k,:

Lu = Z ag D = f, (3.1)

la|<k

where we'll assume that a, € C*°(2) for an open Q C R™. We want to extend the notion
of a solution for this PDE to include the situation where v and f need not be of class
C*(). Let’s denote by X the space to which our generalised solution « and right hand
side f should belong. What properties do we require for X so that we can at least make
sense of the PDE (3.1)7 We can start to make a list of desirable properties:

i) The smooth functions C*°(€2) should be included in X in such a way that we can
recover them (i.e. the inclusion map ¢ : C*°(€2) — X should be injective).

ii) X should be a vector space over C, and the vector space operations should be
compatible with the inclusion ¢.

iii) We need to be able to multiply elements of X by elements of C*°(Q).
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iv) We need to be able to differentiate elements of X. Moreover whatever definition for
‘differentiation’ we come up with, it should be compatible with the inclusion .

v) We need some topology on X such that the above operations are continuous.

The idea that we shall pursue is to consider the space of distributions to be the dual
space to that space of test functions, i.e. we take as our space 2’(f2) the continuous dual
space of X:

Definition 3.2. A distribution u € 2'(Q) is a linear functional on the space of test
Sfunctions

u:2Q)—-C
which is continuous with respect to the topology of Z(Q).

We will state (but not prove) a criterion for continuity. Those interested in the proof
of this result will find it in the Appendix.

Theorem 3.5. Let u: 2(2) — C be a linear map. The following are equivalent:
i) w is continuous with respect to the topology of 2(2).
it) For each sequence {¢;}72, C Z(Q) with ¢; — 0 in Z(L2), we have:

lim u[¢;] = 0.

Jj—o0
iti) For each compact K C ), there exists N € N and a constant C such that:

ulg]] < Csup Y [D%(x)|,  for all ¢ € CZ(K). (3:2)

zeK la|<N

Remark. 1. By the linearity of u, condition ii) is equivalent to:

lim u[¢;] =u[@], for all ¢p; — ¢ in 2(Q).

j—00

2. If there exists a single N € N such that (3.2) holds for all compact K C Q (possibly
with C' depending on K ), then we say that u has finite order. The least such N is
called the order of u.

For a general topological space (as opposed to a metric space) in order to establish
that a function is continuous, it is necessary to consider open sets and their pull-backs
etc. It is not usually enough to simply check continuity for sequences. The reason that
we can get away with it in this case is somewhat complicated, but boils down to the fact
that although the topology of Z(2) does not arise as a metric topology, it is in some
sense the limit of a sequence of spaces which are metric.

We can think of a distribution as an operation which swallows a smooth function of
compact support and produces a real number. Let’s look at two important examples:



3.5  Functions as distributions 55

Example 11. a) (The Dirac delta) For x € Q we define the distribution:
00 :=¢(x) Ve ().
b) If f € L}, we can define the distribution Ty by:
70 = [ f@o)z, Vo9,
¢) For ¢ € D(R), we define:
PV <31:> 6] = lim U_:‘f’f)dx+/jo‘ﬁ“”)dx] |

This is clearly linear (assuming the limit exists). By a change of variables, we can

re-write: -~
P.V. <1> [¢] = lim o) = 9(=2)

x e—0 € x

Note that o(2) — o(—2) )
) — o(—x ,

- = /_1 @' (xt)dt

so that: o(2) — o(—2) )
’a:xx = /_lgb/(xt)dt‘ <2$ﬂ1£)‘¢".

From this, we conclude that the limit € — 0 above is well defined, and moreover, if

¢ € C°(BRr(0)) then:
1
’P.V. <) [¢]’ < 4Rsup |¢/].
X R
We conclude that P.V. (%) defines a distribution of order at most one.

Exercise(x). a) Show that J,, as defined in Example 11 is continuous and
linear, hence a distribution. Find the order.

b) Show that T, as defined in Example 11 is continuous and linear, hence a
distribution. Find the order.

¢) By constructing a suitable sequence of smooth functions show that the order
of P.V. (%) is one.
3.5 Functions as distributions

Let’s have a look at how we’re doing with our ‘wish list’ of properties. For Property 1)
we will take inspiration from part a) of the example above and define

L OR(Q) = 2(Q),
f - Tf.
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In order to check that this is injective, we need to show that if Ty = T, then f = g.
We shall prove this by showing that for any distribution of the form 7Y, it is possible
to recover f by applying T’y to appropriately shifted and scaled bump functions. Recall
that in the proof of Theorem 1.10, we introduced the bump functions ¢.. The idea will
be to make use of our previous results about convolutions. We require a bit of notation
first. Recall that if ¢ : R” — C, and = € R" we set 7,¢(y) = ¢(y — x). We introduce
the spatial inversion operator * defined by gi(y) = ¢(—y). By convention, the translation
operator acts first, so that 7,¢(y) = ¢(z — y).

Theorem 3.6. Suppose f € C*(Q), and let . be as in Theorem 1.13. Define for any
with d(z,08) > e:
fe(@) := Ty[ra¢e]-

Then for any compact subset K C Q and any |a| < k we have:

sup | D fe(x) — D*f(x)] — 0
rzeK

as € — 0.

Proof. Fix K C Q compact. Recall that by Lemma 1.14, there exists x € C°(€2) such
that x =1 on K 4 Bs(0) for some § > 0. Take € < 6. Then, since supp ¢ C B(0) we
have for z € K:

folx) = /Q F(w)rade(y)dy
— /Q F@)belz — y)dy

= [ )@~y
= e * (Xf)

Here we have used the fact that when |x — y| < € we have x = 1 to insert the cut-off
function without altering the integral. Now, since x is smooth, x f € C¥(R™), so as € — 0,
we have by Theorem 1.13 that for any |a| < k:

D%(¢e x (xf)) = D*(x/)

uniformly on R" as € — 0. In particular we have uniform convergence on K, so that:

sup [ D% (¢e x (XS)) (@) = D*(xf) ()| = 0.

Since for x € K we have ¢ x (xf)(z) = fe(z) and x(x) = 1, this is the result we
require. ]

This result immediately tells us that our map ¢ is injective.

Corollary 3.7. Suppose f,g € CO(Q). If Ty =T, then f = g. In particular this implies
L:C®(Q) — Z'(Q) is injective.
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Exercise(*). Suppose f € L} (). Take ¢, as in Theorem 1.13, and define for
x with d(x,0Q) > e )
fe(x) =Ty [Tw(;ﬁg] .

Show that for any compact K C €:
1o = Fllgagaey = 0
as € — 0.

[Hint: follow the proof of Theorem 3.6, but use part b) of Theorem 1.13]

3.6 Derivatives of distributions

Things are looking good for Property ii) because the dual space to a vector space is
naturally a vector space. If uj,us € 2'(2) we define the sum u; + ug € 2'(Q) by:

(u1 +u2)p =wp+uzp Ve 2(Q).

It’s easy to check that this is linear and continuous from the properties of u;.
How about Property 4ii)? First, let’s notice that if a € C*°(Q2) and ¢ € C2°(2) then
ap € C°(Q). We can therefore define for u € 2'(Q) the product au € 2'(Q2) by

(au)p = ulag] Ve ().

Now let’s consider Property iv). We want to find a definition for the derivative of a
distribution which gives the right answer when the distribution in question arises from a
smooth function f by the map ¢ : f = Ty. If f € C°°(€2), then certainly D;f € C*°(£).
Let’s consider T, ;. We have:

Tp, o = /Q (D3 f) () () d

Since ¢ € C°(Q), we can integrate by parts in this integral without picking up any

boundary terms to find
Tos6 = — [ f@)Dila)da
= —Ty[D;g]

Motivated by this, we define the D® derivative of a distribution u to be the distribution
D%y which acts on a test function ¢ € CZ°(12) as:

(D*u)[¢] = (~1)*lu[Dg].

The derivative we have defined on distributions extends the usual derivative for
functions defined as the linear approximation to the function at a point. The advantage
of the distributional derivative is that it is defined for any distribution. We’ll work out a
couple of examples:
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Example 12. a) The derivative of the Dirac delta acts on a test function ¢ € C°(Q)

by:
8 (o0} n
(Di5) 6 = 6. [Dig) = — 50 (a), Vo CX(RY)
b) Consider the Heaviside function H : R — R defined by
1 x>0,
H(z) = { 0 x<0.

This function is certainly not differentiable at x = 0. We can define the distribution
Ty € 2'(R) to be

Tyo= | H d
wo = [ Ha)o(e)ds
for ¢ € C*(R). We then compute:
(D2Th)¢ = —Tu[De¢)
= —/RH(QJ)(j)/(:C)d:E

o0
= —/ ¢ (z)dx
0
¢(0)
Here, we’ve used the fact that ¢ has compact support as well as the fact that H vanishes
for x < 0. Thus, we can say that

D, Ty = do.

Thus we see that the theory of distributions allows us to give some sort of meaning to
the derivative of a functions whose classical derivative does not exist.

Exercise(x). a) Show that if f1, fo € C%(Q) and a € C*(Q), then
aly +Tp = Tafi1f

b) Show that if f € C*(Q) then
Dan — TDaf
for |a] < k. Deduce that 1 o D = D% os.

c¢) Deduce that if f € C*¥(2) then
> aoa DTy = Tyy.
|o|<k

where
Lf=)Y_ auD"f

|al<k



3.6  Derivatives of distributions 59

Exercise 3.3. Suppose u € Z'(R) satisfies Du = 0. Show that u is a constant
distribution, i.e. there exists A € C such that:

ul[d] = )\/qu(az)dx, for all ¢ € Z(R).

(*) Extend the result to R™ for n > 1.
[Hint: Fiz ¢o € Z(R) and show that any ¢ € Z(R) may be written as ¢(x) =
V' (z) + cgpo(x) for some p € P(R), ¢y € C.J

A useful result allows us to infer regularity of a function from the regularity of its
distributional derivatives:

Theorem 3.8. Suppose that f € C°(Q) defines the distribution Ty in the usual way and
suppose moreover that for any multi-index o with || < k there exists g% € C°(Q) such
that

DTy = Ty

where D® is the distributional derivative. Then in fact f € C*(Q) and D*f = g in the
sense of classical derivatives.

Proof. First we show the result for £ = 1. Let us fix a compact subset K of 2 and let ¢,
be as in Theorem 1.13. Let us define for x € K and € sufficiently small:

Je(x) = Tf[TxéJ = /Qf(y)¢g($ —y)dy.

We know from Theorem 3.6 that f. — f uniformly on K as € — 0. Let us calculate
0
Dife(x) = f(y)a Pe(r — y)dy
Q T

)
= —/Qf(y)ayi@(x—y)dy

= (Din) [7:$(56]
= (Ty,) [r20e]

Now, as € — 0, we know that (T},) [Tzbc] — gi(z) uniformly on K. Thus we have

i

fe—=f, Dife— g

uniformly on K as € — 0. This implies that f € C*(K), D;f = g;. Since this holds for
any compact set we have that f € C1(Q2) with D;f = g;. By repeated application of the
k = 1 result, we can establish that the result holds for all k. O

This tells us that the distributional derivative is essentially equivalent to the classical
derivative wherever both are defined and continuous. One should be careful, however.
There are examples of continuous functions whose derivative vanishes Lebesgue-almost
everywhere, but whose distributional derivative is not the zero distribution. You may
wish to look up the Cantor function.
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3.7 Convergence of distributions

Property v) of our ‘wish list’ is the only one that we’ve not yet addressed directly. We
wish to give 2/(Q2) a topology. In fact, as the continuous dual of a topological vector space,
it naturally carries the weak-x topology. For convenience, we recall the main features of
this topology:

Theorem 3.9. The vector space 2'(Q) inherits a topology from P(Q), the weak-x topology,
such that

i) The vector space operations on 9'(2) are continuous.
i) A sequence {u;}32, C Z'(Q) converges to zero in 7'(Q) if
ujl¢] =0, for all € 2(Q).
as j — oo. Similarly uj — u for u e 2'(Q) if uj —u — 0.

Example 13. a) Suppose {f;}32, C C%(Q) is a sequence of functions such that f; — 0

uniformly on any compact K C Q. Then Ty, — 0 in 2'(Q). To see this, note that for
any ¢ € (), there exists a K such that supp ¢ C K. Then

7386 = | [ fweman| < Klsul o
but the right hand side is tending to zero, so Ty,[¢] — 0 for any ¢ € Z(Q).

b) A similar argument shows that if { f;}52, C L, (2) is a sequence such that 1fill ey =
0 for any compact K C 2, then Ty, — 0 in 7'(Q).

c) Let Q =R. Define a distribution as follows. For ¢ € P(Q), set:

algl= 3 6 mD(m)

m=—0oQ

For any given ¢ this sum will only have finitely many non-zero terms. It is straightfor-
ward to verify that u is itself a distribution, in fact it is an example of a distribution
of infinite order. Consider the sequence of distributions

M

upy = Z DImls,,,
m=—M

Let ¢ € 2(Q) be any test function. Then supp ¢ C Br(0), so for M > R, we have:

M
umlg) = Y @™ (m) = ulg]
m=—M

Thus we can write:
o

u=3 DI,

m=—0oQ

where the sum converges in Z(S).
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d) Consider the bump functions Tete for x € Q, where ¢, is as constructed in Theorem
1.13. Then:

TTz (136 - 61"

in 2'(Q) as e — 0. To see this, recall that for ¢ € P(Q), and € sufficiently small:

7,510 = [ ow)ote =)y = [ ouile —n)dy = b0 (o)

By Theorem 1.13 we have T, ; [¢p] = () = 05[¢]. Since o was arbitrary the result
follows.

3.8 Convolutions and the fundamental solution

What is the advantage of introducing distributions? Taking together various of the
properties we’ve considered above, we can formulate the following proposition.

Proposition 2. Suppose that f € C°(Q) and that T € 9'(Q) satisfies the distributional
equation:

> DT =Ty,

la|<k
for ao, € C*°(Q) and that moreover there exist functions u, € C°(Q) such that DT =T, .
Then u = ug € CF(Q) is a classical solution of the equation

Z aoa D% = f.

|laf<k

This gives us a new approach to finding a classical solution for a linear PDE. We first
show that there exists a distribution which solves the PDE and then worry about whether
it is in fact a classical solution.

Now we are going to specialise to the case of linear operators of constant coefficients
defined on R™. We will take L to be the partial differential operator

L:= Z aa D%,

laf<E

where a,, are now assumed to be constant. We wish to find solutions to the distributional
equation
Lu =Ty

since by Proposition 2 we hope that this will lead to classical solutions w € C*(Q) of the

equation
Z anD%w = f,

|laf<k

A powerful approach to finding a distributional solution to a PDE is to first construct
a fundamental solution. For this, we will require the notion of a convolution. We will
specialise to the case where 2 = R"”, i.e. to distributions defined on all of space.

It’s useful to introduce the notion of the support of a distribution.
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Definition 3.3. A distribution u € 2'(Q) is supported in the closed set K C Q) if
ulg] =0 V¢ e\ K)

i other words if u gives zero when applied to any test function that vanishes on K. The
support of u, supp u is the set:

sSupp u = ﬂ{K : u supported in K}.

As an intersection of closed sets, this is closed. If there exists a compact K such that u is
supported in K then we say that u has compact support.

With this definition it is easy to see that for f € C%(f2), supp Ty = supp f where the
support of the function f is defined in the usual way as the closure of the set on which f
is non-zero. Also, one can easily check that if u is supported in K, then so is D“u for
any multi-index «.

Exercise(x). Show that
supp 0, = {x}.
Deduce that there is no function f € C°(€2) such that d, = T}.

Suppose that f € CO(R") and ¢ € C°(R"). Recall that the convolution of the two
functions is defined to be

(fxo)(x) = o fy)o(zr —y)dy.
So that )
(f *@)(z) =Ty [126] .

Now, we can see that it is straightforward to define the convolution of any distribution
u € Z'(R™) with a test function ¢ € Z(R™) by the formula:

(ux §)(2) = u [74)]

Lemma 3.10 (Properties of convolutions). Suppose u,u; € 2'(R"™) and ¢ € 2(R").
Then

i) If
UL * P = Uz * P for all p € 2(R"™),
then u1 = us.
ii) u* ¢ e C°(R") and
D¥(ux ¢) =u*x D% = D% * ¢. (3.3)
iii) We have:
supp u * ¢ C supp u + supp ¢.

In particular, if u has compact support, then u x ¢ has compact support, and
uxp € Z2(R").
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i) Notice that u[¢] = (u* ¢)(0), so we deduce that
urep = (ur x $)(0) = (uz % $)(0) = uze
for any test function ¢, thus u; = us.

We calculate

Al fux ) (o) = TR 22O L 08 - [md)

1 -
= u h (T(x+hei)¢ - Tz¢)
= U[A?Tmé]
here we use the linearity of u. Now, if ¢ € C2>°(R"), then

P(x + he; —y) — p(x —y)
h

lim A7,4 = lim
h—0 h—0
= Di¢(z —y)
= (r(Di6)) )

with convergence in the topology of Z(R™). As a result, using the continuity of the
distribution, we have that

lim A% [ux 6] (2) = u |7.(Di6)| = (ux Dig) ().

Repeating the argument for higher derivatives, we conclude that the first equality
of (3.3) holds. To get the second equality, we calculate:

. ||
D [rad] (1) = 2 ()

= (=) (D)(x —y)
= (-1 [r(D39)] (v)
Now, using the definition of the derivative of a distribution:
(D% ¢)(x) = D% [r,0] = (—1)lu[D* (7,0)]
= ()P (=) [r(D7)] |
= u[n(Do)]
= (uxD9)(x).

iii) Suppose for z € R™ that u * ¢(x) # 0. Then we must have

supp u N supp 7,¢ # 0.
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In particular, there is z € suppu such that 7,¢(z) = ¢(x — z) # 0. Thus = — z €
supp ¢ for z € supp u, and we conclude:

{z:u*¢(x)#0} C suppu+ supp ¢.

Since supp ¢ is compact and supp v is closed, supp u + supp ¢ is closed, and so:

suppu* ¢ = {x : u* ¢(x) # 0} C suppu + supp ¢. O

We would like to define the convolution of two distributions. To do this, we recall
that if f,g,h € C2(R") then

(fxg)xh=fx(gxh), (3.4)
so that the convolution is associative. Motivated by this, we define:

Definition 3.4. Suppose ui,us € 2'(R"™) are distributions and that us has compact
support. The convolution ui * ue is the unique distribution which satisfies

(u1 * ug) * ¢ = uy * (ug x @)
for all test functions ¢ € Z(R™).

Notice that the fact that uy has compact support is required for this definition to
make sense, as it ensures (ug x ¢) is a test function. Since we can recover a distribution
from its convolution with an arbitrary test function, this defines uy * us.

Exercise(x). a) Show that for f,g € CO(R"):
Tf*g = Tf * Tg.

b) Show that convolution is linear in both of its arguments, i.e. if u; € Z2'(R™)
and ug, us have compact support then

(u1 + aug) * ug = uy * ug + aug x us
and
ug * (us + aug) = up * ug + aug * uyg
where a € C is a constant.
Exercise 3.4. Let X € {Z2(R"), ., &(R™)}. For u € X', € R", define 7,u

by Tu[¢] = u[r_.¢] for all € X, and let Afu = h='[r_p..u — u]. Show that
A?u — D;u as h — 0 in the weak-* topology of X’.

Exercise 3.5. Suppose u € Z'(R) satisfies zu = 0. Show that u = ¢dy for some
c € C. Find the most general u € 2'(R) which satisfies 2¥u = 0 for some k € N.

Theorem 3.11. Suppose that uy,us € 2'(R™) are distributions and that us has compact
support. Then
D%(uy * ug) = uy * D% = D%y % ug (3.5)
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Proof. We will consider the convolution of the distribution D*(u; x ug) with an arbitrary
test function ¢ and use the definition of the convolution, together with the previous
Lemma to shuffie the derivatives around:

DYuy xug) x ¢ = (uy xug)* D%
up * (ug x D)
uy * (D%ug * @)
= (u1 * D%sg) * ¢,

which establishes the first equality in (3.5) since ¢ was arbitrary. For the second equality,
we note

(ug x D%ug) * ¢ = g * (D%ug x P)
uyp x D%(ug * @)
D%uy x (ug x ¢)
= (D% *uz) * ¢,

again since ¢ was arbitrary we’re done. O

Exercise(x). a) Show that if ¢ € Z(R") then
do*x =0

b) Show that if u € 2'(R™) has compact support, then
do*xu=1u
Now let us introduce the notion of a fundamental solution to a linear PDE. We say

that a distribution G is a fundamental solution of the partial differential operator with
constant coefficients L
L:=) anD"

|a| <k
where a, are constants if it satisfies the distributional equation:
LG = dg
The reason that this is useful is the following:

Lemma 3.12. Suppose that G € Z'(R") is a fundamental solution of L and let ug €
2'(R™) be a distribution of compact support. Then the distribution u := G x ug solves the

distributional equation
Z aoa DU = uyg.

laf<k
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Proof. First note that the linearity and differentiability properties of the convolution
imply that

L(G*wy) = Z aoD*(G * ug)

la|<k

= Z ao (DG * ug) |[Lemma 3.10]

lo|<k

= Z ao DG | xug |Linearity]|

|lal<k

= (LG) * UQ
Now, use the definition of the fundamental solution to obtain
L(G*UO) = 50*U0 = Uug

since the convolution of a distribution with dyg gives back the distribution (Exercise
3.8). O

Thus, once we can find a fundamental solution, we can essentially solve the equation
Lu = ug for an arbitrary right hand side. Rather crudely, we can think of the Dirac delta
distribution as an identity. Then the fundamental solution provides an inverse to the
operator L.

3.8.1 An example: Poisson’s equation

Consider the following classical PDE problem. Given f € C?(R?), find a w € C?(R3)
such that:
Aw = f.

Here the Laplace operator is given by:

29 P
A + o+

Following the procedure outlined above, we will first turn the equation into the distribu-
tional PDE, and seek u € 2'(R3) such that:

Au=Ty. (3.7)

If we can find a G such that
AG = oy,

then we can write down a solution of (3.7) by convolution. There are several ways to find
such a G. We will note two facts (which we will not attempt to prove at this stage)

e The Laplace operator and dy are both invariant under rotations about the origin.



3.8 Convolutions and the fundamental solution 67

e The Laplace operator is elliptic. In particular, it has the property of elliptic
regularity. Roughly speaking this means that if a distribution « satisfies Au = 0 on
some open set, then u is a smooth function (thought of as a distribution).

Based on these observations, it is reasonable to suspect that we can write G = T}, for
g € C®°(R3\ {0}) a radial function g = g(r). Since g must satisfy the Laplace equation
away from the origin, and is spherically symmetric, we have (on changing to polar
coordinates):

d2
W (Tg) = 0, r> 0
Thus: 4
g=—+Db.
r

Clearly, since we can add a constant to any solution of (3.6), B is arbitrary and we choose
it to be 0. Let us proceed leaving A arbitrary. We shall eventually see that A = —(47)~1.
Note that g € L], (R?), so defines a distribution in the natural way.

We wish to show that for a suitable choice of A, the distribution G = T, satisfies
(3.7). To show this, we take ¢ € Z(R?) to be arbitrary, and choose R > 0 such that

supp ¢ C Br(0). We calculate:
ATy (9] = TyA [¢]
- [ s@)ota)da

= lim g(z)A¢(x)dx.
<=0/ BR(0)\B:(0)
In the last line, we use the dominated convergence theorem to justify the limit. The
reason that we have inserted this limit is that on Br(0) \ B¢(0) the integrand is smooth,
so we are entitled to apply the divergence theorem. Note that for 1,19 smooth functions,
we have the identity:

V- (1 Vipe — 0o Vih1) = 1 Avhg — o Adpy.

Integrating this identity over Br(0) \ Bc(0) with )1 = g, ¥2 = ¢ and applying the
divergence theorem, we have:

) 0
/ o) Bo(wyts = | [gaqb - 6,9] o+ [ Ag(a)d(a)da
Br(0)\Be(0) A(BRr(0)\Be(0)) n n BRr(0)\Be(0)

g
dB(0) on on

In passing from the first to second line we have noted that Ag = 0 away from the origin,
and also that ¢ = 0 in a neighbourhood of 9Br(0). The change of sign comes from the
fact that 0B.(0) is an inner boundary. Now, we estimate:

99 1Al |99

7 = sup — <
g(y)an(y)‘ yedB.(0) € 5”(y)’

A

€

sup
y€IB(0)

sup| Dg) .
R3
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Thus:
|A|

< 4me® x —— sup |[D¢| — 0,
€ PR3

as € — 0. For the other term, note that on 9B.(0), 3% = %, so that for y € B(0) we
have:

) 2 ) = 2ol

We therefore have:

dg 1
—do = (—47A doy,.
/83 (0) ¢ 7 ( T ) \83 ( )’ 0Bc(0) ¢(y) 7

Now, for any 0 > 0, since ¢ is continuous, there exists € > 0 such that |¢(y) — ¢(0)] <
for all y € B.(0). We estimate:

1 1
doy — ¢(0 — (0))d

1

—¢(0)| d
s [0B(0)] Jos,(0) 19(y) = #(0)}doy
1
o do, = 6.
=0 10BO] S,
Thus, we conclude:
1
lim ey d(y)doy = ¢(0).

0 [0Be(0)| Jap.(0)
Putting this all together, we have:

AT, [6] = (=47 A) x 6(0) = (—4mA) do [¢].

Thus if A = —(47)~1, we deduce that AT, = dy, and so G = T} is a fundamental solution.
We conclude that if f € CO(R3), then a solution of the distributional equation (3.7)
is given by:
u = Tg *Tf = Tg*f.
If f € C?(R3), the we know that gx f € C?(R3), and moreover that w = gx f is a solution
of the classical equation (3.6). Thus, the solution we seek is:

-1 fy)
i) = 4 /]R5 |z — yldy

By examining this integral more carefully, it is possible to show that assuming f € C%(R?)
in order to get w € C%(R3) is overkill. In fact, it suffices to have f € C’g *(R3) for some
0 < a < 1, where a function belongs to the Holder space Cg’o‘(R?’) if it has compact
support, and there exists a constant C' such that:

[f(x) = f) < Clz—y|*

holds for any z,y € R3. This is the subject of the Schauder estimates for elliptic PDE
(see “Elliptic Partial Differential Equations of Second Order”, Gilbarg and Trudinger).
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3.9 Distributions of compact support

Recall that as well as the space Z(Q2) of test functions, we also defined the space
& () consisting of smooth functions on Q2 where the topology is such that a sequence
{65152, C &(2) converges to zero in &() if for any compact K C Q and any multiindex
« we have:

sup (D% ()| 0.

zeK

It is natural to define &’(2) to be the set of continuous linear maps &(Q) — C.

Since the topology of &(2) is induced by a metric, continuity is equivalent to sequential
continuity. For a linear map u : £(€2) — C to belong to &’(f2), it is enough that:

lim u[¢;] =0

]—>OO
for any sequence {¢;}52; C &(£2) which converges to zero in &(2). Notice that if
u € &'(Q), then since 2(Q) is a subspace of &(Q), u : 2(2) — C is a linear map.
Moreover, we know that if {¢;}32; is a sequence tending to zero in Z(Q2), then it also
tends to zero in &(2). Thus u E &'(Q) is naturally an element of 2'(2), we have:

&'(Q) C 2(Q).

We are justified then in referring to elements of &”(Q) as distributions.
We can give a useful characterisation of continuity for linear maps from &(€2) to C as
follows:

Lemma 3.13. Suppose u : &(Q) — C is a linear map. Then u is continuous if and only
if there is some compact K C Q, N € N and C > 0 such that:

lu[¢]| < C  sup |[D%(x)|, for all p € E(Q). (3.8)
z€K;|la|<N

Proof. First we show that (3.8) implies that u is continuous. Pick a sequence {¢;}52; C
& () which converges to zero in &(€2). This means that for all @ and any compact
K' C Q we have

sup |D%p(z)| — 0.

e K’

In particular, this holds with K/ = K and for all @ with |a| < N, so as j — oo we have:

ulg]] <C sup [D%;(x)| =0,
z€K;|a|<N

and so u is continuous.

To show the opposite implication, we assume that (3.8) does not hold for any K, N, C'.
We take an exhaustion of 2 by compact sets K;, i = 1,2,... such that K; C K7, and
Q= U;K; (see Lemma A.6). Then since (3.8) does not hold for any K, N, C, in particular
it does not hold for K = K;, N = j and C' = j. Thus there must exist ¢; € &(€2) such
that:

lulgs]] > sup  [D%@;(x)].

zeKji|a|<j
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We define: 4:(2)
i(x
vi(e) = 2
! |ul6,]|
Clearly ¢; € &(€2). We claim that ¢; — 0 in &(€2). To see this, fix a compact K C
and a multiindex c. For sufficiently large j, K C Kj and j > |a|. Thus:

sup |D%;(x)| <  sup Dﬂgbj(x)‘
zeK $6K37|ﬁ‘<]
as a result, we can estimate:
1
Sg}ﬁ; | D%j(2)| = m nglz | D¢ ()]
T 71l x
sup,e e [D¢;(x)| 1

jSUpzeKj;|5|<j |D6¢j($)| J

We conclude that D%, tends to zero on K, but since a and K were arbitrary, this
implies 1; — 0 in &(£2). However, u[y);] /4 0 since |u[t;]| = 1 by construction. Thus u is
not continuous. This establishes that if u is continuous, then (3.8) must hold for some
K,N,C. O

With this result in hand, we can give some examples of distributions u € &’(2).

Example 14. i) If f € CY(Q), then defining as usual:

Trlo) = /qu(x)f(x)dx, for all ¢ € &)

we have Ty € &'(Q2), since:

1Ty 16]] < /Q F@)dz sup |6(y).

yesupp f
If f € C%(Q) but supp f is not compact, then Ty & ().
it) If x € Q, then then setting:

0[] = ¢() for all ¢ € £(4),

we have &, € &'(Q). If K is any compact set containing x, then:

102[]] < sup [¢(y)] -

yeK
iti) The map u: Z(R) — C
ulg] =Y o(m) (3.9)

does not define a distribution in &' (R). Indeed, the sum need not converge for any
given element of &(R). For example, the constant function ¢(x) =1 belongs to &(R),
but the sum in (3.9) does not converge for this test function.
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In these examples we see that elements of &’(£2) have compact support, while distri-
butions with non-compact support do not appear to make sense when applied to elements
of &(). In fact this is a more general result:

Theorem 3.14. Suppose u € &'(Q). Then u € 2'(Q) and u has compact support.
Conversely, suppose that uw € () has compact support. Then there exists a unique
u € &'(QY) such that

u[¢] = ulp] for all p € 2(9).

We say that @ is the extension of u as a linear map on &(2).

Proof. Suppose u € &' (). We have already argued that u € 2’(2) in a natural fashion,
S0 it remains to show that supp u is compact. By Lemma 3.13 there exists some compact
K CcQand N € N, C' > 0 such that:

lul]] < C sup |D%p(x)|, forall ¢ € &().
zeK;|al<N

Now suppose that supp¢p C 2\ K. From the estimate above, we have that u[p] = 0.
Thus suppu C K and we must have that supp u is compact.

Now suppose that u € 2'(2) has compact support. By Lemma 1.14 we know that
there exists x € C2°(Q2) such that y =1 on suppu. For ¢ € &(Q), we define:

u[¢] = u[x9].

This makes sense because x¢ is compactly supported in Q, so u[x¢] is defined. If ¢; — 0
in &(Q), then x¢; — 0 in 2(Q) (see Exercise 3.9). Thus @ € &’(2). We also note that if
¢ € Z(Q), then y¢ — ¢ has support in Q \ supp u. Thus:

0=ulx¢ — ¢] = u[¢] — u[g],

so that @ and u agree on (). It remains to show that @ is unique. Suppose v € &’(2)
satisfies

ulp] = 0[] for all ¢ € 2(Q).
Let ¢ € &(Q2) be arbitrary. We can find ¢; € Z(Q) such that ¢; — ¢ in &(Q) (see

Exercise 3.9). We have, using the continuity of @, :

aly] = lim alg;] = lim [¢;] = 3[y).

j—o0 Jj—00
Thus @ = v, since 1 was arbitrary. O

Exercise(x). a) Suppose that {¢;}72; C &({2) is a sequence such that ¢; — ¢

in £(Q), and x € Z(Q2). Show that
X¢; = x¢ in 2(Q).

b) Show that if ¢ € &(€2), then there exists a sequence {¢;}72; C Z(Q2) such
that ¢; — ¢ in £(Q).
[Hint: Take an exhaustion of Q by compact sets and apply Lemma 1.14]
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3.10 Tempered distributions

The final class of distributions that we shall consider are the tempered distributions. The
space of tempered distributions arises as the continuous dual of ., the Schwartz space of
rapidly decreasing functions. Recall that ¢ € .7 if ¢ € C°°(R"™) and for any multiindex
and any N € N we have:

suﬂg) |(1+|2))ND*¢(z)| < o
z€R™

We say that a sequence {¢;}32; C .7 tends to zero if:

sup [(1+ [2])N D6 ()| 0
zeR?

for all N € N and all multiindices a.

We define .¥’ to be the continuous dual space of .. That is to say, v € . if
u .Y — C is a continuous linear map. Since the topology of .% can be induced by a
metric, again sequential continuity is equivalent to continuity. For a linear map u : . — C
to belong to ./, it is enough that:

lim u[¢;] — 0,
j—00

for any sequence {¢; };’il C . which converges to zero in ..

Lemma 3.15. Suppose u : . — C is a linear map. Then u is continuous if and only if
there exist N,k € N and C' > 0 such that:

lulg]l <C  sup  |(1+ \:E|)NDO‘¢(33)‘ ,  forall p € 7. (3.10)

zER™;|al<k
Proof. See Exercise 3.6 O

Example 15. i) Suppose f € L} (R™) and there exist C > 0, N € N such that

loc.
()] <O+ |z)Y.
Then Ty € /'
it) The map:
O o e"”‘Qcﬁ(a:)da:
does not define a tempered distribution.

iti) For ¢ € C*°(R), and N € N we set:

o0

ulg] = Y mNe(m).

m=—0oQ

The sum converges for ¢ € ., and defines a tempered distribution.
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From these examples, and Lemma 3.15, we see that the tempered distributions are
those that don’t grow too much near infinity.

Exercise 3.6. Suppose u : . — C is a linear map. Show that w is continuous
if and only if there exist N,k € N and C' > 0 such that:

@l <€ sup |1+ [V D¥(x)

z€R"; || <k

, forall ¢ €.7.

Exercise 3.7. Suppose u € 2'(R") is positive, i.e. u[¢] > 0 for all ¢ € Z(R™)
with ¢ > 0. Show that u has order 0. (*) Deduce that u[¢] = [, ¢du for some
regular measure (.

Exercise(x). Let (a;)72_,, be a sequence of complex numbers. Define for
» € C*(R):

[e.9]

ulg) = > a;6())

j=—o0

provided that the sum converges. Give necessary and sufficient conditions on a;
such that: a) u € &'(R), b) u € ', ¢) u € Z'(R).
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The Fourier Transform and Sobolev Spaces

4.1 The Fourier transform on L!'(R")

The Fourier transform is an extremely powerful tool across the full range of mathematics.
Loosely speaking, the idea is to consider a function on R™ as a superposition of plane waves
with different frequencies. For f € L'(R"), we define the Fourier transform f : R" — C
by:

FIE) = &) = (z)e” ™ Eda.

Rn

Sine | f(z)e™™¢| < |f(x)], the integral is absolutely convergent, and £(€) makes sense for
each £ € R™.

Example 16. i) Suppose f € L'(R) is the “top hat” function, defined by:

1 —-1l<z<l,
f(‘””)—{o 2] > 1.

We calculate:

Notice that f(€) is continuous (in fact smooth) on R. We also have f(€) — 0 as
& — o0.

ii) Suppose f € LY(R) is defined by:
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Then:

0 00
f() = / e*1=18) dy: + / (1718 gy
0

. 0 . [e%e)
 Jert-) . o(—1-i)
o 1-dE | —1-ig |,

1 1 2

=i 11 1+
Again, notice that f is smooth and decays for large &.

iii) Consider g € L'(R) given by

1
9(z) = 14 22
We have: ‘
. o) efz:vg J

We can consider this as a limit of contour integrals:

—iz€
§(6) = lim/ ¢  dr.
v

R—00 R1+Z2

Where vr = {S(z) = 0, |R(2)| < R}. For & > 0, we can close the contour with
a semi-circle in the lower half-plane, and we pick up a contribution from the pole
at z = —i. The contribution from the curved part of the contour tends to zero as
R — o0 by Jordan’s lemma, and we find:

g =met, £>0.

For £ < 0, we close the contour in the upper half-plane, picking up a contribution
from the pole at z =i and again discard the contribution from the curved part of the
contour in the limit. We find:

§(§) =met, £<0.

In conclusion, we have:
. mes £ <0,

iv) Consider now for x € R™ the Gaussian f(x) = e~21 . We calculate:
fo) = [ et

:/ o~ 3 (@=i€)-(2—i€) = 31€” 1,

= ¢ alel’ ( / eé(misl>2dx1> ( / e%@wfn)zdxn)
R R
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By shifting a contour in the complex plane, which is justified since e~ is entire and
rapidly decaying as z approaches infinity along any line parallel to the real axis, we

can show that:

/e_é(“_’fl)zdxl = / e_%”"%d:cl =/27.
R R

We deduce that:
A n 11¢12
f(&) = (2m)¥ 31
Notice that this is (as a function) equal to f up to a factor.

We will make some casual observations at this stage. In all of our examples, we saw
that the Fourier transformed function decays towards infinity. For examples iii), iv) we see
very rapid (exponential) decay of the Fourier transform, while in examples i), ii) the decay
is only polynomial. In all examples the transformed function is continuous. In examples
i), ii), iv) it is in fact smooth, while for iii) the Fourier transform has a discontinuous
first derivative. Reflecting on this, one sees that these two features appear to be dual to
one another: if f is smooth, then f has rapid decay towards infinity. If f decays rapidly
near infinity, then f is smooth. This is in fact a general feature of the Fourier transform
smoothness and decay are dual to one another under the transform.

We shall now make some of these observations more precise.

Lemma 4.1 (Riemann-Lebesgue Lemma). Suppose f € LY(R™). Then f € CO(R") with
the estimate:

sup
£eRn

G (4.1)

and moreover f(£) = 0 as |¢] — oo.

Proof. To establish the continuity of f , we use the continuity of the exponential, together
with the dominated convergence theorem. Let {¢; };";1 be any sequence with §; — & as
J — o00. Recalling the definition of the integral, we have:

fe) = | s,
R”
Now, clearly for x € R™ we have:
f(x)e ™% 5 f(x)e ¢, as j — 0o
so we have pointwise convergence of the integrand. We can also estimate:

F@)e 9] < | ()]

so the integrand is dominated by an integrable function, since f € L'(R"). Applying the
Dominated Convergence Theorem, we conclude:

A~ ~

f(&5) = f(8), as j — oo.
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This implies that f (£) is continuous. We can readily estimate:

(z)e @ dx
R™

f(&)| = sup

¢eRn

sup
¢eRn

<swp [ |f@)lde =[]

£eR™ JR
This establishes the first part of the Lemma. To establish the second part, we make use
of an approximation argument. Chapter 1 that if f € L'(R™), we can approximate f by
an element of C§°(R™). Given € > 0, there exists f. € Cg°(R"™) with
€
17 = Flp < 5.
Now, in the integral for fe we can integrate by parts::

f© = | flz)e ™
Rn

= fe(zx) div (gze_mf) dz
R iy

—il¢
= — ——— - Dfc(r)e dx
R —i [¢]
so that for each ¢ = 1,...,n we have, by the Cauchy-Schwarz inequality:
2 _ 5 —ix-€
f(©)| = —— - Dfc(z)e " da
n 1 [g]
< ¢ p —izg
< —— - Dfe(z)e dz (4.2)
n |7 |£|
1
</ — |Dfe(z)| dx
e [€]
2| ipr|
= —_— € €T
€l L
From this, we conclude that there exists R > 0 such that if |{| > R, we have fg(ﬁ)‘ < 5.

For [£| > R we calculate:

HG|

IGENAGESAG]
9|+ |f©) - f&)|

N

AGIE
fe(g)’ + Hf - f6”L1 < €.

<

In the last line, we have used (4.1), together with the linearity of the Fourier transform.

A~

f(é’)‘ — 0. O

Since € > 0 was arbitrary, we have shown that

Remark. The argument above is another example of an approrimation argument where
one first proves the result on a suitably nice dense subset then extends to the full space by
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continuity. In this case, we are using the fact that the Fourier transform is a bounded (hence
continuous) linear operator from LY(R™) to the Banach space of continuous functions
decaying at infinity equipped with the uniform norm. The dense set is C§°(R™) C L*(R™).

Another tactic which we used here was to use integration by parts to exploit the rapid
oscillations in the e™*¢ factor when |€| is large.

One might be tempted to infer from (4.2) that ‘f({)’ <O+ [¢])t. While this is

true for each f. approzimating f, in general the constant C will grow larger and larger as
e — 0, so we cannot quite come to this conclusion.

Exercise(x). For £ € R", define e¢(x) = . Show that T, € &', and that:
Te. — 0, as |§] — oo
in the weak-* topology of ..

We shall prove some important properties of the Fourier transform. Recall that
7, f(x) = f(z — y), and introduce the character e,(z) = "¥?.

Lemma 4.2 (Properties of the Fourier transform). i) Suppose f € L'(R"), z € R",
A >0 and fr(y) = A"f(A"Ly). Then

A~ A~

) = (e (eaf) () = T f (£) T f(€) = e~ (€)F(€)
ii) Suppose f,g € L'(R™). Then f*g € L*(R") and:

Frg(6) = f(©)3(e).

Proof. 1) Writing out the expression for fa (£), and changing the integration variable to
2z = A"lz, we see

WO = [ h@eFde= | [OTTe)e N e = | f(y)emPE dz = ().

Rn

Next, we calculate:

@he - [

Finally, we have:

n n

e fy)e EVdy = / Fly)e D vdy = 7, f(€).

l(©) = | fy-a)eTdy = | fz)en €z = T | f()eT Mz = ea(€)

where we have used the substitution z =y — x.

ii) First we show that f xg € L'(R™). To see this, we first estimate:

n

9@l =| [ sste - nas| < [ 1rata - ol ay
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Integrating and applying Tonelli’s theorem, we have:

<ol < [ ([ 1rwata = nlay) ao
= [ s ([ lote - las) dy

= [ 15 gl dy = 1151 gl

Now, we can calculate the Fourier transform:

—

Frg(§) = A g(z)e “"dx

-/ ( i f(y)g(w—y)dy> T dy

= [ 1) ([ ata=weear) ay

- [tz
= | FWa(©e vy = f(©)a(©)
O
Exercise(x). Calculate the Fourier transform of the following functions f €
L'(R):
2) f() = T ros

1
b) f(z) = o for € > 0 a constant.

2
_oE=y)

c) f(x) = Ze ¢, where 0 > 0, t > 0 and y are constants.
t

1
coshz’

*d) f(z) =

We saw with the examples that there is a duality between the decay of a function
and the regularity of its Fourier transform and vice versa. To make this more precise we
prove the following result, which tells us, roughly speaking, that the Fourier transform
swaps coordinate functions x; multiplying f for derivatives ¢D; acting on f .

Theorem 4.3. i) Suppose f € CY(R™) and that f,D;f € L*(R") for allj =1,...n.
Then
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Suppose (1+ |z|)f € L*(R™). Then f € CY(R"), and:
D;f(§) = ~i;f(€)

Proof. i) We again appeal to an approximation result. For f € C1(R") with f, D;f €

i)

LY(R™), then for any € > 0 there exists f. € C}(R") such that ||f — fe||;: < € and
|Djf — Djfell ;1 < e Integrating by parts, we readily calculate:

Dif€)= [ Difew)e®*du

=— fe(x)Dj(e_ig'm)dx
RTL
=i fe(z)e &% dx
Rn
so that EE(@ = zfjfg(g). Now, we calculate:
Di1(€) = i€/ (€)| = |DiF (&) = Difele) + i€ fu(©) — i€ f )|
S D f = Difellpr + [ = fell e
< e(1+[€])
Since € > 0 is arbitrary, we must have that ‘Ej\f(f) — zfjf(f)‘ = 0, and the result
follows.

From the condition on f it is clear that z;f € L'(R"), so fi:?]-b\f is continuous. It
suffices to prove then that:

AMf(&) = =iz f(€),  ask — o0
for any sequence {h;}7°,; C R with hy — 0. We calculate:

A X ) A ‘ —izjhy _ 1
AP 7€) = - (FE+ hues) = f(©) = | Flape¢ (m) "

Now for x € R™ we have:
) —izjhE _ 1 )
f(z)e ¢ (€> — —ixjf(w)e_w'§
I
as k — oo. Noting that ‘eio — 1‘ =2 }Singl < 0 for any 0 € R, we have that:
—ixjhy

Flayei= (hk‘l)’ < Jajf (@)

where the right hand side is integrable. By the Dominated Convergence Theorem,
we have:

lim A% f(€) = / iy (e e dr = —ia f(©).

k—00

We deduce that f € C*(R").
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Exercise(*). Suppose f € C}(R") and that f, D;f € L'(R"). Fix € > 0. Show
that there exists f. € C§(R™) such that
€

1f = fellos +I1D; f = Difellp < 5

Corollary 4.4. i) Suppose f € C¥(R"™) and D*f € L*(R") for |a| < k. Then there is
some constant Cy, > 0 depending only on k such that:

(L4 IED*F@| < D2 1Dl

la|<k

sup
£eRn

i) Suppose (1+ |z|)*f € L*(R™). Then f € C*(R™) and for any |o| < k we have:

sup
EeR™

Dof()] < | +1abs|

i11) The Fourier transform is a continuous linear map from ./ into .7 :
F.: 77— 7.

Proof. 1) First we note the algebraic fact that for any k there is some constant C}, such
that!:

L+ED" < D 1e7

la|<k
holds for any £ € R™. Repeatedly applying the part i) of Theorem 4.3 we know that:
ile® f(€) = D (&).
We therefore have:

a+le)* o] < Y filefo| = a3 [Dore)|

la|<k || <k

taking the supremum over £ € R™ and applying the estimate (4.1) we conclude

L+ D" ()] < e D2 ID e

|a| <k

sup
£eRn

ii) By iterating part ii) of Theorem 4.3 we have that for |a| < k
D) = (=)l f(8).

Taking the supremum of the absolute value over £ € R™ and applying the estimate
(4.1) we have:

sup | DF()] < fla flpx < [[(1+ et f|

£€Rn
Irecall that £ := £21£52 ... £om
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iii) Note that if:

sup (1+ |z))V [ f(z)] < K,
zeR™

1
Il = [ 1@lde < 6 [ e < o

provided N > n. Thus in particular if f € .¥ then there exists some constant C,
such that:

we have:

|1+ [z D f[| ;1 < C Sup (1+ |z)) M+ [ D f ()]
TER™

for all M € N and all multi-indices o. Applying the previous two parts we conclude
that f € C*°(R") and:

sup (141§D |DPF©)] < Cxar_sup (14 [a) M D7 f(a)
E€Rn,|BI<M TER™, |a|<N

For some constant Cy ar,, depending only on N, M, n. Thus f € .. Moreover, if
{fi};21 € & is a sequence with f; — 0 in &, then f; — 0 in ., so that F is
continuous.

O

Notice that while the Fourier transform maps % to itself, the same is not true of
2(R™). Suppose f € C§°(R™), then provided supp f C K for K a compact set we have:

f() = /K f(@)e = Edu

By repeatedly differentiating, it is possible to show that f is in fact real analytic, and
hence f cannot vanish on any open set without vanishing everywhere. In particular, f
cannot vanish outside a compact set.

Exercise 3.8. Suppose f € L'(R"), with supp f C Br(0) for some R > 0.

a) Show that f € C°°(R") and for any multi-index:

sup | D F()] < B |1f] s

£ERP
b) (*)Show that f is real analytic, with an infinite radius of convergence, i.e.:
o

f(&)=>_Df(0)

«

al

holds for all £ € R™. Deduce that if f (&) vanishes on an open set, it must
vanish everywhere.
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You may assume the following form of Taylor’s theorem. Suppose g € C*+1(B,.(0)).
Then for x € B.(0):

(6% xa
o) = Y D)%+ Y Ryt
lal<k |Bl=k-+1
where the remainder Rg(x) satisfies the following estimate in B,(0):
1 «
[Rg(z)| < 27 max  max |[D%(y)|.
B! lal=I8| yeB,(0)

Exercise 3.9. Recall that L®(R) = L!(R)’. Consider the sequence (f,,),
where f, € L®(R) is given by f,,(x) = sin(nz). Show that f, = 0. Show that
f2 & g for some g € L>®°(R) which you should find.

To complete this section, we are going to establish the invertibility of the Fourier
transform, under some reasonable assumptions on f and f. In particular, this will permit
us to show that F : . — % is in fact a bijection.

Theorem 4.5 (Fourier inversion theorem). Suppose f € L'(R™), and assume f € L*(R"),
then for almost every x:
1 £ 1x-€
= — d€. 4.3

1@) = e [ TS (13)

Proof. We shall establish the result by looking at the limit e — 0 of
1 o 1242 5
_ —Lee? e

I42) = G /]R e e,

in two different ways. Firstly note that for £ € R" we have:
J(©e 2 e 5 fe)et™.

Moreover, we can estimate

gt

<|f©)]
so that the integrand is dominated by an integrable function. Thus by the Dominated
Convergence Theorem we have:
1
@2m)™ Jgn

On the other hand, we have, using Fubini’s thorem:

I€($) = (23[_)71 /n < - f(y)e_i§~ydy> 6_%62\$|2€ia&~§d£

= (271r)" /Rn fy) (/Rn e—§e2§|2€_i£.(y—w)d§> dy

1 _ly=a?
= | fW)———=ze 2 dy
Rn e (2m)

=f *'@De(x)

I(x) — f(&)e™4de, as € — 0.

w[3
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where ¥ (x) = e (e 'x) for

_ b lp
P(x) (27‘()% e .

Note that ¢ € C*°(R"), ¢(z) > 0 and

Y(x)dr =1
R

so by Theorem 1.13, b) we have that:
fxtpe = f,
in LY(R™), thus we must have that

1
(2m)" Jrn

flz) = f&)e™tde

for almost every z. O

Note that by the Riemann Lebesgue Lemma the map

1
(2m)™ Jgn

f(&)e™4de

T —

is continuous. Thus under the conditions of the theorem, if f is additionally assumed to
be continuous, then we can upgrade the almost everywhere convergence to convergence
everywhere. Alternatively, our result shows that if both f € L*(R") and f € LY(R"),
then f must be almost everywhere equal to a continuous function.

We can summarise the inversion formula quite neatly by noting that (on a suitable f):

F2f = (2n)"f.

An immediate corollary of the above result is that F : . — . is a bijection, and that
F~1:.# = & is continuous.

Exercise(x). Counsider the following ODE problem. Given f: R — C, find ¢
such that:

—¢"+o=f. (4.4)

a) Show that if f € ., there is a unique ¢ € % solving (4.4), and give an
expression for ¢.

b) Show that

where
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Exercise(x). Suppose f € L'(R3) is a radial function, i.e. f(Rz) = f(z),
whenever R € SO(3) is a rotation.

a) Show that f is radial.

b) Suppose that £ = (0,0, (). By writing the Fourier integral in polar coordinates,
show that

e8] ™ 2m
= / / f(r)ereos 02 in 0dOdrdep.
r=0.J0=0J =0

¢) Making the substitution s = cos 6, and using the fact that f is radial, deduce:

) = 4n Slnr|£|
f 0%

for any & € R™.

4.2 The Fourier transform on L?(R")

Having defined the Fourier transform acting on functions in L'(R"), we are going to
extend it to act on more general functions (and eventually distributions). Firstly, we shall
see how the Fourier transform extends very nicely to act on functions in L?(R"). As we
have already seen, this is a particularly nice function space because it is a Hilbert space.
We recall the inner product:

(f,9)= [ [(z)g(x)dx
R’ﬂ

which induces the norm via:
1
1fllp2 = (f. f)2

and moreover it is complete, which means that all Cauchy sequences converge in L?(R™).

We shall first establish that the Fourier transform maps L'(R™) N L?(R") into L?(R"),
and moreover show that the L? inner product is preserved by the Fourier transform (up
to multiplication by a constant).

Theorem 4.6 (Parseval’s Formula). Suppose f,g € L*(R*)NL2(R"). Then f,§ € L2(R™)
and moreover:

L s
Proof. We will again use a density argument to prove this result. First suppose that
fyg € . Then using the Fourier Inversion Theorem (Theorem 4.5) and Fubini’s theorem
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we can calculate:

Rn ) n

(271r)" /Rn < /Rn f(x)eix'%ﬂ) 9()de
N <2i)n /R ( /R f<ff>6”fdw>g<£>ds
— e L F00)d = G (7:9)

Now suppose that f,g € L*(R") N L2(R™). By Theorem 1.13 part b), there exists a
sequence {f;}72; C Cg°(R"™) C . such that:

1
1fi = Fllp + 115 = fll e <

and similarly for g. We know that:

F© = )| <1 = Ml < 5

sup
£eRn

so that fj — f uniformly on R™. We also have by the calculation above:

Hf] ka @m)2 || f; — fill 2 -

Now since f; — f in L*(R™), we have that {f;} is a Cauchy sequence in L?*(R™). Thus
fj is a Cauchy sequence in LZ(R”). By the completeness of L?(R™), we have that f]
converges in L2(R™) and hence f € L2(R"). Furthermore, we know that

1 P
(fir95) = W(fj,gj)

since each of the sequences {f;},{g;},{f;}, {d;} converge in L*(R"), we can take the
limit? j — oo to conclude:

..
(f.9)= (%)n(ﬁg) O

Thus we have shown that the Fourier transform F maps L'(R™)N L?(R") into L?(R™).
Moreover, we have that it is a bounded as an operator from L?(R") to itself, since

I41.

This means that F is a bounded linear map defined on a dense subset of a Banach space.
A general result tells us that the map extends uniquely to a bounded linear map on the
entire space. Rather than invoke an abstract result, we can show this directly.

(2m)% || £l 2

2You should check that you understand why this is valid.
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Corollary 4.7. There is a unique continuous linear operator F : L*>(R™) — L%(R") such
that:
Flfl=FIfl,  foral feL'(R")NL*R"). (4.5)

We say that F is the extension of the Fourier transform to L*(R™). It is sometimes known
as the Fourier-Plancherel transform.

Proof. For any f € L?(R"), we can take a sequence {fi}52, C LY(R™) N L2(R™) with
fi — fin L?(R™) (for example by approximating f with smooth functions of compact
support). By Theorem 4.6 we have that:

|5 = 24|, = @mF 18 = il (4.6)

L2

Now, since f; converges in L*(R"), it is in particular a Cauchy sequence in L?(R").
Equation (4.6) shows that fj is also a Cauchy sequence in L?(R™), hence has a limit,
say F € L?(R™) by the completeness of L?(R™). Suppose {fi}52, C LY(R™) N L2(R™) is
another sequence with f]’ — f, and suppose fj — F’. Then we have:

1P = Pl = tim £ = 7], = Jim @m)% £ = £ = 0

since both f; and f]’~ tend to f. Thus F' depends only f, and not on the sequence f;
which we chose to approximate f.

We define F[f] = F, i.e.
F[f] = lim F[fjl, where {fj °, C LI(R") N LQ(R”), fi— fin LQ(R”),

]-)OO
and the limit is to be understood to be in L?(R™). This certainly satisfies (4.5), since we
can take our approximating sequence to be the constant sequence f; = f for all j when
f € LYR™) N L*([R™). F is clearly linear and moreover, we have that

7151, = |
= Jim (5]l

= lim (2m)% £l = (2m)¥ |2,

lim F[f;]
J—0 2

so F is bounded and hence continuous®. It remains to show that F is unique. Suppose
that F is another continuous linear operator satisfying (4.5). For any f € L?(R"), take
a sequence {f;}32; C LYR™) N L*(R™) with f; — f in L*(R"). We have:

?/[f] lim ]:J[fj] = hm f[f]] Flf]

Jj—00
so that F = F. O
’If {f;}52, € L*(R™) is a sequence with f; — f in L*(R"), then
|FLfi1 = FLA 2 = |1 FLfi = £ 2 = Ef = fll2 =0

so F[f;] = Flf] in L2(R").
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Exercise(*). (*) Suppose that f, g € L%*(R™), and denote the Fourier-Plancherel

transform by F. You may assume any results already established for the Fourier
transform.

a) Show that
1

(2m)"

(f,9) = (F111, Flg)) -

b) Recall that f(y) = f(—y). Show that:
7 [FUf1] = 2o
Hence, or otherwise, deduce that F : L%(R") — L%(R") is a bijection, and
that 7 : L?(R™) — L?(R") is a bounded linear map.
¢) Show that:

FLA(€) = Jim flz)e ™ Edy
—°.JBR(0)

with convergence in the sense of L*(R").

d) Suppose that f € C1(R") and f,D;f € L*(R"). Show that &F[f](§) €
L?(R™) and:
F[D;f1(€) = i&;F[f1(E)

e) For x € R let:

i) Show that f € L%(R).

ii) Show that:
T -1<€&<,

nO={% st
f) i) Show that for all x € R™:
7% 9@ < 1fll 2 gl 2

ii) Show that fxg € C°(R") and:
fg=FFf- Fl
where:

1
(2m)™ Jgn

F A=) = f&)ecde.

[Hint for parts a), b), d), f): approximate by Schwartz functions/
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Exercise(x). Work in R?. For k > 0, define the function:

G eik“ﬂ
@) = T
a) Show that G € L1(R3).
b) Show that:
A 1
G(¢&) =
O e

[Hint: use Ezercise 4.1, part c)]
Exercise 3.10. Suppose f € #(R™). By observing that
1, ..
91 = [ (v ) £(e) o
RrRn T

or otherwise, show that:

n 2 N

@M% (1£1I72 < ~llel £@)]] ]l 16 £ 2

with equality if and only if f(x) = ae=21" for some a € C, A > 0. Deduce that
if zg, fo e R"™:

) IF1s < 2l — ol £ 16 — ol FE)

Explain how this shows that a function f € L?(R") cannot be sharply localised
in both physical and Fourier space simultaneously. This is the uncertainty
principle.

Usually one does not labour the distinction between the Fourier transform acting on
L'(R™) and the Fourier-Plancherel transform acting on L?(R"™). From now on we shall
use the same notation for both, so that for f € L*(R") we write F[f] = F[f] = f. Since
the two transforms agree wherever both are defined, there is no ambiguity in this. The
majority of the results that we have already established for the Fourier transform extend
to the Fourier-Plancherel transform in a straightforward way, see Exercise 4.2.

4.3 The Fourier transform on .’

We are now going to extend the Fourier transform in a slightly different way, such that it
acts on distributions. Suppose that f € L'(R"), and ¢ € .. Then since f € C°(R") and
f decays towards infinity, we have that Tf € .’. By Fubini we have:

1ol = [ fwots= [ ([ foeray) oo

- [ 1w ( L ¢<az>e—“'yd:c> dy

~

= [ [fx)¢(z)dz.

R
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Thus for f € L'(R"™) we have that:

Tsl¢] = Ty[9], for all ¢ € ..

Motivated by this, we define:

Definition 4.1. For a distribution v € ., we define the Fourier transform of u, written
€ . to be the distribution satisfying:

a¢] = uld)], forall g € 7.

Notice that the definition makes sense because the Fourier transform maps . to .
continuously. If we tried to use the above definition but with ¢ € Z(R") and u € Z'(R"),
we would run into difficulties because ¢ ¢ Z(R™).

Example 17. a) For £ € R™ we have:
8\5 = Te—g

To see this, we use the definition. For ¢ € & :

Selol = 0ld) = 6(6) = [ e 4o(a)dn =T, Jo
Since ¢ was arbitrary, the distributions are equal.

b) For x € R™ we have:

o~

Te, = (2m)"04.
To see this, we note for ¢ €

—~

T.[6) =Te.[¢] = / eTG(€)de = (2m)"¢(x) = (2)"dal¢].

Again, as ¢ is arbitrary the distributions are equal. Note that a particular case is
T1 = (27{')"(50.
c) For a a multi-index, denote by X< the map
Xz x™.

Then we have: -
Txa = (2m)"il* D5,

For ¢ € 7
Txeld] = Txe[d] = | €°0(6)dS
= (i)l [ Dog(e)de

Rn
= (2m)"(=) D¢ (0) = (2m)"il*l x (—1)l*l5y [D*¢]
= (2m)"il* D6 [g)]
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Most of the properties of the Fourier transform defined on . are inherited by the
transform defined on .’. We first need to define a couple of operations on .. Recall
that if ¢ € .7, then 7,¢ € . is the translate of ¢, given by 7,¢(y) = ¢(y — x), and
b € .7 is given by ¢(y) = ¢(—y). For u € .7, we define:

meuld] = ulto¢l, U] = uld]

Notice also that if f € C°°(R") is a function of tempered growth, i.e., if for each o and
there exists a constant C, and integer N, such that:

|DYf(2)] < Ca(l + |z,  Vz e R™
then ¢f € . when ¢ € . and we can define fu € .’ by
fuld] = ulf o]
Exercise(x). Verify that if f € L}, is such that Ty € .%”, then:
7T = Try, and Ty =Ty

Lemma 4.8. Suppose u € .7’ is a tempered distribution. Then:

et = T, T = e_y, Doy = ilol xog D% = (—i)l*l Xy
Moreover:
u = (2m)"u,

so that the Fourier transform on .’ is invertible.

Proof. These are all calculations using the corresponding results for .. Take ¢ € .. We
have:

~

eziilg) = exuld] = ulesd] = u [Tad| = ilr_se] = Toulg].
Since ¢ was arbitrary, we have e;u = 7,4. Similarly, we calculate:
7o) = Tould] = ulr—od] = u [e—6] = ile_sd] = e_sulg].
Next we have
Doulg] = Du 8] = (=)l [ Dg]
= (-Dlelu [(=i)I x| = dlelu [Xg)
= illa[xeg) = (i x"q) [¢]
similarly:
D%alg) = (-1)lla[D¢] = (~1)*lu[Dg)]
= (—~Dllufil X ) = (—i)eLxu[g]
= (=) Xu) [g].
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Finally, we have

af] = a[g] = ul] = u[(27)"¢] = (27)"u[g]
Since @ = u, we have that the Fourier transform is invertible. O
Importantly, the Fourier transform is also a continuous linear map %' — ..

Lemma 4.9. The map:

s a linear homeomorphism.

Proof. We already have that F is linear. From the definition of the weak-x topology, a
sequence {u;}32; C . converges to u if

;@] = ul¢]

for all ¢ € .. Suppose that we have such a convergent sequence in .. We calculate:

j]p] = ujl¢] = ul¢] = a[g].

Thus if u; — u we have F(uj) — F(u). Thus F is continuous. Since F* = (27)%"s, we
have that F is invertible and the inverse is also continuous. O

Remark. Strictly, we have only established that F is sequentially continuous with respect
to the weak-x topology induced on .’ by .. Establishing genuine continuity is not difficult,
but requires the full description of the weak-x topology, and we leave this as an exercise.

Exercise 3.11. Let f: R — R be the sign function

-1 <0

ro={ 5

and define fr(z) = f(2)1_g gr)(2).
a) Sketch fr(zx), and show that Ty, — T} in .#'(R) as R — oo.

b) Compute fr(€), and show that for ¢ € .7 (R):

o =21 [ HD ) gy [ (A=)

f T T

Deduce ’1/? = —2iP.V. (%), where we define the distribution P.V. (%) by:
1
PV <> [¢] = lim Md:z:, ¢ € .Z(R).
z =0 R\(_Ere) €z
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¢) Write down C//};, where H is the Heaviside function:

0 z <0
H(x):{l x>0

By considering e~ “* H(x), or otherwise, find an expression for the distribution
u which acts on ¢ € . (R) by:

u[¢] := lim (z) dx

e—0+ Jr T + 1€

Exercise 3.12. Suppose ¢ € C°(R™ x R™). For each y € R™ let ¢, : R" — C
be given by ¢, (z) = ¢(x,y). Let u € Z'(R").

a) Show that 1 : y — u[¢,] is smooth and find an expression for D). Deduce
that

Y(y)dy = u[¥], where ¥(r)= o(x,y)dy.
Rm R™

b) Show that there exists a sequence of smooth functions f,, € C2°(R™) such
that T, — u in the weak-* topology of 2'(R").

4.3.1 Convolutions

We have generalised almost all of the properties of the Fourier transform to distributions.
The final result that we shall establish concerns convolutions. Recall that if u € 2'(R")
and ¢ € 2(R") then u* ¢ € C>°(R"™) is given by:

uxo(xr) =u [ngiv)] .

Notice that this definition continues to make sense for each z, provided u € .’ and
¢ € ., although it is no longer clear that the resulting function is smooth. We have the
following results concerning this convolution.

Theorem 4.10. Suppose u € . and ¢ € ./ are given. Then the function:

ux¢p:R"— C

has the following properties

a) ux ¢ e C®(R") with

DY(u* @) = DU * ¢ = ux D%.

b) There exist constants N € N, K > 0 depending on u and ¢ such that:

Jux p(a)| < K(L+ o)™

¢) Tywp € " and moreover:

—

Tourg = .
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d) For any ¢ € .7, we have:
(ux @)t =ux(g*)

e) We have:

Ty = (2m)"¢u

Proof. a) The smoothness of u * ¢ is proven exactly as in Lemma 3.10, i7). The only
modification to the argument required is to note that for ¢ € ., we have

Ahp - Di¢p in .7, as h—0.

b) First, we note the following simple inequality which holds for all z,y € R™:
Ltz 4yl <1+ fzf+ |yl < (L4 |z + Jy).
Next, recall from Lemma 3.15 that there exist N,k € N and C > 0 such that:

]| <C  sup |1+ |y)VDY(y)|, forallyp €.7.
yER™;|al<k

Applying this inequality with ¢ = T2, we calculate:

lux¢(z)| = |u[rd]| <C  sup |1+ ]y)¥D%(y — )|
yER™;|al<k

=C sup !(1+\z+x!)NDO‘¢(z)‘
z€R™;|a|<k

<|C sup (14 [2DVDY(2)|| (1 + |2V
2€R™;|a|<k

which gives the result on setting:

K=C sup |1+ |z))VD(2)|.
yeR™;|a|<k

c¢) Combining the above two results, we have that Ty € .7/, since ux ¢ € L} (R") and

loc.
u * ¢ grows at most polynomially. It therefore makes sense to consider the Fourier



4.3  The Fourier transform on .’ 95

transform. Suppose that ¥ € Z(R™). We calculate:

Toro 9] = Tuss M = (2m)" T[] Fourier Inversion Thm
— (2n)" / kbl (~a)da Defun. of T
= (2m)" / u [726] ¥(—z)dx Defn. of u* ¢
— (27)" / u [p(~o)d) dr Linearity of u
— e[ wi-anéa] o
= (2m)"u [(é;w)] Defu. of ¢ * 1)
—u F*\\lp} —4 [@] Fourier Inversion Thm
= [¢0) = (da) [v] F.T. of convolution

Most of the manipulations here are relatively straightforward. We have used Theorems
4.2, 4.5 in addition to various definitions. The step marked (!!), in which we inter-
changed an integration and an application of u requires some justification. Crudely
this is true because we can replace the integration with an appropriately convergent
Riemann sum and use the linearity and continuity of u. We shall justify this step in
Lemma 4.11. The conclusion of this calculation is that:

Tosli] = (60) [0]

This holds for all ¢ € Z(R"). Now, since Z(R") is dense in . and F : ¥ — ./ is a
homeomorphism, we have that:

Flo®y) ={d: v e 7@}
is dense in .. Thus, by approximation,
Tunol] = () I
holds for any x € . and we’re done.

Note that in the process of proving the previous part, we established that for any

P e 2(R™):
[ uxdla)v-a)de = u (@5 v)]

which is equivalent to:

(uk @) xP(0) = ux (¢ x¢) (0). (4.7)
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Now, note that:

Ux Ty =Ty (u*x @), ¢xTyth =7y (p* )

as can be easily seen from the definitions. Applying (4.7) with ¢ replaced by 7,1, we
conclude that:

(ux @) xP(y) = ux (6 *9) ().
Since this holds for any ¢ € Z(R") and Z(R") is dense in .¥, we're done.

e) This result follows by applying part ¢) to @ * ¢ and repeatedly making use of the
Fourier inversion theorem. We calculate:
T,,5 = o0 = (21)*"du

= (2m)*"(¢u) = (2m)"(¢u)

Since the Fourier transform is a bijection on ./, the result follows.
O

In order to complete the proof of the above result, we need to justify the step marked
(") in which a tempered distribution and an integration were interchanged. We will first
prove a result concerning the convergence of Riemann sums, which will enable us to
establish that the (!!) step was justified. Let us suppose that Q C R™ and ' C R™ are
open and that f € C%(Q x ) is uniformly continuous. We will also assume that there is
some R > 0 such that:
supp f(,y) C [-R, R)" C Q

for each y € Q.
Next, we define a dyadic family of partitions of [ R, R)™ into cubes as follows:

R R, R R, .
Hk = {|:—2k_2172k(21 + 1)) X o+ X |:—2kln7 27(%” + 1)) 1 € [—2k72k — ].] ﬂZ}

where k = 0,1,.... The (k + 1)* partition is obtained by chopping each cube in the k"
partition into cubes with half the side length. Clearly for each fixed k:

U Iy, = [_R> R)n

For 7 € I, we define z, to be the point at the centre of the cube 7. We define the k"
Riemann sum with respect to this partition by:

Suw) = 3 Flany)lnl.

melly

Lemma 4.11. With the definitions as above,

Sk(y) — /Qf(ff,y)dfC

uniformly in y € Q.
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Proof. First note that = +— f(z,y) is continuous and of compact support, hence Riemann
integrable on ). Thus for each fixed y we have:

y) - /Q £ y)dz

Next consider ¥ > k. We have that II; is a refinement of II, i.e. if 7’ € II;/, then there
is a unique 7 € Il with 7’ C 7. We calculate:

Sk@W) = Sw) = > flamy)lnl = 3 > flaw,y) ||

welly melly o’ el
et s
g § f(@ay) — f(or,y) ’7[- ‘
melly EHk/
' Cm
here we have used that:
/
= > |
W’EHk/
m'Cn

Now, since f is uniformly continuous, we know that for any € > 0 there exists a 9,
independent of y, such that

‘f(xay) _f(xlvy)} <€

for all |z — 2’| < 0. Notice that for 7/ C 7 we have:

R
|$;r — $w‘ < W\/ﬁ

Thus given € > 0, there exists K such that for all k > K:

[f(@r,y) = (@2, y)] <

(2R)™

Now suppose k' > k > K. We estimate:

k) = S < Y > 1f(@ny) = flaw,y)l |7

welly er/
' Cmr
™| =«
WGHk s EHk/
' Cr

since the sum over the partition simply gives us back the volume of the large cube.
Sending &’ to infinity, we have the result we require. O

This result allows us to establish the result we require:

Corollary 4.12. Suppose u € /', ¢ € % and ¢y € P(R™). Then:

o [ oomii| = [ ulp-omnda
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Proof. Fix Q, R > 0 such that supp v C [-R, R)" C Q. Define the map:
f: OQxR* —» C
(z,y) = P(-z)d(y —x)

Notice that (14 |y[)"V Dy f is uniformly continuous on  x R™ for any a, N. Thus applying
Lemma 4.11 we deduce that:

Sk — Y(—2)Tp¢d, in ..
R

By the continuity of u, we deduce that:
u { w(—x)chgdm} =u [lim Sk} = lim u[Sy]
R” k—o0 k—o0

By the linearity of u, we calculate:

w(Skl=u | > e ) x| = D ulf@n ) nl= D wl[(—2x)7,d] |7l

WEHk FEHk WEHk

But x — u [w(—x)mq}] is smooth, hence Riemann integrable, and we have that

lim u W(—xw)mﬂgﬂ || = / u [Lb(—ZL‘)TzQ;] dz.

Rn

4.4 The Fourier—Laplace transform on &’'(R")

Recall that &'(R™) C &/(R"™) is a continuously embedded subspace, consisting of the
distributions of compact support. These distributions are precisely those which extend to
continuous linear maps from & (R™) to C (see Theorem 3.14). For these distributions, we
can express the Fourier transform in a very clean fashion.

Theorem 4.13. Suppose that u € &' (R™). Then 4 = Ty for some 0 € C°(R™) with:
0(€) = ule—].

Proof. Suppose that suppu C Bg(0). Pick ¢ € Z(R™) with ¢» = 1 on Bgry1(0), so that
Pu = u. We calculate:

L~ 1
u = '(/Ju = WT,&*,L&.
By Theorem 4.10 €). Thus we have @ = T}, with © = (27) @ 1) € C°(R™), by Theorem

4.10 a). )
Now let ¢ € . be such that ¢ = 1. We calculate:

BE) = Gyt * V() = 1 9(6)

— (
= [red] = u |7e6| = ule_ev] = (Wu)le_¢]
= ule_¢]. =
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In practice, one does not distinguish between the distribution 4 and the function ©
and one uses the same letter to denote both. Notice that for u € &’(R™), the expression
ule_,] makes sense for z € C". Moreover, this function is in fact holomorphic on C".
The analytic extension of a Fourier transform from R™ to C™ (or a subset thereof) is
sometimes called the Fourier-Laplace transform.

4.5 Periodic distributions and Poisson’s summation formula

Recall that the translate of a distribution v € 2'(R"™) is defined by:

Tuld] = u[T—.9], for all p € Z(R"),
Bearing this in mind, we can make a very natural definition of what it means to be
periodic:

Definition 4.2. We say that a distribution uw € 2'(R™) is periodic if for each g € Z™ we
have:
Tl = 1.

Example 18. a) The distribution u = T, , is periodic for any g € Z". Suppose g ez
Then:

Tg’Te2ﬂg [¢] = T327r9 [T*9/¢] = / 627ri9'3/¢(y + g/)dy

n

_ / e27rig~(z—g/)¢(z)dz _ e—27rig-g’ / e27rig-z¢(z)dz
n R

= T62Trg [(Z)]

b) Suppose v € &' (R™). Then

u = E TgU

gEL™

is periodic. It is straightforward to show that u defines a distribution (see Exercise
below). To check periodicity, we have, for g € Z":

Tg’“[@ﬂ = U[T—g’¢] = Z TgU [T—g’ﬁb] = Z v [T—g—g’ﬁb} = Z Tg+g'V [¢] = ul¢],
geEL™ geEL™ geEL™

where we shift the dummy variable in the sum for the last step.

Exercise(x). Suppose v € &’'(R™) and let:
u= Y .
geEL™
Show that if ¢ € Z(R"™) with supp ¢ C K for some compact K C R™ then
ulg] =Y mguldl,
geA

for some finite set A C Z" which depends only on K. Deduce that u defines a
distribution.
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When dealing with a periodic function f € C°°(R™), many quantities of interest are
averages over a fundamental cell of the periodic lattice:

1 1
q:{mER":—2<xi<2,i:1,...,n}

For example:
M = x)dx
(f) /qf (z)

is the mean value that f attains. We’d like to extend this notion to makes sense for
periodic functions, but we’re presented with a difficulty. The obvious definition would be
to set:

M(u) = ult]

but of course 1, ¢ Z(R") so we’re not able to do this. Instead we will ‘smear out’ the
function 1,. To do this, notice that a crucial property of 1, is the following identity:

Z T, =1,
geEL™

which tells us that 1, generates a partition of unity.

We shall construct a smooth ‘partition of unity’, which will allow us to localise various
objects, and thus render them easier to deal with, and will enable us to define the mean of
a periodic distribution. This is a slightly technical result, but the basic idea is important
and crops up in many areas of analysis.

Lemma 4.14. Let
Q={rzeR":|z;|<1l,i=1,...,n}

be the cube of side length 2 centred at the origin. There exists a function ¥ € C°(R™)
with ¢ > 0 and suppy C Q such that:

Z Tg = 1.

gEL™
Suppose that u € P'(R™) is periodic, and 1,1’ are both as above. Then:
uly)] = uly']

We then define:
M (u) := u[¢)]

Proof. Note
1
qg= {xGR":\xi < 2,@':1,...,71}.
S

By Lemma 1.14, there exists a function g
g = 0. Consider:

C5°(Q), with ¢o(z) = 1 for € g and

@) =3 to(z - g).

geEZ™
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For any bounded open set €2, we have that

A={geZ":(Q-g)NQ #0}

is finite. For z € (), we have:

geA

so S(z) is smooth. Moreover, for each x € R, there is at least one g € Z" with x — g € q.
Thus S(x) > 1. We can thus take:

Yo(x)

This is smooth, positive, supported in ) and moreover:

S () = 5(1) S ole—g) = 1.

geEZ™ geZ"

Now suppose u € 2'(R™) is periodic and 1,1’ are both partitions of unity as above.
We calculate:

ulg) =u | > | = > ur]

geEL™ geEL™

= gl =u @ Y | = ) =

geEL™ geEZLn

We thus have an acceptable definition of the mean of a periodic distribution. Notice
that if u = T’ for some locally integrable periodic function f, then by choosing a bounded
sequence of 1;’s such that 1); — 17 pointwise, we can show that:

M(Ty) = / f(@)d,

justifying calling M the mean of the distribution.

To see why this technical lemma is useful, let us apply it to show that a periodic
distribution is necessarily tempered, and in fact the periodic distributions we found by
translating a compact distribution are indeed all of the periodic distributions.

Lemma 4.15. Suppose v € &' (R™) is a compact distribution. Then:
u = Z TgU (4.8)
geEL™

converges in .. Conversely, suppose that u € 2'(R™) is a periodic distribution. Then
there exists v € &' (R™) such that (4.8) holds and thus u extends uniquely to a tempered
distribution u € ..
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Proof. Let K = suppwv. Since v € & (R™), by Lemma 3.13 there exists C' > 0, N such
that:

w[g]| <C  sup  |D%(x)], forall ¢ € &R").
zeK;|a|<N

Now suppose ¢ € . C &(R"™). We have:

ITgu[9]] = [v[r—g9]| < C  sup |D%@(z+g)|.
r€Ki|a|<N

Since K is bounded, we have that K C Bgr(0) for some R > 0. We calculate:
I+lgl=1+]z+g—2|<T+R+|z+g <A+ R)A+|z+g])

for all x € K, so that:
1+ |x+g|

1< (1+R) T+ 1d]

We conclude that for any M > 1:

C(1+R)M N
QT ;TP\<N(1+ @+ g™ D6 (z + g)|
TEK ||

C(1+R)M M
< ——>~ sup 1+ D~ .
TP yGR”;IaKN( )™ [D%¢(y)|

[Tgu[9]] <

Since ¢ € ., in particular we have:
Cl
70 [9]] € ————7
! (1+ g™

where C’ depends on v, ¢. Now, since:
1
ZZ: Arlgh™ =
(see Exercise below) we deduce that for each ¢ € . the sum:
Z 4 [¢)]
geL™

converges. This is precisely the statement that the sum in (4.8) converges in .&".
Now suppose u € 2'(R™) is periodic, and take ¢ as in Lemma 4.14. Suppose
¢ € 2(R") is arbitrary. We have:

ulg) = [ Y v | uldl = D> ulrgipe]. (4.9)
geEL™ geEL™

Now, since u is periodic,:

u [tgd] = Tou [Th¢] = u[PT_gd] = (Yu) [T_g¢] = T4(Yu)[¢]
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Now ¢u has compact support, so by Theorem 3.14 extends uniquely to v € &'(R™). Thus

we have:
u= Z TgU
gez”
which by the first part of the proof converges in ./, thus u € .. O

Exercise(x). Recall that for z € R™:

n
Izl = fail
i=1

For k € N set:

1 1
={sez g <ol <k+]
Show that:
BQi = (2k+1)" — (2K — 1)"
so that #Q < c¢(1 + k)" for some ¢ > 0.

By applying the Cauchy-Schwarz identity to estimate a - b for a = (1,...,1)
and b = (|g1|,-.-,|gn|), deduce that:

lgll, < vnlgl

Show that there exists a constant C > 0, depending only on n such that:

At gt S 70 2

geZ™ |9l <K

holds for all K € N. Deduce that:

1
—_— < Q.
n+1
2 TF g

We have shown that a periodic distribution is necessarily tempered. It is therefore
reasonable to ask what one can say about the Fourier transform of a periodic distribution.
In fact, it will turn out that the Fourier transform of a periodic distribution has a very
simple form: it consists of a sum over d-distributions with support on the points of an
integer lattice.

Before we establish this, we will first need a technical result regarding distributions.

Lemma 4.16. Suppose that u € . satisfies:

(e—g —)u=0 (4.10)

for all ¢ € Z". Then:

U= g Cg627rgv

geEL™
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where cq € C satisfy the bound
legl < K(1+1g)Y
for some K >0, N € Z, and the sum converges in .&".

Proof. First, we claim that suppu C A, with
A={2ng:g€Z"}.

Suppose ¢ € Z(R™) with supp ¢ C R™\A. Then for each ¢’ € Z™, we have (e,g/ — 1)71 ¢ €
&, since ¢ vanishes near any zeros of e_y — 1. Applying the condition (4.10), we deduce:

1

0= (e_g, — 1) U [(e_g/ — 1)7 ¢} = u[¢]

so u vanishes. Thus suppu C A. 3
Now, let us take ¢ as in Lemma 4.14, and define ¢ (z) = ¢ (%) It’s straightforward
to check that:

Z Torg? = 1, supp? C {z € R" : |z;| < 2w}
geEL™

For g € Z", let us consider v, = (Tgﬂgﬂ)u. This distribution is supported at 2wg, and by
multiplying (4.10) by T2r4¢ we have:
(e_g/ - 1) vg =0

In particular, we have, taking ¢’ = [; for j = 1,...n, where {l;} is the canonical basis for
R™:
(e—i(wj—%gj) — 1) vg = 0.

Now,
(67“’” ~2mes) — 1) = (z; — 2mg;)r(z;)
where k(x;) is non-zero on a neighbourhood of g;. Thus we conclude that:
(x; — 2mgj)vg =0, j=1,...n.

Now suppose ¢ € .. We can write:

n

¢(x) = $(2mg) + Y _(x; — 2mg;)¢;()

=1

where ¢;j(x) € C*°(R"). Since vy has compact support, it extends to smoothly to act on
&(R™) and we calculate:

Ug[¢] = Ug[¢(27rg)] +

J

(xj - 27793’)”9[‘15)'] = Ug[¢(2779)]
1

n
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Returning to the definition of v4, we have:

(TQTrgl/;)u[‘ZS] = (Tnglﬁ)UW(zﬁg)] = U[T%glz]‘s%g (9]
so that ) )
(7_27rg¢)u = U[T27rgw]627rg

Summing over g € Z", we recover:

Z (7'27rg"‘/~’>u = Z (Tng@ U=u= Z Cg02mg

geLZ™ geL” gez”
Where
cg = U[Torgt)].
To establish the estimate for ¢4, we recall from Lemma 3.15 that there exist N,k € N

and C > 0 such that:

lulg]] <C sup  |(1+]z))ND(x)

2ER™;| o<k

, forall ¢ € ..

Applying this to Tgﬂgz/?, we have:
el <C sup  |(1+ [2)N D (@ — 2g)|
2€R™; || <k

<C sup ’(1 + |z + 27Tg\)ND°‘1/~J(x)’
z€R™;|a|<k

<O sup
TER™;|a| <k

<KL+ |9

(14 )N D) x (1+gl)™

With this bound, it is a straightforward exercise to verify that the sum converges in
. O

Exercise(*). Show that if ¢, satisfy:
legl < K (1+ g™

for some K > 0 and N € N, then:

Z Cg527rg

gEL™
converges in ..

This now enables us to establish a result regarding the Fourier series of a periodic
distribution.
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Theorem 4.17. Suppose u € P'(R"™) is a periodic distribution. Then there exist constants

cq € C such that:
U = Z CgTleyny-
geEL™

with ¢4 are given by:
cg = M(e_argu).

and satisfy the bound:
gl < K(1+|g)™ (4.11)

for some K >0, N € Z.

Proof. Since u is periodic, it is tempered by Lemma 4.15. Thus we may take the Fourier
transform. Noting that:
TgU =1U

for all ¢’ € Z™, we have that
efg/’ll =1 — (efg/ — 1)'& = 0.

By Lemma 4.16, we deduce that:

i =(2m)" ) cglang,

geEL™

for some ¢, satisfying (4.11), where the sum converges in /. We can apply the inverse
Fourier transform, making use of the fact that it is continuous on .’ to deduce:

u = E chE%Q,

gEL™

with convergence again in /. To establish the formula for ¢,, we make use of the
comments after Lemma 4.14 to note that:

M(€—271'9T62ﬂ.g/) = /€2Wi(g_g/).xd$ = (Sggl
q
Since u +— M (e_arqu) is a continuous map from .’ to C, we deduce that:

M(e_orgu) = Z ch(e,gTrgTe%g,) =cg.
g'€zn

Remark. Usually one writes the Fourier series for u as:

u = E Cg€2rg,

geEZ™

ignoring the distinction between the function earq and the distribution it defines.
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As a simple example, let us consider the distribution:

By Lemma 4.15, this defines a periodic distribution, since d, = 740y and dy € &'(R").
Notice also that if v satisfies the conditions of Lemma 4.14, then since supp vy C {z € R™ :
|zj| <1}, we have that 741(0) = 0 for g € Z" with g # 0. Thus, since > cyn 799 = 1,
we must have ¢(0) = 1. We can then calculate:

Cg = M(672ﬂ'gu) = u[¢e,2ﬂg] = w(O)e_QWig'O - 1.

Thus we have established Poisson’s formula:

Z 59 = Z T627rg7

geEZL™ gEL™

where we understand both sums to converge in .’. This is sometimes written, with an

abuse of notation:
S da—g)= Y P
gEL™ geEL™

We can specialise various results concerning Fourier transforms to the case of Fourier
series.

Corollary 4.18. i) Suppose u € 2'(R"™) is periodic and may be written as:

u = E chEQM.

gEL™

Then Dju € 9'(R") is periodic and has Fourier series:

Dju = Z (2migjcg) Teyy,-
geEL™

ii) Suppose f € L} . (R™), then:

loc.

eol <111

and moreover, cg — 0 as |g| — oo.

iii) Suppose f € C"T1(R™) is periodic. Then:

F@) = 3 gt

geEL™

with the sum converging uniformly.
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) Suppose f,h € L2 (R™) are periodic with Fourier coefficients fg, hy respectively.

Then: e
/f(x)h(a:)da; = Z fohyg.

This is the Fourier series version of Parseval’s formula. Moreover,

f(ID) — Z 696271’1'9-:):

QGZ"
holds, with the sum converging in L*(q).

Proof. 1) Since the Fourier series for u converges in ./, we may differentiate term by
term (as differentiation is a continuous operation from .’ to itself). Since

DjTe = (27T’igj)T

27g €2mg)

the result follows.

ii) Note that if f € L}, . (R"™), then:

loc.

< / F@) dz = |l -

q

legl =

/ efzﬂig'xf(a:)da:

q

Now, given € > 0, we can approximate? f by a smooth periodic function f., with
Fourier coefficients ¢, such that

€
1f = fellrg < 5

Since D;D;f. € L}, (R"), we have that lg]? ‘c'g‘ < C, for each j =1,...,n so there

loc.

exists R > 0 such that }cg‘ < § for |g| > R. We have:
, €
‘Cg - Cg} S = fellprg < 3
so we conclude that for |g| > R:
‘ |—‘ f’+/’<E+E_
col =leg—cgteg <5+ 5=e

Thus ¢, — 0 as |g| — oo.

iii) Since f € C**1(R"), we have that D*f € L} _(R") for |a| < n+ 1. Applying the
previous two results we conclude that |c,| < K (1 + |g])~""! for some K > 0. Thus
the partial sums:

Fn(x) — Z cgeQﬂig-x

gEL™ |g|<n

4See Exercise 4.1
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converge uniformly to some continuous function F' by the Weierstrass M —test. We
have:
Tp=lim Y cTe,, = lim T, =Tp

n—oo
gEL™ |g|<n

since uniform convergence implies convergence in .’. By the injectivity of the
mapping between continuous functions and distributions we conclude f = F.

Suppose f,h € C*°(R") are periodic. Then:

— Z fge27rig-m’ h(ﬁ) _ Z hg€2m’g-x

gEL™ gEL™

with sup,ezn (14 |g]) | fg| < oo for all N € N, and similarly for hy. We calculate:

/f(l‘) d.f _/ Z fg e~ 2mig-w Z hg/e27rig’-z dr
q q

geL™ g'ezn
Z Z f h / 2mi(g )zdl'
geEL™ g'eL™
=Y > Fohgley =D Fohg
geEL™ g' €L geZn

In particular, we have that:

11220y = Ialliagary

where for a sequence {ay}4ezn, we define:

SIS

2
||ag”g2(zn) = Z |ag]

gEL™

Now suppose f € L2, (R"). Given k > 0, we can find f*) € C°°(R") with Fourier

coefficients fg Jsuch that:
1

Hf_f( k

Since by Cauchy-Schwarz we have:

s = [ s < ( \f(ac)\%wc)é (/ dm)% Sy

we have that:

1
fg_fggk)‘ < E)

= Su
Hfg 9 Heoo(zn) QGZ%

Now, f(*) is a Cauchy sequence in L?(q), so {fg(k)} is a Cauchy sequence in £2(Z").
We conclude that fg(k) converges in £2(Z"), however we also know that f*) — f
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in ¢>°(Z"), thus we must have f*) — f in (?(Z"). Taking a similar sequence of

hF) € C>(R™) approximating h with Fourier coefficients hgk), and recalling that:

( 7). h(k))p(q) - ( 7). h(k))

e2(zn)’

the result follows on sending & — oo. The convergence of the Fourier series in L?(q)

follows by showing that the partial sums form a Cauchy sequence in L?(q).
O

p

e (R™) is a periodic function and let:

Exercise 4.1. Suppose f € L

1
q:{xeR":|xj]<2,j:1,...,n}.

Show that for any € > 0 there exists a smooth, periodic, function f. such that

1f = fell o) <€

Exercise 4.2. Let u € %/(R) be the periodic distribution v = >0 4y,

n=—oo
and suppose « is irrational. Let wy = % Zivzl TnaW. By considering wy, or
otherwise, show that wy converges in .#/(R) to a constant distribution.
This is Weyl’s equidistribution theorem.

Exercise(x). Suppose that f: R — R is given by:

f(z) ==z for |z| < %, flz+1) = f(x).

Show that:
i(—1)" ] & -1 n+1
flz) = Z 2(27”3 2T = 27( n)Tr sin(2mnx),
n€Z,n#0 n=1

with convergence in L}  (R).

Exercise(x). Suppose f: R — R is given by:
—1 ~l<axg
_ 2 S
flz) = { 1 0<z<
a) Show that:

[e.o] o

1 2 orint1)e _ 4 .
_ L ™ _ 2 27 (2n + 1
f(z) m,nz 2n+16 ﬂz;)er_lsm[ﬁ(n—k )]

=—00 n=

With convergence in L2  (R").

loc.
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Define the partial sum:
N-1

1
z; 27(2n + 1)

n=

Sn(z) =8 sin [27(2n + 1)z] .

b) Show that:
2 N—1

Sx(z) = 8 /0 S cos[2m(2n + 1)1] dt.

n=0

c¢) Show that:

cos [2m(2n + 1)t] sin 27t = % (sin [27(2n + 2)t] — sin [47nt])

T sindn Nt
Sy(x) =8 [ 2204
N (@) /0 2 sin 2t

And deduce:

d) Show that the first local maximum of Sy occurs at « = k-, and:

1
1 iN sindw Nt 2 [Tsins
S — | =8 —dt = — ds ~1.179...
N <4N> /0 4mt 77/0 s

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is
known as Gibbs Phenomenon.

4.6 Sobolev spaces

4.6.1 The spaces W5r(Q)

Suppose Q C R" is an open set. For k € Z>o and 1 < p < oo, we say that f € LP(Q)
belongs to the Sobolev space WP(Q) if for any |a| < k there exists f& € LP(Q) with:

Dan - Tfa .

We call f* the weak, or distributional derivative of f and write D*f := f*. We can
equip W*P(Q) with the norm:

Hf”Wk»P(Q) = Z HDafHLP(Q) :

laf<k

With this norm, W*?(Q) is complete, and hence a Banach space. The Sobolev spaces
are particularly well suited to the study of PDE, and form the starting point for many
modern PDE investigations.

We can think of k£ as telling us how differentiable our function is, while p tells us
how integrable our function is. Roughly speaking spaces with larger k£ contain smoother
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functions, while spaces with larger p contain less ‘spiky’ functions. We shall see that
(roughly speaking) one can trade smoothness for integrability: a function that belongs
to WkP(R™) belongs to certain W4(R") where | < k and p > ¢. If k and p are large
enough we can even conclude that the function must be classically differentiable.

We will frame the result as concerning the embedding of W*P?(R™) spaces. Recall that
a Banach space (X, ||-|| y) is said to embed continuously into the Banach space (Y, ||-||y)
if X C Y and there exists a constant C' such that:

lz|ly < C|lz| for all z € X.

Theorem 4.19 (Sobolev embedding theorem). Suppose k > 1 and 1 < p < g < 0o satisfy

(k—1U)p <n and:
1 1 k-1

qa P n
Then WHP(R™) embeds continuously into WHa(R™).

If kp > n, then WFP(R™) embeds continuously into the Holder space Ck_[ﬂ_l’v(]l%”),
where [x] is the largest integer less than or equal to x, and

=B FEL
any element of (0,1) 5 €L

Here we have introduced the Holder space C""(R™) which consists of f € C"(R")
such that:
Def(x) — D*f(y
Wlomeaey = 3 sup [0+ 3 _sup 2D

xER™ z,yER™ |.1I - y|n

asm a=m

We shan’t attempt to prove the general Sobolev embedding theorems, but will establish a
special case later on.

Exercise 4.3. Suppose that 2 C R™ is open and bounded, let f € C°(Q), and
suppose 0 < e < 1.

a) Show that [,(|f|> +€)2dz — || |5, as € — 0.

b) By considering [, (|f|*> + €)2dz = [p. (2div z) (|f|* + €)2dz, or otherwise,
show that there exists a constant C', depending on {2, p but not on f, such
that

1fllze < CIDF Lo -

4.6.2 The space H*(R")

We shall immediately specialise to the case p = 2 and 2 = R™. This is an important
special case for two reasons. Firstly, W#?2(Q) is a Hilbert space (in addition to being
a Banach space), and so carries additional structure. Secondly, W*2(R") is very well
adapted to the Fourier transform. To see this, we recall that if f € L?(R"), then:

Ty =T;
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where f € L? (R™) is the Fourier-Plancherel transform of f. We immediately obtain an
alternative characterisation of the space W*?2(R"). A function f € L?(R™) belongs to
WH2(R™) if and only if:

/Rn (1+16)" o) de < oo.

Notice that in this characterisation there is no need to restrict k to be an integer, nor in
fact for f to belong to L?(R™). This motivates the following definition. For s € R we say
that f € .7’ belongs to the space H*(R") provided f € L? (R") and:

loc.

1£ 1l 72 geny = (/Rn (1+ 15\2)8 ‘f(g)fdg)é < o0.

H*(R™) is complete, and moreover is a Hilbert space. We see that if & € Z>o then
HE(R™) = Wk2(R"), where we make the canonical identification between a functions
f € L*(R™) and the distribution T € .#”(R"). From now on, we shall use f to mean
both the function and the distribution.

Exercise 4.4. Let s € R.

a) Show that .7 is a dense subset of H*(R").

o

Find a condition on s such that 6, € H*(R").

c¢) Show that H!(R™) is continuously embedded in H*(R") for s < t.

)
)
)
)

d) Show that the derivative D® is a bounded linear map from H***(R") into

H*(R™), where k = |a|.

e) (*) Show that the pairing (,) : H %(R") x H*(R"™) — C, which acts on
fe H*R"),g € H*(R") by

1
(2m)™ Jgn

(f.9) = F(©)a()de

is well defined, and show that the map g — (f, g) is a bounded linear operator
on H*(R™). Deduce that H*(R™)" may be identified with H*(R"™). How
does this relate to your answer to part b)?

4.6.3 Sobolev Embedding

An important feature of the Sobolev spaces H*(R"™) is that for s sufficiently large, they
embed into C*(R™). More previsely:

Theorem 4.20. Fir k € Zxq. Suppose that f € H*(R") for some s > k + %, then
(possibly after redefinition on a set of measure zero) f € C*(R™). That is, we have:

H*(R™) c C*(R™).
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Proof. First suppose f € .#(R™). Then by the Fourier inversion theorem we have for
la] < k:
ilel

Do — wea f de.
@) = Gy [ e )i
We estimate with the Cauchy-Schwarz inequality:

e _ L eix{ af
D) = o | [ e

S (2717)71 /R

< s (L 1|0 ae)’ </R a Eéndf)

Now, since [£%)? < (1 4 |€]*)* for some ¢, > 0, we have that:

1 |§a‘2 : Cr < 1 )§
ST ) < S SA LR
(2m) </R” 1+ ‘§|2)S 5) < (2m)n /Rn (1+ |§‘2)S_k 3 ks < 00

where we have used s > k + 5 in order to ensure that the integral converges. We thus
have that:

£ f(¢)| de

sup |Df(x)| < Cn,k,s
|o| <k, x€R™

1l geny - (4.12)

Now suppose f € H®*(R™). We can approximate f by a sequence (fp,)5°_; with
fm € L(R™) and f,,, — f in H*(R™) and pointwise almost everywhere. In particular,
(fm) is Cauchy in H*(R™), so by the estimate (4.12) applied to f,, — f; we have that (f,,)
is Cauchy in C*(R"), thus there exists f* € C*(R") such that D*f,, — D f* uniformly
for all || < k. Since f,,, — f pointwise almost everywhere, we deduce that f = f* almost
everywhere. ]

Exercise 4.5. a) Suppose s = § + vy for some 0 < v < 1. Show that there
exists a constant Cy, , > 0 such that for all z,y € R™:

/ Wdé < qu ]x _ y|27

o gl

b) Show that if s = § 4 k + v for some k € Z>g, 0 <y < 1, then
H*(R™) C C*(R™).

Exercise 4.6. Fix s € R, and suppose that f € H*(R").

a) Show that there exists a unique u € H*+4(R™) which solves:

A*u+u=f.
b) Show further that there exists C' > 0 such that ||ul| ysra < C|| f]] -

c¢) For what values of s does the equation hold in the sense of classical derivatives
(possibly after redefining u, f on a set of measure zero)?
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4.6.4 The trace theorem

We are often interested in the restriction of a function defined on R™, or some open subset,
to some hypersurface ¥ C R™. For example, when studying a PDE problem posed in
some nice domain ) we might wish to impose a boundary condition on 9€). If we work
with functions in H*(R") for s > 0, which are defined only almost everywhere, then this
is a problem, since for nice domains 92 will have Lebesgue measure zero. The trace
theorem allows us to make sense of the restriction of a function in H® to a hypersurface
¥, even when we don’t have f € C° by Sobolev embedding. We restrict to the problem
of defining f[(zn—oy when f € H*(R") is given, however by combining this result with
coordinate transformations it is fairly easy to see how to generalise to the case of smoothly
embedded submanifolds.

Theorem 4.21. Let s > % Then there is a bounded linear map T : H*(R™) — HS_%(R")
such that

Tf = flian=o}

for all f € H*(R™) N CO(R™).

Proof. See Exercise 4.7. O
Exercise 4.7. Assume s > % and suppose u € .%(R"). Define Tu € . (R" 1)
by:

Tu(z") = u(z’,0), o e R"L
a) Show that if ¢ € R"~!:

—~

Tule) = 5= [ (¢’ €u)de..

b) Deduce that:

"< ( [y

where £ = (€,£,).

Tu(é)

a(f’,§n>\2d£n) /R (1+d§y§|2)

¢) By changing variables in the second integral above to &, = t4/1 4+ £/ \2, show
that there exists a constant C(s) such that:

ITull g gy < CO) a1y

d) Conclude that T extends to a bounded linear operator T : H*(R") —
Hsf%(Rn—l).
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e) (*) Suppose v € L(R"1) and let ¢ € C(R) satisfy [ ¢(t)dt = /2.
Define u through its Fourier transform by:

(&) 5 €n

ﬁ(faén): s o
1+ (€| 1+ (¢

Show that there exists a constant C' > 0 such that:

ey < C 10l ey g

and that Tu = v. Conclude that T': H*(R") — H“%(R”_l) is surjective.

4.6.5 The space H}(Q)

Suppose that € is an open subset of R™. For any function f € C°(Q), we can trivially
extend to an element of C2°(R™) by f(x) =0 for x € Q°, so can abuse notation slightly
to denote by C2°(2) the space of smooth functions f : R — C with support in some
compact K C 2. We define H{ () to be the completion of C2°(€2) with respect to the
H'(R™)-norm. HE(Q) is a Hilbert space, equipped with the inner product:

(u,v) g1 = /Q (W(a:) - Dv(x) —i—@v(m)) dx.

Let u € H(Q). Then by definition there exists a sequence (¢,,)%° 1, with ¢, € C°(Q)
and ¢, — ¢ in H'(R™). Since for any open U C R™ we have

1fn = Fllzey < Mfn = Fllzegny < 11fn = Fllaigny »

we deduce that f,|y — f|v in L2. If we choose U = Q¢, we conclude that if f € H} ()
then f|ge = 0 almost everywhere.

If we assume the boundary of €2 is smooth, i.e. is an embedded smooth (n—1)-manifold,
then we can make sense of the restriction of f to 02 in the trace sense, and since the
trace operator is a continuous map from H'(R"), we find that f vanishes on 0 in the
trace sense.

For many PDE problems, one wishes to solve some equation in an open set €2, subject
to the condition that the solution vanishes on the boundary of €. Seeking a solution in
HE(Q) is often a convenient way to encode this boundary condition.

4.6.6 Rellich—Kondrachov

The Rellich-Kondrachov theorem is an important result concerning Sobolev spaces, with
applications in PDE, calculus of variations and beyond. It concerns compact embedding
for Sobolev spaces defined on a bounded domain. We shall prove a version of the result
for the space H}(€2), where € is a bounded open set.

Theorem 4.22 (Rellich-Kondrachov). Suppose that Q is a bounded open set and that
(u;)22, is a bounded sequence in HE(Q). Then there exists u € Hi(Q) and a subsequence
(ui;)32, such that:
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i) ui; = w in H{(Q), and
i) ui, — u in L*(€2).
Proof. By assumption, we have that
[uill 2y < llwill ga o) < K

so (u;)22; is bounded in both H} (), and L?(2), and we immediately deduce from the
Banach—Alaoglu theorem that there exists u € H{ () and a subsequence (ui;)724 such
that u;; — u in H(), and u;; — u in L*(€2). For convenience, let us set w; = u;; so
that w; — w in H(Q), and w; — w in L?(£2). Thus our goal is to improve the weak-L?
convergence of (w;) to strong-L? convergence.

Fix e > 0. We make use of Parseval’s Formula (Theorem 4.6) to give:

1

(2m)"
= L Wi (€) — ()2 L D (E) — ()12
= G O O i [ o)~ ace) de

We deal with the two integrals on the final line separately. First we estimate:

2 ~ ~ 112
lwj = ullz2 = [ —allz

L W (€) — ()2 2 2 (s (612 = la(e) 2
o 8~ HOP A< s [ (i OF + fi(e)) e
2K?

S S5onpe <6
(2m)" R? =€

provided R > 0 is chosen sufficiently large.
Now consider the remaining integral that we need to bound. First, we note that

() = /Q wy(@)e "z = (15 ¢¢) oy s

where we recall e,(z) = Y. Noting that e_¢ € L?() since |[Q| < oo, and that w; — u
in L2(2), we deduce that for each £ € R™:

Wy (&) = (€).
We can also estimate, for || < R:
15 (€) — a(E)” < 21y (O + 21a(E)” < 2 (bl + 1l )
<2 (sl sy + NelFagqy ) < 209 (w320 + lulF2y)
<4K?|Q| € LY(BR(0))

So by the dominated convergence theorem we deduce that

1

- Wi (€) — ()2
el N COREGIRE
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as j — 00, so that for j sufficiently large we have established:
lwj —ul72 < 2€
O

Corollary 4.23. Let Q C R" be open and bounded. Suppose that L : L*(Q) — H}(Q) is
a bounded linear operator, then L : L*(2) — L?(QQ) is compact.

Exercise 4.8. Suppose that A = {A1,...\,} is a basis for R”. We define the
lattice generated by A to be A = {Z?:l ZjA\j 1 25 € Z}, and the the fundamental
cell g = {Z?’Zl T lx] < %} We say that u € 2/(R™) is A—periodic if:
Tl = U for all g € A.

a) Show that there exists ¢ € CZ°(2qa) such that ¢» > 0 and 3 799 = 1. If
¥, ¢’ are two such functions and u € 2/'(R™) is A—periodic, deduce

1 1

mu[w] = mUW] =: M(u).

b) Define the dual lattice by A* := {x € R" : g -z € 2nZ, Vg € A}. Show that
there exists a basis A* = {A],... A} } such that A} - Ay = 27y, and A* is the
lattice generated by A*. Show that if g € A* then e, is A—periodic.

c) Show that if u € 2'(R") is A—periodic, then & =37 . ¢404 for some ¢; € C
satisfying |c,| < K(1+ |g|)V for some K > 0, N € Z. Deduce that

U= Z dgTe,

geEN*
where |dy| < K(1+ |g])¥ for some K >0, N € Z are given by:

dg = M(e_qu)

Exercise 4.9. Suppose that Q C R" is open and bounded. For u € H}(f),
define the Dirichlet energy:

E[u]:/Q|Du|2d:L".

a) Suppose that (u;)$2; is a sequence with u; € H}(2) such that u; — u. Show
that Efu] < liminf; Flu;].

b) Consider the set
& = {Blu] : u € Hy(Q), [|ull > = 1}

Let A\; := inf &. Show that there exists wy € H}(Q) with |Jwi| ;2 = 1 and
E[w1] = A1, and deduce A\; > 0.
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¢) Deduce that:
Ml < [ 1Duf ds
Q

holds for all u € H}(Q), with equality for u = wy. This is Poincaré’s
nequality.

d) By considering u = wy +t¢ for t € R, ¢ € Z(Q2), or otherwise, show that w;
satisfies
—Aw; = M\wy,

where we understand this equation as holding in 2'(2).

e) (*) Suppose x € C°(R), and let v = yw;. Show that v satisfies —Av+v = f,
where we understand the equation as holding in .#/(R"), where f € L?(R"™).
Deduce that v € H?(R"). By iterating this argument, deduce that w; €
H}(Q) N C>=(Q).

f) (*) By considering

&2 = {Bu] s u € Hy(), |lull > = 1, (u,w1) 2 = 0},
or otherwise, show that there exists Ao > A\ and wy € Hg(Q) N C*(Q) with

wy # wi, ||wz2|| 2 =1 solving

—AQUQ = )\gwg.

4.7 PDE Examples

4.7.1 Elliptic equations on R"

Consider the following equation on R™, with k& > 0:
—Au+K*u=f,

where f is given and we wish to find u. Suppose that f € H*(R") for some s € R. We
claim that there is a unique solution v € H*+?(R™). Our assumptions on u, f permit us
to take the Fourier transform of the equation so that:

(6P + ka() = f(&)
holds pointwise almost everywhere. Since |€|? + k2 > C(1 + |€]?) > 0 for some C, we can
divide through to find R
a(e) = 2
E1° + &
again using [¢|* 4+ k2 > C(1 + [¢€]°) > 0 we deduce:
[ull o2 mny < C NSl s mny -

Thus we indeed have that v € H*+2(R™). Uniqueness follows from the injectivity of the
Fourier transform. Note that if s > % then f € C°(R") and u € C?(R"), so that we in
fact have a classical solution to the PDE. Note also that the solution is more regular than
the data. This is an example of a phenomenon known as elliptic reqularity.
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4.7.2 Elliptic boundary value problems

Suppose that Q C R™ is open, assume [ : 2 — R is given, and consider the equation:

{—Au+u:f in (4.13)

u=20 on 0N.

We wish to reformulate this so that we can solve it. In order to incorporate the boundary
condition, we shall seek a solution u € H}(f2). Since an element of H}((2) only has weak
derivatives in L? up to first order, we need to recast the equation in a form that makes
sense. To do this, suppose we have a sufficiently regular solution, conjugate the equation
and multiply it by v € C2°(Q2) to deduce, after integrating by parts:

/ (Du- Dv +uw) da = / fodx (4.14)
Q Q

holds for all v € C°(Q). We realise that, if f € L*(Q), we are seeking u € H}(Q2) such
that:

(u,v) g = (f,0) 2
for all v € C2°(). We also notice that since C2°(Q) is dense in H} (), this is equivalent
to requiring the condition holds for v € HZ(Q). We say that u € H} () is a weak solution
of (4.13) if (4.14) holds for all v € H{(Q). Clearly, if u is a classical solution then it is a
weak solution.

Now, for f € L*(Q), the map F : H}(Q) — C given by v — (f,v)2 is a bounded
linear operator, hence we can apply Riesz representation theorem for the Hilbert space
HZ () to deduce that there exists a unique @ € H} () such that F(v) = (u,v) g for all
v € H}(2). This is precisely the solution we seek! In conclusion, then, we have shown:

Lemma 4.24. Given f € L?(Q) there exists a unique u € HZ(Q) solving (4.13) in the
sense that (4.14) holds for all v € H(9).

We note that setting v = u in (4.14), and using Cauchy-Schwarz we have:

. -
lulle = (Fyw)ee < 1 llpe lullpe < [1F 122 (el g

so that
lell g < W A1z -

We will now show that we can improve the regularity of u, at least in the interior
of , provided we make some assumptions on f. For this, we introduce the space (here
ke Z;o)

HE_(Q) = {u 1 Q = C| yu e HY®R"), for all y € C’;’O(Q)}

Fix a compact K C Q and suppose that the real function xy € C2°(Q) satisfies x(x) =1
for x € K. Let ¢ € #(R"), then since x¢ € C*(Q), we can set v = x¢ in (4.15):

/ Du - D(x) + uxdda = / Frode
Q Q
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rearranging, we have:

/Q D{xu) - Do + Du - (DX)é — Dé - (DXt + Txode = /Q Fxode
and hence:
/Q ) AG + 2Du - (DX) + (AT + Tyode = /Q Froda

So that v = xu satisfies:

/nv(A¢+ 1)dx = /nggi)d:n,

where
g = —2Du- (Dx) —ulAx + fx € L*(R").

We have deduced that v € H!(R") satisfies:
—Av+v=g

in the sense of .#/(R™). Now, by the results of the previous section, we deduce v € H?(R")
with:
[l 2 < Cllgll e

Further, v(z) = u(z) for all x € K. Suppose x € C°(Q2), then by applying the above
argument with the compact set K = supp x we deduce that yu = yxu € H?(R"). Thus
ue H NHE.(Q).

Now suppose that f € L? N Hlloc.
g € HY(R™), and so v € H3(R™), and as a consequence we can conclude u € H&ﬂHg’

loc.
Iterating, we find:

(©). Repeating the above argument, we notice that

(R™).

Theorem 4.25. Suppose 2 C R" is open and f € L?> N Hl’fm(Q) Then there exists a

unique u € HY N HFP2(Q) solving (4.13) in the weak sense. In particular, by Sobolev

loc.

embedding if f € L* N C>®(), then u € H} N C>(Q).

Now, if u € C*°(2), then we can see that the equation —Au + u = f must hold in
in the classical sense. If we assume more regularity of the boundary (and f), then we can
also show that u extends to the boundary as a continuous function, and the boundary
condition holds classically also. Discussing boundary regularity would take us beyond the
remit of this course however.

We note, that our proof shows that the elliptic regularity phenomenon that we observed
above for an equation on R" is in fact localisable: if (—Awu 4 u) is smooth in the interior
of some open set, then u is smooth in that set. This is certainly not true for (for example)
the wave operator —07 + A. It is straightforward (try it!) to find a function that satisfies
the wave equation in one dimension, hence uy — uz, = 0 € C*°(R?), but for which
u ¢ C(R?).
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Spectral theory for elliptic boundary value problems

We now assume that 2 C R™ is both open and bounded. Let us represent by A the map
which takes f € L%(Q) to the unique solution u € H}(2) to (4.13). We can check that
A is linear, since if u = Af and w = Ag for some f,g € L*(Q) and a € C, then for any
v € HE(Q) we have:

(u+aw,v) g = (u,v) g +a(w,v) g = (f,v)2 +a(g,v) 2 = (f +ag,v) e

so that Af + aAg = A(f + ag). Moreover, A : L?(Q) — L?(Q) is Hermitian. Suppose
u=Af and w = Ag for some f,g € L?(£2). Then

(f;Ag)r2 = (fyw)r2 = (v, w) g = (w,u) g1 = (g,u) 2 = (Af, 9) 2.

Finally, by Corollary 4.23 we have that A : L?(Q) — L?(Q) is compact. Thus by the
spectral theorem for compact operators (see Linear Analysis), the spectrum of A takes the
form o(A) = {0, p1, 2, . ..}, where p € R, up — 0. Further, there exists an orthonormal
basis for L?(£2) consisting of eigenvectors of A. An eigenvector of A satisfies Aw = pw
for u € R, and thus for v € H}(Q):

(w,v)r2 = (Aw,v) g1 = p(w,v) g (4.15)

Setting v = w we deduce p > 0, so in particular pu # 0, and we deduce that w solves:
—Aw+w=—w

in the weak sense. This means that we can test the equation against elements of
H} () (alternatively, we can understand the equation as holding in 2’(2)). Now, since
p~tw € HY(Q), we conclude from our previous work that w € H} N H3(Q). Hence
w € H} N H5(Q), etc. We conclude, after Sobolev embedding that w € C*(1).

Finally, noting that an eigenfunction of (—A + 1) is also an eigenfunction of —A, we
have shown:

Theorem 4.26. Let 2 C R™ be open and bounded. Then there exists an orthonormal
basis {wy}32, for L?(Q) such that wy, € Hi N C™®(Q) satisfy

—Aw, = Apwy 1n €,

where A\ < Ao < A3 < -+, and A\, — 00. (In fact, by Ezercise 4.9 we can show that
0< )\1).

Exercise 4.10. Let H be the completion of .¥(R™) with respect to the norm

1
2
full = ([ (100 + b o)
R?’L

a) Show that H is a Hilbert space with the inner product:
(u,v) g = / (Du - Dv + |z[*wv) dz,
Rﬂ,

and show that if u € H,x € C>®(Bg(0)), then xu € H}(Bg(0)), with
lIxull g1 < Cryy ||u]|y for some constant Cr, > 0.
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b) Show that H embeds compactly into L?(R"), that is H C L?(R") and if

(up)92; is a bounded sequence in H then it admits a subsequence which
converges in L?(R™).

[Hint: take a subsequence converging weakly in both H and L*(R™), and write
Up = UpXR + Un(l — xRr), where xp € C°(Br(0)) satisfies xr(x) =1 for
|z| < R — 1, where R is to be chosen.|

c) If f € L?>(R™), we say that u € H is a weak solution of:
—Au+|al*u = f ()
if
(u,v)g = (f,v)r2 for allv € H. (o)

Show that if u, f € #(R"™) solve (1), then u satisfies (¢). Show that for any
f € L%(R"), there exists a unique solution u € H to (o).

d) Denote by Lf the unique solution u € H to (o) for f € L?(R™). Show that the
map f + Lf is a compact, symmetric, linear operator L : L?(R") — L?(R").
Deduce that there exists an orthonormal basis (wg)5, for L*(R™) consisting
of wy € H satisfying;:

(W, v)g = M\p(wg, v) g2 for all v € H, ()
where 0 < A\ < Ao < A3 < -+, and A\ — oo.

e) Show that if wy € H satisfies (b), then in fact wy € C°°(R"™). Show further
that wy will also solve (b) with the same Ag. Deduce that there exists
an orthonormal basis for L?(R"), consisting of smooth functions, which
diagonalises the Fourier—Plancherel transform.

f) (**) Show that w € H N C*°(R") satisfies:
—Aw + |z]*w = \w
for some A € R if and only if:
w(x) = cHy (21) - Hy,, (wn)e 2171

where z = (x1,...,2,), ¢ € C, Hi(t) are the Hermite polynomials, and
[Hint: treat the case n =1 first. You may wish to look up the simple harmonic
oscillator in a textbook on quantum mechanics.|

4.7.3 Spaces involving time

For certain PDE problems it’s useful to separate out the time direction from the spatial
directions. To do this, it’s useful to introduce some new function spaces:
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Definition 4.3. Given a Banach space (X, ||| y), and an interval I C R, the space
CY(I; X) is the space of continuous functions u : I — X.

If I is open, we define C*(I; X) for k > 0 inductively as follows. We say u €
Ck=Y(I; X) belongs to C*(I, X) if there exists u' € C*~1(I; X) such that for each t € I:

Hu(t +6) —u(l)

—u’(t)H —0, ase—0.
€

X

A typical example of X will be one of the space H*(R") for s > 0.

4.7.4 The heat equation

Let us now give another example to show how powerful the Fourier transform can be for
solving PDE problems. Let us consider the heat equation on R"™. The problem we shall
consider is, given ug : R" — R, determine u : R” x [0,7) — R, such that

{ut = Au in (0,7) x R™, (4.16)

u = up on {0} x R"

We suppose that our solution is a continuous mapping from (0, T') into H?(R™), i.e. for each
fixed t we wish u(t, ) =: u(t) to be an element of H?(R™). In terms of the function spaces
above u € C°((0,T); H?(R™)). We will also suppose that u is continuously differentiable
as a mapping from (0,T) into L?(R™). In other words, w € C*((0,T); L?>(R")). Finally,
we wish for the initial condition to make sense, so we also require u € C°([0,T); L?(R").

Exercise(x). Show that if u € C°((0,T); H2(R™)) N C1((0,T); L?(R™)), then
denoting by 4 the Fourier transform of w in the spatial variables:

u(t, &) = I%LH;O o) u(t, z)e @ d,
we have 4 € C°((0,T); L*(R™)) N C*((0,T); L*(R™)).
Let us, then, seek a solution of (4.16) such that
w e C[0,T); LA(R™)) N CO((0, T); HA(R™)) N C1((0, T); L*(R™))

Under this assumption we can take the Fourier transform of (4.16) for (¢,z) € (0,7) x R"™
to get:
{aﬁ£>= —le*act.)  (t.€) € (0,T) xR,
@(0,§) = o(§) {eR"
Now, the PDE has become an ODE for each fixed {! This ODE has a unique solution
given for almost every £ € R™ by:

a(t,€) = ag(€)e e

We note that if ug € L?(R"), then @9 € L*(R™) and thus @ € C°([0,T); L*>(R")) N
CY((0,T); L3(R™)). In fact, for t > 0, we have that @(t,&) and (¢, €) are rapidly
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decaying functions of £, in particular they belong to H*(R™) for any s > 0, so we have
that u(t, z) is smooth in z. Since u satisfies the equation (9;)"u = (A)™u, we have that
u is smooth in both ¢t and . We can recover u(t,z) via the inverse Fourier transform

formula:
1

u(t,x) = oD / ) dg(&)e Ml et e, (4.17)

Summarising, we have the following result:
Lemma 4.27. Suppose ug € L*(R"™). Then (4.16) admits a unique solution u such that
u € C7([0,T); L2A(R™) N CO((0, T); H*(R™)) N C*((0,T); L*(R™))

given by (4.17). In fact,
ue C=((0,T) x R).

Even with very rough initial data, the heat equation instantaneously gives a smooth
solution. This is an example of what is known as parabolic reqularity.

Exercise 4.11. Suppose that ug € L'(R") N L?(R") and that u(t,z) is the
solution of the heat equation with initial data ug. Explicitly, u is given by:

u(t,z) =

@m)" / (e e,

for ¢ > 0.

a) Show that:
lu(t, )z < fluollze

b) Show that:
u(t, z) = ug * Ki(x)

where the heat kernel is given by:

¢) Suppose that ug > 0. Show that u > 0, and:
[u(t, )1 = luoll -

Exercise 4.12. Consider the free Schrodinger equation:

u = 1Au in (0,7) x R™, (%)
u = wug on {0} xR

Suppose ug € H2(R").
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a) Show that (x) admits a unique solution u such that
u € C°([0,T); H*(R")) N C((0,T); L*(R™)),
whose spatial Fourier-Plancherel transform is given by:
lt, §) = o (€)e <P,

b) Show that:

[t M ez ey = ol g2 ey

*c) For t > 0, let K; € Lj,. (R") be given by:

where for n odgl we take the usual branch cut so that z% = ¢'1. For e > 0 set
Kf(z) = e~ Ky ().

i) Show that Txe — Tk, in .7’ as e — 0.
ii) Show that if ®(o) > 0, then:

iii) Deduce that

— 1 Bl —it|¢|?
Kt (f) — m e 1+4ite

iv) Conclude that:
Ty, = Tg,,

~ . 2
where K; = e #lEl",

*d) Suppose that u € . (R"™). Show that for ¢t > 0:

u(t.o) = [ wow)Kia ~y)dy,

and deduce that for ¢ > 0:

1
sup [u(t, )| <

— lu .
sup e L

This type of estimate which shows us that (locally) solutions to the Schrédinger
equation decay in time is known as a dispersive estimate.
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4.7.5 The wave equation

Now let us consider the wave equation on R™. The problem we shall consider is, given
ug, u1 : R — R, determine u : R™ x (=7,T) — R, such that

Ut = Au in (—T, T) X Rn,
u = u on {0} xR"” (4.18)
up = U on {0} x R"

We will seek a solution in the space:
Xy :=C%(-T,7), H**(R") N C*((-T,T) x H*(R™)).

Fourier transforming in the spatial variable, we have:

ﬂtt(t7£) = - |£|2’[L(t,£) (tag) € (_T? T) X Rn,
a(0,§) = do(§) EeR
@(0,6) = (8 cRrr

Again, this is an ODE for each fixed &, and we deduce:
U 7 N sin t
u(t,f) = uo(f) Cos (\§| t) + U1(§)|(£||£’)

Notice that if ug € H¥*2(R") and u; € H*"}(R"), then we conclude 4 € Xs. Thus (after
taking the inverse Fourier transform) we have found the unique solution of the wave
equation in Xg.

Let’s specialise to R3. We’d like to write this solution as some sort of convolution,
at least for initial data in the Schwarz class. For this we need to find the (inverse)
Fourier transform of cos (|¢|t) and %, where we have to understand these functions
as tempered distributions. Let us define, for £ > 0 the distribution:

1
Uilg] = It 05.(0) ¢(y)doy

for all ¢ € ./, where doy is the surface measure on the sphere 0B(0). This is a
distribution of compact support, so we can invoke Theorem 4.13 to find the Fourier

transform:
Ut = Tﬁt

where:
1

WO =Uile = g [ v,
t

We can perform this integral by choosing spherical polar coordinates for y with the axis
aligned with the vector £. Doing so, the integral becomes:

1 s 2m )
0(§) = / / e IElteos 042 6in dhdg
amt Jo—o Jp=0

1 —ile|t ile|t
:t/ e_ilﬂtzdz:f el B etlél
2/ 2\ —ilglt —ilelt
~sin (€]
€]
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Now, let us return to our expression for w:

a(€) = ito(€) cos (1€ 1) + m(é)si“’(g"f'“

o (. sm(elt) . . .sm(€l)
=5 <Uo(§)‘€|> +U1(§)T

Suppose ug, u1 € .. Then by Theorem 4.10, we have:

0
u(t,z) = &Ut * ug(z) + Up % up ()

0 1 / 1 /

=— | — ug(x —y)do, | + — u(x — y)do
8t (47Tt BBt(O) 0( y) y> 47Tt 8Bt(0) 1( y) Y
0 1 1

= (m Lo “O@)d“y) 207 gy 0

0
= — t][ uo(y)doy | + t][ w1 (y)doy (4.19)
ot 9B(x) 9B(x)

Where for a surface X with surface measure o:

1
do = j{ do.
][2 IS

Expression (4.19) is known as Kirchoff’s formula. While our derivation assumes
ug, u1 € ., this assumption can be relaxed. This expression tells us some interesting
facts about solutions to the wave equation. First note that the value of u(z,t) depends
only on the initial data on the sphere 0B(x). This is known as the strong Huygens
principle. In particular this shows us that information is propagated at a finite speed by
the wave equation. Secondly, note that the value of u(z,t) depends on derivatives of wy.
This suggests that C*—regularity is not propagated in wave evolution, although we have
already seen that H®—regularity is propagated.

Exercise(x). Let R? :=R3\ {0}, S,.7:= (—T,T) x R? and |z| = r. You may
assume the result that if u = u(r,t) is radial, we have

d%u 2 0u
Au(|z|,t) = Au(r,t) = w(r’ t) + ;E(T’ )

a) Suppose u(z,t) = 2v(r,t) for some function v. Show that u solves the wave
equation on R? x (0,T) if and only if v satisfies the one-dimensional wave
equation

v v
"o T
on (0,00) x (=T,T).
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Suppose f, g € C2(R). Deduce that

frat) , gr—1)

T r

u(x,t) =
is a solution of the wave equation on S, 7 which vanishes for large |z|.
Show that if f € C2(R) is an odd function (i.e. f(s) = —f(—s) for all s) then

fr+t)+ flr—1)
2r

u(x,t) =

extends as a C? function which solves the wave equation on St := (=T, T) x
R3, with
u(0,t) = f'(#).

By considering a suitable sequence of functions f, or otherwise, deduce that
there exists no constant C' independent of u such that the estimate

sup (Ju| + |ue|) < Csup (Jul + |u)
S 3o

T

holds for all solutions u € C%(Sr) of the wave equation which vanish for
large |z|.



Appendix A

Background Material: Functional Analysis

A.1 Topological vector spaces

This section is intended to recap some of the basic material in Linear Analysis, and to
give a bit more detail on the functional analytical underpinnings of some of the more
exotic spaces we consider in particular when constructing distributions. The material is
not examinable, but is included here to justify various assertions earlier in the course.

In the Linear Analysis course, the principle objects of study are Hilbert or Banach
spaces. These are vector spaces which are given the additional structure of an inner
product or a norm respectively. This additional structure allows us to make sense of ideas
such as convergence of a sequence, or continuity of a real valued map. Unfortunately,
some of the vector spaces that we require for this course (for example 2(U), . and &(U))
are not Hilbert or Banach spaces. We need to add to the vector spaces some additional
structure, which permits us to discuss the notions of convergence and continuity, but
which is not as restrictive as assuming the presence of a norm or inner product. The extra
structure that we shall require is of course a topology, but we shall require the topology
to be in some sense consistent with the vector space structure. We are therefore led to
the idea of topological vector spaces.

A.1.1 Vector spaces and normed spaces

In order to fix notation, let’s recall a few standard definitions.

Definition A.1 (Field axioms). A field ® is a set together with two operations, addition
+ and multiplication - which satisfy the following axioms:

i) ® is closed under addition and multiplication: for all a,b € ®, we have a +b € ®
and a-b e .

ii) Both addition and multiplication are associative: the following identities hold for all
a,b,ce ®:

a-(b-c)=(a-b)-c, a+(b+c)=(a+b)+ec.

130
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i11) Both addition and multiplication are commutative: the following identities hold for
all a,b € ®:
a-b=b-a, a+b=>b+a.

iv) There exist unique, distinct, additive and multiplicative identity elements: there exist
0€® and 1 e d with 0 # 1 such that for all a € ® we have:

a-1=a, a+0=a.
v) There exist additive and multiplicative inverses. For every a € ®, there exists an

element (—a) € ® such that
a+(—a)=0.

Moreover, for every a € ® with a # 0, there exists an element a=' such that

a-a'=1.

vi) The multiplication operation is distributive over addition: the following identity holds
for all a,b € ®:
a-(b+c)=a-b+a-c.

Exercise(x). Show that R, C and the integers modulo p, Z, form fields with
the usual definition of addition and multiplication.

The standard examples of fields that you should keep in mind for our purposes are R
and C. With the definition of a field in hand, we can now define a vector space.

Definition A.2 (Vector space axioms). Let ® be a field, which we call the scalar field,
and we call elements of ® scalars. A vector space X over ® is a set whose elements are
called vectors together with two operations:

i) Addition: to every pair of vectors x,y € X is associated a unique vector x +y € X
such that for all x,y,z € X:

T+y=y+ux, and (x4+y)+z=z+ (y+ 2).
Moreover, there exists a unique element 0 € X such that for all x € X :
r+0=uz.
Finally, for each x € X, there exists a unique vector (—x) such that:

x+ (—x) =0.

it) Scalar multiplication: to every pair (a,z) with a € ® and x € X is associate a
unique vector ax € X in such a way that

le ==, a(bx) = (a-b)x,
and such that the distributive laws:
a(x +y) = axr + ay, (a+b)z =azx+bx
hold for every z,y € X and a,b € ®.
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Note that the same symbols have different meanings in different contexts: + can mean
either scalar or vector multiplication, while 0 refers to the zero element of both the field
and the vector space.

It is useful to extend the operations of vector addition and scalar multiplication to
act on sets as follows. If a € X, A € ® Uy, Us C X, then we define:

a+U;={a+xz:2e€U},
U1+Ug:{a:+y:a:€U1,yEU2},
AUy ={ Dz :x e U}

Note that 0+ U = U, 1U = U, 2U C U 4+ U, but that in general 2U # U + U.

Definition A.3. Suppose X is a vector space over ®, where ® is either R or C. We say
that a subset U C X is convex if

r,yelU = tex+(1—t)yeU foralte]|0,1].
We say that U is balanced if \U C U for all X € ® with |\ < 1.

Exercise A.1. Suppose that A\j A2 > 0 and that U C X is a convex subset of a
vector space X. Show that:

MU + XU = ()\1 + )\Q)U
Finally, we shall define a norm on a vector space

Definition A.4. A norm on a vector space X over ®, where ® is either R or C is a
map:
I : X =R

such that
i) We have ||z|| = 0 for all x € X, with equality if and only if x = 0.

it) The triangle identity holds for all z,y € X :

[z +yll < llzll + llyll-

iti) For any a € ® and x € X we have:
laz ]} = |al {l]] -
A more general notion of distance than a norm is often useful. We define a metric

space as follows:

Definition A.5. A metric space (S,d) is a set S, together with a function d: S xS — R,
called the metric, which satisfies:
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i) The metric is symmetric:

d(z,y) = d(y,x), forall x,y € S.

i1) The metric is positive definite:
0 <d(z,y), for all xz,y € S,
with equality if and only if x = y.
i11) The triangle inequality holds:

d(z,y) < d(z,z) + d(z,y), for all x,y,z € S.

To see that this is a more general notion than a normed space, we have the following
result:

Lemma A.1. If (X, ||-||) is a normed vector space, then it is naturaly a metric space,
with the metric:

d(z,y) = [l -y
Proof. We simply have to verify the three conditions on d. We find:
i) Noting that |—1| = 1, we have:
Aw,y) = llz — yll = 1=y — )l = |-1] |y — 2]l = |y — =] = d(y, =),
so the metric is symmetric.
ii) Since we know that [|z|| > 0, with equality if and only if = = 0, clearly
d(z,y) = llz —yll =0
with equality if and only if x — y = 0, which holds if and only if z = y.
iii) Recall the triangle inequality for norms ||z + y|| < ||z|| + |ly||]. We calculate:

d(z,y) = ||z —yll = [[(z = 2) = (y — 2]
<l =2 + lly — =]l
=d(z,z) +d(z,y).

Thus d satisfies the conditions to be a metric. O



134 Appendix A Background Material: Functional Analysis

A.1.2 Topological spaces

The definitions above are purely algebraic in nature. In particular, we have not introduced
any notions of convergence, completeness or continuity for these spaces. The natural
setting in which to do this is that of topology. Let us recall briefly a few definitions and
facts.

Definition A.6 (Topology axioms). A topological space is a set S in which a collection
of subsets T (called open sets) has been specified, with the following properties:

i) The empty set is open: ) € T
it) The whole space is open: S € T,
iti) If Uy, Uy € T are open sets, then their intersection is open:

UinNU; €.

w) IfU C 7 is any collection of open sets, then their union is open:

UZ/[ET.

Note that by repeatedly applying iii), we can easily see that any finite intersection of
open sets is open. Let’s recall some standard nomenclature associated with topological
concepts. A set E C S is closed if its complement E€ = S\ E is open. The closure E of
any set E is the intersection of all closed sets containing E. The interior £° of any set
is the union of all open sets contained in E. Note that the closure is always closed and
the interior is always open. A neighbourhood of a point p € S is an open set containing
p. A limit point of a set E C S is a point p € S (not necessarily with p € F) such that
every neighbourhood of p intersects £ in some point other than p itself.

Lemma A.2. Suppose (S,7) is a topological space. If U C S is open then U = U°. If
E C S is closed, then E = E and E contains all of its limit points.

Proof. The fact that U° C U follows from the definition of the interior as U° is a union
over sets contained in U. Since U is itself an open set contained in U, we also have
U c U°. Similarly, E C E from the definition of the closure. Since E is itself a closed
set containing F, we have E C E. Now suppose that p is a limit point, and assume for
contradiction that p € E°. Then since F is closed, E° is open and hence a neighbourhood
of p. By the definition of a limit point we have ' N E°¢ is non-empty, a contradiction.
Thus p € E. O

A base, B for the topology 7 is a collection of open sets,  C 7 such that any open set
in 7 can be written as a union of elements of 5. A collection « of neighbourhoods of p is
a local base at p if every neighbourhood of p contains a member of ~.

A set K C S is compact if every open cover of K has a finite subcover. That is to
say that from any collection {U;};c7 of open sets such that K C U;ezU;, we can extract
a finite collection {Uj;, }}_, such that K C U}_,U;,. A topological space is Hausdorff if
any two distinct points have disjoint neighbourhoods.
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Lemma A.3. Suppose (S, 1) is a Hausdorff topological space, and that K C S is compact.
Then K 1is closed.

Proof. Let us fix p € K¢, and consider an arbitrary ¢ € K. By the Hausdorff property
of S, we know that there exist U, V; open, with ¢ € Uy, p € V, and U, NV, = (). Now,
{U; : ¢ € K} is an open cover of K, hence by the compactness of K there is a finite
subcover, i.e. qi1,...qn such that K CU = Uy, U...UU,,. Consider V =V, N...NV,,.
We have that V, UU = 0, so that V' C K. Moreover, as a finite intersection of open sets
V is open. Writing K¢ as the union of the sets V for all p € K¢, we see that K¢ is open
and thus K is closed. O

Lemma A.4. Suppose (S,7) is a Hausdorff topological space, and E C S. Then p is a
limit point of E if and only if every neighbourhood of p contains infinitely many elements
of E.

Proof. If every neighbourhood of p contains infinitely many elements of F, it certainly
intersects E in some point other than p, thus p is a limit point. Conversely, suppose
that p is a limit point and suppose that U is some neighbourhood intersecting £ in only
finitely many points, say {z1,...,xnx}. by the Hausdorff property, we know that there
exist open sets U;, V; such that x; € U;, p € V; and U; N V; = (). Then ﬁi]\il‘/; NU is open,
contains p and doesn’t contain any other points of E. This contradicts the assumption
that p is a limit point. O

A sequence (xy,)nen in a Hausdorff space converges to a point x if every neighbourhood
of x contains all but finitely many of the points x,. If (S1,71) and (S2,72) are two
topological spaces, then we say that f : S; — Sy is continuous if f~1(U) € 7 for all
U € 1. A homeomorphism f : Sy — Ss is a bijective continuous map whose inverse is
also continuous.

If 7, 7 are two different topologies on the same set S such that 71 C 7o, then we say
that 71 is a coarser topology than 7o, or alternatively that 7o is a finer topology than 7.
A finer topology has ‘more open sets’. Note that if a sequence converges in 75 then it
necessarily converges in 7 but that the converse does not hold. The coarsest topology on
any set S is the trivial topology, whose only open sets are the empty set and S itself. The
finest topology on any set is the discrete topology, for which any subset of S is declared
to be open.

Exercise A.2. a) Suppose that (S,7) is a topological space, and that g is a
base for 7. Show that:

i) If x € S, then there exists some B € § with x € B.
ii) If By, By € B, then for every x € By N By there exists B € § with:

re€B B C B; N Bs.

b) Conversely, suppose that one is given a set S and a collection 8 of subsets of
S satisfying i), ii) above. Define 7 by:

U et < forall z € U, there exists B €  such that z € B and B C U.
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i.e. 7 is the set of all unions of elements of 5. Show that (5, 7) is a topological
space, with base 8. We say that 7 is the topology generated by

¢) Suppose that 3, 8’ both satisfy conditions 7), i7) above and generate topologies
7, 7' respectively. Moreover, suppose that if B € 3 then for every x € B
there exists B’ € 3 satisfying

r e B, and B'cB
Then 7 C 7.

If E C S is any subset of a topological space (S, 7), then E inherits a topology, 7|z,
called the subspace topology given by:

TIg={ENU:U €1}

If (S1,71) and (S2,72) are two topological spaces, then S; x Sy inherits a topology T
called the product topology, which is generated by the base

ﬁ:{leUgtUiGTi,i:LQ}

In other words, a set U is open in the product topology if it is the union of sets of the
form Uy x Us with U; € 75, 1 =1, 2.

Exercise A.3. Suppose (S1,71), (S2,72) and (S3,73) are topological spaces,
and that f : 5] x So — S3 is a continuous map. Show that for each a € S; and
b € S5, the maps

fao + S2—Ss, foo 81— Ss,
y— fla,y), x+— f(x,b),

are continuous.

The condition that f is continuous with respect to the product topology is
sometimes called joint continuity, while the continuity of f,, f? is called separate
continuity. Thus joint continuity implies separate continuity. The converse is
not true.

Theorem A.5. Let (S1,71) and (S2,72) be two topological spaces, and let (1 respectively
B2 be a base. Then the set

B ={B1 x By : By € 1, B3z € 52},

is a base for the product topology (S x Sa,T).

Proof. Suppose U € 7, and let x = (z1,22) € U. By the definition of the product
topology, there exist U; € 71 and Us € 19 with x € Uy x Uy and Uy x Uy C U. Since
p1 is a base for (S1,71), and Uy € 71, there exists By € 51 with 1 € By and By C Uy.
Similarly there exists Bs € (89 such that xo € By and By C Us. Thus ¢ € By X By and
B1 X By C Uy x Uy C U. Considering these sets as x ranges over U, we see that U may
be written as a union of elements of 5 and we’re done. O
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Example 19. The real numbers R carry a topology, called the order topology, generated
by the base:
Br = {(a,b) :a,b € R, a < b}.

This induces the product topology on R" = R x --- xR. This is called the standard topology
on R™.

Exercise A.4. Show that the base

Bo=1{(.q) :p,q€Q, p<gq},

generates the standard topology on R.

With the result of this exercise, we can establish the following very useful fact about
open sets in R™.

Lemma A.6. Suppose Q C R™ is open. Then there exists an exhaustion of Q by compact
sets. That is to say a family (K;)32, of compact sets K; C €2 such that

00
K, C (KZ’+1)O, U K, =Q.
=1

Proof. 1. Recall that by the definition of the product topology, a base for the standard

topology of R” is given by:

B=A{Lx--x1I,: I € o}
For any B € 8 we have B = |J{B’ € 8 : B’ C B} since, for example

o]
1 1
ra)=UJ <p+ ~q- n)
n=N

for some N > [2(¢ — p)]~!, and taking products of such sets the result follows.

2. Let
g'={Bep:BcCQ}.
Since [ is a base, |J{B € 5: B C } = Q, thus in view of the discussion above

Q = |Jp'. Moreover, since 8 can be put into one-to-one correspondence with a
subset of Q?", we have that # and hence ' is countable.

3. Let us take an enumeration

3 ={By,Bs,...}.

We define K; inductively as follows. Pick K1 = By. This is a closed box in R", so
is compact. Now suppose that K7i,... K, have been chosen. Since K, C Q, 3’ is
an open cover of K, and so admits a finite subcover. Therefore there exists ,, such
that K, C By U...UB,;,. We define K, 1 = BiU... UE. This is a union of
closed boxes, hence is compact.
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4. By construction we have K; C (K;41)°. Moreover K,,11 ¢ By U...UB;,, so
in+1 > in, and thus i, — 0o as n — co. Pick x € Q). Then = € B; for some i. Since

in — 00, x € K, for sufficiently large n, thus |J;2, K; = Q.
O

For another example of a topological space, we return to the vector space setting.

Example 20. Let (S,d) be a metric space. The open ball of radius r > 0 about xz € S is
defined to be:
By(z):={ye S:d(x,y) <r}.

The metric topology is the topology induced by the base:
B={B.(z):x €S recR}.

We say that a general topological space (S, T) is metrizable if there exists some metric d
on S such that the metric topoplogy of (S,d) coincides with T.

Exercise A.5. Suppose that (5, d) is a metric space. Show that S is Hausdorff
with respect to the metric topology.

An important feature of metric spaces is that the notions of compactness and sequential
compactness are equivalent. We say that a topological space (.S, 7) is sequentially compact
if every sequence (x,)52, with z, € S admits a subsequence (z,,);2; such that z,

converge to x € S as i — 00.

Theorem A.7. Let (S,d) be a metric space endowed with the metric space topology.
Then S is compact if and only if it is sequentially compact.

Proof. 1. First suppose S is compact and consider the sequence (x,)5 ;. We must
exhibit a convergent subsequence. Let us consider the set A = {z,}72 ;. If A is
finite, then x, must take at least one value an infinite number of times, so has a
subsequence converging to that value, and we’re done.

Now suppose A is infinite. We claim that A has a limit point. Suppose not.
In particular, this means that each y € S has a neighbourhood U, such that
Uy N A C {y}. The collection {Uy : y € S} is an open cover of S, hence admits a
finite subcover, say {Uy,,... Uy, }. Note that we have

A:SOA:(Ule...UUyN)ﬂA
:(UylﬂA)U...U(UyNﬂA)C{yl,...,yN}

Since A is infinite, this contradicts the assumption that A has no limit points.

Let x be a limit point of A. Since any metric space is Hausdorff, every neighbourhood
of x must contain infinitely many points in A. Define a subsequence as follows. We
pick n; such that z,, € Bi(z). Suppose we have x,, ,. We define nj by requiring
Ty, > Tp,_, and z,, € Bi-1(x). This can always be done. By construction the
subsequence {x,, }3, converges to .
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2. Now suppose that (S,d) is sequentially compact. We first claim that if % is any
open cover of S, then there exists > 0 with the property that for each = € S, there
exists U € % with Bs(xz) C U. Note that while U will depend on z, § does not.

Suppose not. Then for each n, there exists x,, € S such that B1 (x,) is not contained
in any element of % . By the assumption of sequential compay(l:tness, we can choose
a subsequence x,, — a for some a € S. Now, since % is a open cover, there exists
U € % with a € U. Since U is open, there exists ¢ > 0 such that Bc(a) C U.
Now pick ¢ sufficiently large that ni_l < €¢/2 and x,, € B.jz(a). Then we have
Bi jp,(7n;) C Be(a) C U, a contradiction.

3. Next, we show that if (S, d) is sequentially compact, then for each € > 0 there exists
a finite covering of S by balls of radius €. Suppose not, then S cannot be covered
by finitely many balls of radius €. Construct a sequence as follows: take z; € S to
be arbitrary. Given x1,...x,, choose

Tn+1 € (Be(w1) U... U Be(zn))*

which is always possible. Now, by construction (x,,) has no convergent subsequence,
since B,/y(7) contains at most one element of (r,), and we have a contradiction
with the assumption of sequential compactness.

4. Finally we are ready to show that if (.S, d) is sequentially compact, then it is compact.
Let % be an open cover of S. Then by 2. above, there exists 6 > 0 such that for
any = € S, Bs(z) is contained in an element of %. By 3. we know that we can
choose z1,...zyN such that the sets Bs(z;) fori =1,...,N cover S. Let U; € %
be such that Bs(x;) C U;. Then we must have

N N
S = U Bg(m'z) C U Ui,
i=1 i=1
so by construction, {U;}¥; is a finite subcover of % . O

Exercise A.6. Let us take X = R"”, thought of as a vector space over R and
define:

3=

(@1, zn)ll, = (lz” + . 2af?)P p>1.
a) Show that (R, ||-]|,) is a normed vector space:

i) First check that the positivity and homogeneity property are satisfied.
ii) Establish the triangle inequality for the special case p = 1.

iii) Next prove Young’s inequality: if a,b € Ry and p,q > 1 withp~ ! +¢7! =
1 then:
al bl
ab< — + —
p q
Hint: set t = p~1, consider the function log [ta? + (1 — t)b4] and use the

concavity of the logarithm
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iv) With p,q > 1 such that p~* + ¢~! = 1, show that if |z]l, = 1 and
Hy||q =1 then

n
Z |wayi| < 1.
i=1

Deduce Hélder’s inequality:
n
> il <zl llyll,,  for all z,y,€ R™.
i=1
v) Show that
n n
lz + Il <D lwil los + wilt ™" + D lil |2 + P~
i=1 i=1

vi) Apply Hélder’s inequality to deduce:

-1
o+ yllp < (e, + lyll, ) I+ yl

and conclude
lz +yll, < [z, + vl

b) Show that the metric topology of (R", [|-[|,,) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Exercise A.7 (x). Let X = (0, 1], the set of continuous functions on the
closed interval [0,1]. For f € X, p > 0 define:

i, = ([ \f(ac)\pdsc)’i

a) Show that X is a vector space over R, where scalar multiplication and vector
addition are defined pointwise.

b) Establish Holder’s inequality:

1 glly < [1f1l, lgllg
for p,q > 1 with p~' 4+ ¢~ 1 = 1.

c¢) Show that (X, [|-[|,,) is a normed space.

d) Suppose p < p’. Show that:

£ 1L, < [1f1Ly
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e) Let 7, be the metric topology of (X, ||||,,). Show that if p < p":
Tp C Tpr-

f) Consider the sequence of functions:

7—1 1
re={1o 1855
where n =1,2,...
i) Show that f,, € C]0,1] and
0 1 v < %
S fall, =9 (2t) =2t
00 v > 2

ii) By choosing 7 carefully, show that if p < p’ then

Tp/ ¢ Tp.
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Hint: in parts b), c) follow the same steps as for the finite dimensional case in

Exercise A.6.

Exercise A.8. Verify that if (S, d) is a metric space, then the metric topology
defines the same notions of convergence and continuity as the standard definitions

for a metric space.

A.1.3 Topological vector spaces

i) Every point of X is a closed set,

it) The vector space operations are continuous with respect to .

+ . XxX X
(z,y) = x+y

Having briefly introduced the concept of vector spaces and topological spaces, we are now
ready to define a topological vector space.

Definition A.7 (Topological vector space axioms). A vector space X over a field @,
where @ is either R or C is called a topological vector space if X is endowed with a
topology T such that:

To put a bit of flesh on the bones of this definition, the first condition implies that for
any x € X, the set {z} is closed, or equivalently X \ {z} should be open. The second
condition should be understood as follows. We require firstly that the map:
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is continuous, where X x X inherits the product topology from X. Secondly, we require
that the map:

dx X - X

(a,z) — ax

Where & x X is endowed with the product topology, and we take the topology on ® to
be the standard topology on R or C ~ R? as appropriate.

We say that a subset, E, of a topological vector space is bounded if for every neigh-
bourhood V of 0 we can find s > 0 such that F C tV whenever ¢ > s.

A useful source of topological vector spaces are the normed spaces that we previously
introduced. We can verify that these indeed satisfy the topological vector space axioms:

Theorem A.8. If (X,||-||) is normed vector space, endowed with the metric topology, then
X is a topological vector space. A set E C X is bounded if and only if sup,cp ||z| < oo.

Proof. 1. First we note that for each € X, the set {z} is closed. To see this, suppose
that y # z, and set r = 3 ||y — 2. Then the open ball B,(y) = {z € X : |z —y|| <
r} does not contain z, thus we have shown that X \ {z} is open.

2. Now suppose U is an open set in X and let z,y € X be such that z=x+y € U.
By the openness of U in the norm topology, there exists r > 0 such that the set
By(z) CU. Let W = Bz (x) x Bz (y), and suppose (z',y') € W. Clearly

lo" +3 =2l = o' 2+ ¢/ —y[ <[]" —af| + v —y[ <7

so that 2’ + ¢’ € B,(z) C U. Thus the set W C (+)~}(U) C X x X. However, W
is open in X x X by the definition of the product topology. Since (x,%) € (+)~1(U)
was arbitrary, we deduce that (4+)~1(U) is open and so + : X x X — X is continuous.

3. Finally, suppose that U is an open set in X and let x € X, a € ® be such that
z =az € U. By the openness of U in the norm topology, there exists r > 0 such
that the set B,(2) CU. Let W = {b € ® : |a—b| < r1} x By,(x), and suppose
(a/,2") € W. Then we have:

Ha'm’ — zH = Ha’w’ — aa:H = H(a’ —a)r’ —a(x — x’)H
< |[(@ = a)'|| +[Jaz — 2)]|
<ry (||z|| + r2) + |a] e

Setting r1 = ro = 4(min{r’1} , we have

I+ +al)
3r

r1(llall +7r2) +lafre <

and so a'z’ € B,(z) C U. Thus the set W C (:)"}(U) C ® x X. However, W is

open in ® x X by the definition of the product topology. Since (a,z) € (-)~1(U)
was arbitrary, we deduce that (-)~!(U) is open and so - : ® x X — X is continuous.
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4. Now suppose F C X is bounded. Then in particular, since B;(0) is an open
neighbourhood of 0, we have that E C tB1(0) for some ¢t > 0. However, tB1(0) =
Bi(0) = {z € X : ||z|| < t}, so necessarily we must have sup,cp ||z|| < t < oo.
Conversely, suppose that sup,cp ||| = M < oo, and let V' be any neighbourhood
of 0. Since V' is open in the metric topology, there exists € > 0 such that B.(0) C V.
Let t = 2Me™'. We have tB.(0) = Bay(0) = {x € X : |z < 2M}, thus
E C tB.(0) C tV. O

Remark. One has to be careful with various notions of boundedness for sets. While for
a normed space the notion of boundedness introduced for topological vector spaces above is
equivalent to the set having finite diameter, this is not true for general metric spaces. See
the remark after Theorem A.18.

We now prove a simple but useful consequence of the topological vector space definition.

Lemma A.9. Let X be a topological vector space. For any a € X and A € ® with X\ # 0,
define the maps:

T, : X — X, M, : X — X,
r—x+a. T — AT.

These are homeomorphisms of X to itself.

Proof. These maps are manifestly bijective, with inverses given by (7,)~! = T_, and
(My)~ = M,-1. All four maps are continuous by the definition of the topological vector
space, since joint continuity implies separate continuity (see Exercise A.3). ]

Lemma A.9 tells us that a set £ C X is open if and only if all of the translates a + F
are open. In particular this means that the topology of a topological vector space is
determined by a local base at the origin.

Theorem A.10. Suppose that (X, T) is a topological vector space, and that 3 is a local
base at 0. Then the collection

ﬁ:{a—i—B:aGX,BGB}

is a base for T.

Proof. Recall that a collection of open sets ﬁ is a local base at the origin if every
neighbourhood of the origin contains a member of . First note that 3 is a collection of
open sets, since translations of open sets are open. Now suppose that U € 7 is an open
set and pick € U. We have that (—z) + U is a neighbourhood of the origin, and so
there exists B € (8 such that B C (—x) 4+ U. Since translation of sets preserves inclusions,
we have 2+ B C 2+ (—x) + U = U. Thus for any U € 7 we have exhibited an element
of 8 contained in U, so § is indeed a base for 7. O

Theorem A.11. Suppose that X is a topological vector space. Then:

a) If U C X is a neighbourhood of 0 then U contains a balanced neighbourhood of 0.
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b) If U C X is a convex neighbourhood of 0, then U contains a convex balanced neigh-

bourhood of 0.

Proof. 1. Since scalar multiplication is continuous, there exists 4 > 0 and V open such

that aV C U for all |a| < 4. Let

W = UaV.

|a|<d
Then W is balanced and open, and U’ C U, establishing a).

Now, suppose that U is convex, set

A:ﬂaU

lal=1

and choose W as in the previous paragraph. Since W is balanced, a ™ 'W = W
whenever |a| = 1, so W C aU for all |a| = 1 and thus W C A. Thus A° is a
neighbourhood of the origin. Clearly A° C U. Since U is convex, so is aU for
any « and thus A is an intersection of convex sets hence convex. The interior of a
convex set is convex, thus A° is convex. Next I claim that A is balanced. Suppose
0 <r<1and|5] =1. Toshow A is balanced, it suffices to show that rGA C A.
Note
rBA = ﬂ rpal = ﬂ ral.
o]=1 =1

However, since aU is convex and contains 0, we have raU C «aU, and it follows
that A is balanced. It follows that A° is balanced, convex, open, contains 0 and is
a subset of U.

O

Lemma A.12. Suppose (X, 7) is a topological vector space. Then:

a) T is Hausdorff.

b) The set {x} is bounded for any x € X.

¢) If E1, Ey are bounded, then so is E1 + Fy. In particular, x + Ey is bounded for any
r e X.

d) If (x5)22 is a sequence in X such that {x,}5° | is bounded and (a,)S2, is a sequence
of scalars with a, — 0, then a,x, — 0.

Proof. 1. We first show that every neighbourhood, W, of 0 contains a balanced open

set U satisfying U + U C W. To see this, note that 0 + 0 = 0, so by the continuity
of 0, there exist neighbourhoods Uy, Uy of 0 such that Uy + Us C W. We let

U,:UlmUQ

which satisfies U’ + U’ € W. By Theorem A.11, U’ has a balanced subset U, and
U+UcCU+4+U cCcWwW.
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. Now consider z,y € X with = # y. Since {y} is closed and = € {y}¢, there exists
W, a neighbourhood of x with y € W. Since —x + W is a neighbourhood of 0,
there exists a balanced U with U +U C —x + W. Thus x +U + U C W and in
particular y € x + U + U. 1 claim (x + U) N (y + U) = (. Suppose not, then there
exists a,b € U such that x4+ a = y + b, which impliesy =x+a—b. But a,—b € U,
soy € x+ U+ U, a contradiction. We have constructed sets z + U and y + U which
are open, and contain x, y respectively, thus X is Hausdorff and we have established

a).

. Fix z € X and consider the map f, : R — X given by f,(\) = Az. This is a
continuous map, so f, (W) is open in R. Since 0 € W, we have 0 € f,~1(W),
and thus from the definition of an open set in R, the interval (—¢,¢) € f,~1(W) for
some € > 0. Thus Ax € W for X € (0, ¢), or equivalently = € tW for ¢t > e~ !. Thus
we have established b).

. Let W be any neighbourhood of 0. By paragraph 1. there exists U a neighbourhood
or 0 such that U +U C W. Since E1, Fy are both bounded, there exists s € R such
that t 'E; C U for t > s and i = 1,2. Thus for ¢t > s,

tH E1+E) =t "By +t "By cU+UCW,

or equivalently F1 + Ey C tW and hence Eq1 + FEs is bounded, which is the first
part of ¢). The final part of ¢) follows by applying the result from b).

. For part d), suppose W is any neighbourhood of the origin in X. As in part 1., we
can take U balanced and open with U C W. Then there exists s > 0 such that
Tn € tU for allm=1,2,... and any ¢t > s. Since a,, — 0, there exists N such that
lan| < s7! for all n > N. Since U is balanced, and we have z,, € tU and |ta,| < 1
for n > N, we deduce that a,x,, € U C W for all n > N and we’re done. O

Suppose that X is a vector space equipped with a metric d. We say that d is invariant

dlx+ z,y+ z) = d(z,y),

for all x,y,z € X. We have the following useful result

Lemma A.13. Suppose that X is a vector space, equipped with an invariant norm d,
and let T be the induced metric topology. Given a sequence (), with x, — 0, there
exist scalars oy, — 0o such that apx, — 0.

Proof. 1. First note that if d is invariant, then

d(nz,0) < nd(zx,0).
This is clearly true if n = 1. Suppose it holds for n =1,...k — 1 Then

d(kz,0) < d(kx,z) + d(z,0)
=d((k —1)z,0) + d(z,0)
< (k—1)d(z,0) + d(z,0) = kd(x,0)

and we’re done by induction.
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2. Now note that since x,, — 0, for any m € N there exists N, such that
1
where we can assume that N, < Np41. We define o, = m for Ny, <n < Ny
Suppose that N,, <n < Npy1. Then
1
d(any,0) < md(zy,0) < p—

Thus as n — oo, we have that a,x, — 0, however a,, = .
O

A crucially important concept which you may have come across when studying metric
spaces is the idea of a Cauchy sequence.

Definition A.8. i) Suppose (S,d) is a metric space. We say that a sequence ()02,
1s d-Cauchy if for every e > 0 we can find an integer N such that

d(Tp, Tm) < €, for allm,m > N.
A metric space is called complete if every d-Cauchy sequence converges in S.

ii) Suppose (X, T) is a topological vector space. We say that a sequence (x,)0°, is
7-Cauchy if for every neighbourhood, U, of the origin we can find an integer N such
that

Ty — Ty € U, for all n,m > N.

Exercise A.9. Let (X, 7) be a topological vector space

a) Show that if (z,)22, is a 7-Cauchy sequence, then {x,}°° ; is bounded.

b) Fix a local base 3. Show that a sequence ()%, is 7-Cauchy if and only if
for any B € 8 we can find an integer IV such that

Tn — Ty € B, for all n,m > N.
Lemma A.14. Suppose that X is a vector space, equipped with an invariant norm d,

and let T be the induced metric topology. Then a sequence (x,)5; is d-Cauchy if and
only if it is T-Cauchy.

Proof. Suppose that (x,) is 7-Cauchy. Then for any € > 0, there exists N such that for
all n,m > N we have x,, — x,,, € B((0), i.e.

€ > d(O, Ty — CCm) = d(xmwm)a

thus (z,) is d-Cauchy.

Now suppose () is d-Cauchy. Let V be any neighbourhood of 0. Since V' is open,
there exists € > 0 such that B¢(0) C V. Since (zy,) is d-Cauchy, there exists N such that
d(xp, ) < € for all n,m > N. Thus

€ > d(zp, Tm) = d(0, 2, — Tp,),

SO Ty, — Ty € Be(0) C V and () is 7-Cauchy. O
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We're now in a position to distinguish various useful classes of topological vector
space. There is some difference of opinion on the definitions below, we follow here the
conventions of Rudin. Here (X, 7) always refers to a topological vector space:

i) X is a locally convez topological vector space if there is a local base 3 whose members
are convex.

ii) X is locally bounded if 0 has a bounded neighbourhood.
iii) X is locally compact if 0 has a neighbourhood whose closure is compact.

iv) X is metrizable if there exists some metric d on X such that 7 is the metric topology

induced by d.
v) X is an F-space if its topology 7 is induced by a complete invariant metric.
vi) X is a Fréchet space if it is a locally convex F-space.

vii) X is normable if a norm exists on X such that the metric topology of the norm
agrees with 7.

viii) A normed space (X, ||-||), with the metric topology, is Banach if the metric induced
by the norm is complete.

ix) A space X has the Heine-Borel property if every closed and bounded subset of X is
compact.

The space R™ with the norm ||-||, introduced in the exercises is an example of a
topological vector space which belongs to all of these classes. The spaces that you studied
in Functional Analysis were mostly Banach spaces, although not all. For example if X is
an infinite dimensional Banach space, then the weak-* topology of X™* is locally convex,
but not metrisable.

We note that the converse of the Heine-Borel property is always true for a topological
vector space:

Lemma A.15. Suppose (X, T) is a topological vector space and that K C X is compact.
Then K 1is closed and bounded.

Proof. 1. The fact that K is closed follows immediately from Lemmas A.3, A.12.

2. Next, suppose U is a neighbourhood of 0. By the continuity of scalar multiplication,
there exists § > 0 and a neighbourhood V' of the origin in X such that oV C U
for any |a| < 0. Define W to be the union of these sets as a varies over {|a| < ¢}.
Then W C V is an open, balanced, neighbourhood of 0.

3. Now I claim that

[jnW:X.

n=1
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To see this, fix x € X. Since the map a — ax is continuous, the set of all a with
ax € W is open and contains 0, hence contains n~! for sufficiently large n. Thus
n~lz € W, or x € nW for large enough n. Note that since W is balanced, in
particular sW C tW for s < t.

4. Finally, since % = {nW}, is an open cover of X, it is also an open cover of K.
Thus there exist nq,...,ny such that

N
KC U W = nyW C nyU.
=1

Thus K is bounded.

A.2 Locally convex spaces

We shall now specialise somewhat, to the case of locally convex topological vector spaces.
These can be given a nice description in terms of a family of semi-norms. When that
family is countable, the topology is equivalent to that induced by an invariant metric,
which if it is complete gives a Fréchet space. These can be thought of as generalisations of
the Banach spaces that you may be familiar with from functional analysis. The canonical
example of a Fréchet space that is not a Banach space is C*°(2), the space of smooth
functions on an open set 2. The finite regularity spaces on a compact set C*(K) are
Banach spaces in a natural way, but this is not true of C*°(Q).

A.2.1 Semi-norms

A very useful way to construct the topology for a locally convex topological vector space
is via a family of semi-norms.

Definition A.9. A seminorm on a vector space X over ® (with ® being either R or C)
is a map p: X — R satisfying:

i) p is subadditive. For all z,y € X we have:
p(z+y) <p(z) +py)
it) For all A € ® and v € X we have:

p(Az) = |A|p(z)

A family of seminorms &2 is said to be separating if for every x € X with x # 0, there is
at least one p € P with p(x) # 0.

From the definition we can immediately deduce some useful properties:

Lemma A.16. Let X be a vector field over R or C, and let p : X — R be a seminorm.
Then:
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a) p(0) =0
b) [p(z) — p(y)| < p(z —y)
c) p(z) =20

d) {z : p(x) = 0} is a vector subspace of X.
e) The set B = {x:p(x) < 1} is convex and balanced.

Proof. a) Applying property i) from the definition of a seminorm with A = 0 we
immediately have p(0) = 0.

b) From the subadditivity property we have
p(x) =ple—y+y) <plz—y)+pQy)

so p(z) — p(y) < p(z — y). Similarly p(y) — p(z) < p(y — z), but p(r —y) = p(y — )
and the result follows.

c) Applying a),b) with y = 0 gives |p(z)| < p(z) which implies p(z) > 0.
d) Suppose p(x) = p(y) =0 and A\, u € . Applying ¢) we have:
0 <pAz+ py) < [Alp(z) +[plply) =0,
so that p(Az + py) = 0 and thus {z : p(x) = 0} is a vector subspace.

e) It is clear that B is balanced by property ii). To see that B is convex, suppose that
z,y € Band 0 <? < 1. Then

ptr + (1 —t)y) < tp(z) + (1 —t)p(y) <1,
sotx + (1 —t)y € B and B is convex. O

Note that these results are already enough to show that a seminorm p with the
property that p(z) # 0 whenever z # 0, is in fact a norm.

We are now ready to prove an important result that shows that a family of seminorms
specifies a locally convex topology on a vector space. The proof is quite long, and you
may wish to omit it on a first read through. The argument is similar to the proof of
Theorem A.8, which in fact could be understood as a corollary of this result.

Theorem A.17. Suppose that & is a separating family of seminorms on a vector space
X. Associate to each p € & and n € N the set:

Vp,n) = {x € X :plx) < 1}.

n

Let 5 be the collection of all finite intersections of the sets V(p,n). Then B is a convez,
balanced, local base for a topology T on X, which turns X into a locally convex topological
vector space such that:
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a) every p € & is continuous
b) a set E C X is bounded if and only if every p € & is bounded on E.

Proof. 1. Let us define g8 by
5:{x+B:meX,BeB}.

Since 0 € B for any B € B, we immediately have that for any = € X there is an
element of B containing x. Now suppose that By, By € 5. We may write

N M
By=y+(\V(pini), Ba=z+[]V(g,my),
i=1 j=1

for y,z € X, pj,q; € & and N,M,n;,m; € N. Fix x € By N By. Clearly v € B
and B € 8. I claim that B C B; N By for

N M
B=z+ (ﬂ V(pm”é)) N m V(Qj,m}) )
j=1

i=1

provided that n}, m} are chosen sufficiently large. Since x € By N B, we have:

1 1
pilr —y) < =, qr—2)<—, foralli=1,...,N, j=1,...,M
n, :
For each i, j, pick nj, m’ sufficiently large that
1

( )+1<1 ( )+ ! <
(z — — < = (r—2)+ — < —
pi y n, o ong 4 m; m;

Now suppose w € B. Then we have that:

1 1
pilw—2)<—, ¢gw—z)<—, foralli=1,...,N, j=1,....M
n m/;

Using the subadditivity of p; we have that for each i:

1 1
pi(w —y) < pi(w —2x) +pi(z —y) < Wﬂ%(:c—y) <
i )

thus w € Bj. Similarly, we have for each j that:
1 1
6w —2) < glw—2) + g0 —2) < — + (e —y) < —,

j T

Thus the collection B satisfies the conditions of Exercise A.2 and thus defines a
topology 7 on X. Moreover, (3 is a local base for 7 and each element of 5 is convex
and balanced.
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2. Suppose that z,y € X with x # y. Then since z — y # 0 and & is separating,
there exists p € & such that p(z — y) > 0. Thus, there exists n € N such that
np(x —y) > 1. For this n we have that « ¢ (y + V(p,n)). Thus we may write {x}°
as a union of sets which are open in 7, hence {z} is closed.

3. Next we must show that addition is continuous. Suppose U is an open set in X,

and pick z € U. Then
N

ﬂ V(pi,ni) C —z+U
i=1

for some p; € #, n; € N. Suppose that (z,y) € (+)"(2), i.e. z+y = z. Let

N N
Vi=az+ [ \V(pi2n), Ve=y+[ V(i 2n)
i=1 i=1

and suppose (w1, wz) € Vi x V5. Then for all i we have

1 n 1 1
2n;  2n;  ny
so that V; + Vo C U, or alternatively V3 x Vo C (+)7}(U). Thus we can write
(+)~Y(U) as a union of sets which are open in the product topology. This proves

that addition is continuous.

pi(wi +wa — 2) = pi(wr —z+we —y) < pi(w1 —x) +pi(w2 —y) <

4. Next we must show that scalar multiplication is continuous. Suppose U is an open
set in X, and pick z € U. Then

N
ﬂ Vpi,ni) C —z+U
i=1

for some p; € &, n; € N. Suppose that (o, z) € (-)71(2), i.e. ay = 2. Let

N
V=z+(\Vpin), D={Becd®:|a—p<e
=1

Suppose (B,y) € D x V Then for each ¢ we have:

pi(By — ax) = pi(B(y — x) — (o — B)z)
< ’5‘ + epi(x)

ol + €
< ’n’ + epi(z).

(2

Taking € < (2n;p;(z)) ™1 and n! > 2(|a| + (2n;pi(x))~1) for each i, we conclude that

N
(By —2) € [ V(pirna),
i=1

which implies that D x V' € (-)71(U). Thus scalar multiplication is continuous, and
we have established that (X, 7) is a locally convex topological space.
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To see that p € &2 is continuous, we must show that p~!(a, b) is open, where a < b.
Suppose x € p~!(a,b), so that a < p(z) < b. Consider

U=z+V(p,n)

Suppose y € V. Then
1
[p(y) = p(@)] < ply —2) < —,

by part ¢) of Lemma A.16. For n sufficiently large, we have p(y) € (a,b) so that
V C p~!(a,b) and we're done.

It remains to show that F C X is bounded if and only if every p € & is bounded
on E. First suppose FE is bounded and fix p € &. Since V(p, 1) is a neighbourhood
of the origin, from the definition of boundedness we have that £ C kV (p, 1) for
some k < co. But x € kV(p, 1) implies p(x) < k, so that p is bounded on E.

Now suppose that every p € & is bounded on E. Let U be a neighbourhood of the

origin. Then
N

(Vpini)CU
i=1
for some p; € &, n; € N. By our assumption, there exist M; < oo such that
pi < M;yon Eofl <i<N.Ifn> Mn; for all i, then E C nU, since if p;(z) < M;,
we have
pile)<M;< X  i=1... N

ng

1 1
pi<$><‘ i=1,....,N

and n 1z e U. O

so that

Thus we have seen that a separating family of seminorms gives rise to a locally convex
topological space. In fact, the converse is true: given a locally convex topological space,
we can find a (not necessarily unique) separating family of seminorms which generates
the topology in the manner of the previous theorem.

In the case where the separating family of seminorms & is countable, we have an
alternative means of describing the topology.

Theorem A.18. Let

P = {pi}fil

be a countable separating family of seminorms on a vector space X, and let T be the
topology induced by this family as described in Theorem A.17. Then the locally convex
topological vector space (X, T) is metrizable, and the topology T agrees with that induced
by the invariant metric:

-y
1+ p; az—y)
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Proof. 1. We first verify that d indeed defines an invariant metric. It is clearly
symmetric since p(—x) = p(x) for a seminorm. We note that the map
t
F:t——
1+t
is smooth, monotone increasing, concave and takes [0,00) to [0,1). Thus d(z,y)
is a sum of non-negative terms, so d(z,y) > 0. Equality occurs if and only if
pi(z —y) = 0 for all ¢, which by the fact that & is separating implies 2 = y. Next
we claim that F is subadditive. To see this, we note that by the convexity of F,
together with F(0) =0 we have for t > 0 and 0 < A < 1:

FOM) = PO+ (1= M\)0) = AF(t) + (1 — \)F(0) = AF(t).

Then for ¢,s > 0:

F(t) + F(s) = F ((t+s)tis> +F <(t+s)tj8)
> o Flts) + H%F(tjus) = F(t+s).

Now, since p is a seminorm we have

p(z —y) <plz —2) +p(z —y)
— Flp(z —y)] < Flp(z — 2) + p(z — y)] (Monotonicity of F)
= Flp(x —y)] < Fp(x — 2)]+ Flp(z —y)]  (Subadditivity of F)

s i pi(x — Z) pi(z - y)
<;2 <1+pi(x—z)+1+Pi(Z_y)>
=d(z,2) +d(z,y),

so d is indeed a metric on X. It is manifestly invariant.

2. Now we need to show that the topology induced by d, which we denote 74, agrees
with the topology 7 induced by the family of seminorms &. Recall that the open
sets of 74 are precisely those sets which can be written as a union of the open balls
By(z)={y e X :d(z,y) <r}.

3. From the definition of 7, we have that each p; is 7-continuous on X. Since |F ()| < 1,
we conclude by the Weierstrass M-test that the sum in d(x,y) converges uniformly.
Hence d is continuous as a real valued function on X x X with the product topology
coming from 7. In particular, the map d, : X — R given by d,(y) = d(z,y) is
continuous, and thus d,'(—r,r) = B,() is an open set in the 7 topology. Thus
T4 C T.
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4. Now suppose that W is an open set of 7, and that € W. By the definition of 7,
there exists B such that x + B C W and B has the form

N

B= [V (i)
k=1

for some p;, € & and ny € N, where we recall V(p,n) = {y € X : p(y) < n~1}.
Now suppose d(z,y) < €2~*. Then in particular, for 0 < i < M we have

pi(r —y) <.
L+ pi(z —y) =

so that if € < %:

pi(z —y) < < 2e.
1—¢

Thus if we take M > i and € < (ng)~! for all k = 1,..., N we deduce that if
Yy € Boy-m(z) then y — 2z € B and thus y € W. Since x was arbitrary we can write
W as a union of open balls for the metric d, and thus 7 C 7. O

Remark. 1. Note that while a countable separating family of seminorms gives rise
to a metrizable locally convex topology, it need not be the case that the metric balls
B,(0) are themselves convex. The sets V (p,n) however are.

2. It is straightforward to see that d(xz,y) < 1 for any x,y € X, so that any subset of
X has finite diameter. On the other hand, it does not follow that all subsets of X
are bounded in the sense introduced above for a topological vector space.

A.3 The test function spaces

A.3.1 £(2) and Pk

Let © C R™ be an open subset of R®. Recall that for a function f : Q@ — C, we say
feC>(Q)if D*f is a continuous function in  for all multiindices a. Clearly C'*°(Q2)

is a vector space over C, with addition and scalar multiplication defined pointwise: if
frg € C™®(Q), A € C, we define the maps f + g, Af by

f+g : Q—=C, Af o Q—=C,
x— f(x)+ g(x), x = Af(x).

Then f + g, A\g € C*°(Q).

We shall endow C*°(2) with a topology which makes it into a Fréchet space with the
Heine-Borel property. By the exhaustion lemma, Lemma A.6, we can find a sequence
of compact sets (K;)2, such that K; C Q, K; C (K;41)° and |J; K; = Q. We define a

family of seminorms by:

pn(f) =max {|Df(z)| : x € Ky, |a] <n}. (A.1)
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The family & = {p,, : n € N} is separating. If f # 0, then f(x) # 0 at some point = € €.
For n sufficiently large, = € K,,, and thus p,(f) > 0. Thus the family of seminorms &
induces a topology, 7, on C*°(€2) which is locally convex and metrizable by Theorem
A.18. When C*°(Q) is endowed with the topology 7, we use the notation &(£2). A local
base is given by the sets

VN:{fGCOO(Q):pN(f)<1}, N=12 ..

N
It’s useful to categorise convergence in this space in terms of more familiar concepts
as follows:

Lemma A.19. A sequence (fn)nen in &(Q) converges to f if and only if D f,, — D f
uniformly on compact sets for each multiindex c.

Proof. By the translation invariance of the topology, we can assume w.l.o.g. that f = 0.
The sequence (fy,) tends to 0 in &(€2) if and only if for each N there exists my such that
fn € Vy forall n > my.

First suppose f, — 0 in &(2). Fix a and let K C € be any compact subset. For
any ¢, there exists N such that N > max{|a|,e '}, K C Ky. If n > my then f, € Vy,
which implies

<€,

2| =

sup [D fn| < sup [ D fu] < pn(fn) <
K Ky

Thus D f, — 0 uniformly on K.

Conversely, suppose that for each multiindex o and compact set K we have that
D f, — 0 uniformly on K. Fix N. Then for each a with |a| < N we have D*f, — 0
uniformly on K. In particular, for each « there exists m, such that if n > m,, we have

that 1
Dof | < —.
SI?E | D f N

Thus if m = max|, <y Mq then for all n > m we have f,, € Vy and thus f, - 0in &. O

Theorem A.20. The topological vector space & (S2) is a Fréchet space with the Heine-Borel
property.

Proof. 1. Since we already have that &(Q) is locally convex and inherits its topology
from an invariant metric, in order to show that & (2) is Fréchet, we simply have to
show completeness. A sequence (fn)nen With f,, € &() is Cauchy if for any fixed
N, there exists M such that for all 4, j > M we have f; — f; € Viy. Thus

sup | D f; — D*f;| < i, for all |a| < N.

Ky N

Since Ky exhaust €2, this implies that there exist continuous functions g such
that D*f, — ¢“ uniformly on compact subsets of 2. By a standard result, this
implies that there exists a smooth function f such that f, — f and D“f, — Df
uniformly on compact subsets of 2. Thus every Cauchy sequence has a limit and
& () is complete.
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2. Now suppose that E C &(Q2) is closed and bounded. We need to show that E
is compact. By Theorem A.7 it suffices to show that any sequence in E has a
convergent subsequence. By Theorem A.17, the boundedness of F is equivalent to
the existence of My such that py(f) < My for all f € E.

3. In particular, we have that
|ID*f| < My for || =N

holds for all f € F on K. This in particular implies that for each 5 with |5] < N—1
the set {D?f : f € E} is equicontinuous on Ky_1, and it is trivially pointwise
bounded by the condition pn(f) < My.

4. Suppose that (f,)nen is any sequence in E. By Arzela-Ascoli we can extract a
subsequence ( fn}c) keN such that f"i converges uniformly on Ky. Suppose now that
an increasing sequence of integers n]kv are given with the property that (D? fnzkv) keN
converges uniformly on Ky _; for all |3| < N — 1. Consider the sequence ( f”iv) kEN-
Since this is a sequence in E, we know that for each  with |5] < N the set
{D# f”zjcv : f € E,k € N} is equicontinuous and pointwise bounded on K. Thus we
can extract a subsequence ( fnzka) ren such that (D? fnkN+1)k€N converges uniformly

on Ky for all |[3] < N. Thus by induction, we can find név with the required
property for all V.

5. Consider the sequence (Fy)gen with Fj, = f"';i where név are as constructed above.
Since niv *1 is a subsequence of n{cv , we conclude that D®F}. converges uniformly

on compact subsets for any «, and thus for any sequence in F we have exhibited a
convergent subsequence.

O

If K C R™ is a compact set, we denote by Zk the space of all f € C*°(R") whose
support lies in K. If K C 2, then P may be identified with a vector subspace of C*°(2).
In fact, this subspace is closed with respect to the &'(€2) topology. To see this, note that
the map 4, : £(Q) — C given by f +— f(z) is continuous. Thus the set §,1({0}) is a
closed set in &(€2). Since we can write:

75 = () 6 "({o})

zeQ\K

and arbitrary intersections of closed sets are closed, we deduce that Zk is closed (and
hence complete in the subspace topology). Thus Zk is itself a Fréchet space, when
equipped with the subspace topology, which we denote 7.

A32 2(Q)

We have described the spaces P, which consist of smooth functions whose support is
restricted to a given compact set K C Q. The set Z(€2) of test functions is the union
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over the sets Zx with K C ) compact:

2Q) = | Z.
KcQ

In other words, f € 2(Q) if f is smooth, and is supported in some compact subset of 2.
It is clear that Z() is closed under the natural operations of addition and multiplication
by a complex number, and thus Z(f2) is a vector space over C. We would like to endow
2(£2) with a topology which turns it into a complete, locally convex, topological vector
space, such that the subspace topology induced on Pk agrees with the natural Fréchet
topology, Tk introduced above for each compact K C 2.

One natural possibility is to consider the norms

[flly = max{[ D[ (z)| : © € Q, |a] <k}.

The family 2 = {||-||, : K =0,1,...} is a countable separating family of seminorms and
so defines a locally convex metrizable topology, 79 on Z(2). A local base is given by:

WN:{fEC"O(Q):Hf|N<1}, N=12 ..

N
The subspace topology induced on Pk by Tg is indeed 7x. To see this, recall that
Tk is defined by the family of seminorms introduced in (A.1). Note that for any fixed
compact K C  there exists Ny such that K C Kpy,. For N > Ny we have || f||y = pn(f)
for all f € Pk. Clearly then:

VN N9k = Wn N Pk, N = Nyg,Ng+1,....

Suppose U is an open set in the subspace topology induced on Zk by 79 and pick x € U.
Then —x + U is a neighbourhood of the origin, and thus there exists n such that

WoND C —xz+U

But Wy,+1 C W, for all m, so without loss of generality we may assume n > Ny. But
then we conclude that

VN9 =W,N9x C —x+U

and so U is open in 7x. An identical argument shows the reverse inclusion: i.e. an open
set in T is open in the subspace topology induced on Pk by 79.

Thus the topology 79 is locally convex, and induces the right subspace topology on
Pk . However, it is not complete. To see this, consider {2 = R, and let ¢ be any non-zero
function with support in [0, 1]. Consider the sequence of functions (f,)men with:

(@) = Dz — 1)+%qﬁ(m—?)+%¢(x—3)+...+%¢(x—m).

This is a Cauchy sequence with respect to the topology 79: if n < m, then

1
I6n = Gl = - 161l
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thus for any N if n,m > N ||¢|y we have ¢, — ¢, € Wn. On the other hand, the
sequence has no limit in 2(Q), since for sufficiently large m, ¢,, has support outside any
compact set. We thus are led to discard 79 as a prospective topology for Z(2).

In fact, the topology T is too coarse: in a sense, the notion of convergence is too loose.
This suggests that we should seek a finer topology. The topology that we shall introduce
for 2(2) will in fact be the finest locally convex topology such that the subspace topology
induced on Pk agrees with the natural Fréchet topology for each compact K C (.

Definition A.10. Let 2 be a nonempty open subset of R™.
a) For each compact K C Q, T is the Fréchet space topology on Py introduced above.

b) [ is the collection of all convex balanced sets W C Z(Q) such that Zx "W € T for
every compact K C €.

¢) T is the collection of all (possibly empty) unions of sets of the form ¢ + W with
pe D) and W € 5.

Theorem A.21. a) 7 is a topology for 2(§) and B is a local base for T.
b) T makes 2(2) into a locally convex topological vector space.

Proof. 1. It is clear from the definition that 2(2),0 € 7 and that 7 is closed under
arbitrary unions. If we can show that for any Vi,V5 € 7 and ¢ € V1 N Vs, then

b+ W CVinVy (A.2)

for some W € 3, then we can deduce that V3 N V5 is open and so 7 is a topology.
Moreover, setting ¢ = 0 and Vo = 2() in (A.2) we deduce that any neighbourhood
of 0 contains an element of 5 and so [ is a local base. To show a) then, it is enough
to establish (A.2).

2. From the definition of 7, there exist ¢; € Z(Q) and W; € 8 such that ¢ € ¢; + W;
and ¢; + W; C V; for i = 1,2. Choose a compact K C €2 such that ¢,¢; € Px.
Since Yx N W; is open in Pk, we have

¢ — i € (1—5)W; (A.3)

for some 9; > 0. To see this, recall that Pk is a topological vector space, so in
particular scalar multiplication is continuous. Thus for any ¢ € Yk, the map
Fy : R — Py given by t + t1) is continuous. Thus the set A = (Fy5_g,) " [WiN Zk]
is open in R. In particular, there exists ¢; such that (1 — 2¢;,1 + 2¢;) C A,
which is equivalent to t(¢ — ¢;) € W; N Pk for t € (1 — 2¢;,1 + 2¢;). But if
(I+€)(¢p— ¢i) € Wi N Pk, then (A.3) must hold for some 6; > 0.

3. Since W; is convex, we can use the result of Exercise A.1 to deduce that
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whence we deduce that
o+ 6W; C ¢ +W; C V.

Taking W = §1¢1 N d2¢2 we have established (A.2) and thus proven part a) of the
theorem.

. To show that 7 makes Z(2) into a locally convex topological space it is enough to
show that the topological vector space axioms are satisfied. Since f is a local base,
and is convex by construction the result will follow. Suppose that ¢1, P2 € Z(£2)
are distinct, and consider the set:

W={¢€2(Q):lly<ll$r — ¢2llo}

This is certainly convex as it is a metric ball. Moreover, since the sets {¢ € P :
|6l < 7} (and their translations) are open in 7x for any r and all compact K C €,
we conclude that W € 3. Moreover, ¢; & ¢2 + W. Thus the singleton set {¢;} is
closed in 7.

. To establish the 7-continuity of addition, suppose U € 7 is any open set, and
suppose that we have ¢1, 2 € Z(Q) with ¢1 + ¢o € U. Since S is a local base,
¢14 ¢2+ W C U for some W € 3. I claim (¢1 + 3W) x (¢ + 3W) C (+)"1(U).
To see this, note that by the convexity of W:

(G1+ 5W)+ (2 W) = b1+ 62+ W CU.

Thus (+)~!(U) is open in the product topology and addition is T-continuous.

. Finally, to show that scalar multiplication is continuous, suppose U € T is any open
set, and suppose that we have a € ®, ¢ € 2(Q) with a¢ € U. Since S is a local
base, agp + W C U for some W € . I claim that for €, ¢ sufficiently small, we have
{o/ €®:|a/ —al <} x(¢p+eW) C (-)~HU). Note that

¢ —agp=d(¢ —¢)+(a —a)o

Now, by a similar argument to that in paragraph 2. above, the continuity of scalar
multiplication restricted to Yk for a compact K which contains the support of ¢
ensures we can choose § > 0 such that 6¢ € 3W. Let us set € = (2(|a| + §)~'. By
the fact that W is balanced and convex, we deduce that

1 1
a’¢'—a¢€§W+§W:VV,

so that {o/ € @ :|a/ —al < §} x (¢ +eW) C ()7 1(U) and scalar multiplication is
indeed continuous. O

From now on, whenever we refer to Z(2), we shall assume that it is given the topology

7 that has just been constructed. The main results of this section (indeed this chapter)
are the following two results which characterise convergence and continuity in Z(€2).
These results justify the approach taken in lectures to disregard a close study of the
topology of Z(2) and focus instead on sequential definitions of continuity.
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Theorem A.22. a) A convex balanced subset V' of Z(Q) is open if any only if V € 3.

b) The Fréchet topology Ti of any P C D(Q) coincides with the subspace topology that
DK inherits from 2(2).

¢) If E is a bounded subset of 2(2) then E C Pk for some K C 2, and there are real
numbers My < oo such that every ¢ € E satisfies the inequalities

d) 2(Q2) has the Heine-Borel property.

e) If (¢i)ien is a Cauchy sequence in 2(R2), then {¢; }ien C Pi for some compact K C (2,
and (¢;) is Cauchy with respect to the norm ||-|| 5 for each N =0,1,....

f) If ¢; = 0in 2(Q), then there is a compact K C Q which contains the support of every
i , and D%p; — 0 uniformly, as i — oo for every multiindezr «.

g) In 2(92), every Cauchy sequence converges.

Proof. 1. Since [ is a local base, clearly if V' € 8 then it is open. Now suppose V is an
arbitrary convex, balanced, open set. Let K be any compact subset of €2 and pick
¢ € Y NV. Since B is a local base, we have ¢ + W C V for some W € 5. Thus

b+ (IxnNW)C IxgnNV.

From the definition of 8, we know that Zx N W € 7g, so we have shown that
Pk NV is open in g . Since 8 contains all convex, balanced sets whose intersection
with each Zj is open, V € 5 and we have established a).

2. The previous paragraph shows that any element of 7| 9, also belongs to 7x, i.e.
any set which is open with respect to the subspace topology is open in the Fréchet
topology. Suppose now that F € 7. To show E € P N W € 1, we have to show
that £ = 2 NU for some U € 7. Suppose ¢ € E. Then from the definition of the
topology of g, there exists IV, such that:

{Y € Dk : | — 9|y <6} CE.

Let:
Wy ={ € 2(Q): |[¢]y <d}.

Then W, € 3, and moreover
@Kﬂ(¢+W¢) =0+IxkNWy CE

Taking:
U= U (¢ +Ws)

Pel
we have U € 7 and E = Pk NU. This establishes b).
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To show the first part of ¢), we prove the contrapositive. Suppose E C 2(Q2) does
not lie in any Zg. Let {K,, }men be an exhaustion of Q. Since E ¢ Pk, , for each
m, we can find ¢, € E with supp¢,,, ¢ K. In particular, there exists ,, € Q\ Ky,
with ¢, () # 0. Let

W ={¢ € 2(Q) : |¢p(xm)] <m™" |dm(zn)]}.

A short calculation shows W is convex and balanced. Suppose K C 2 is compact,
then there exists M such that K C Kjy;. In particular this implies x,, ¢ K for
m > M. Thus Zx N'W is an intersection of finitely many open sets, and so W € f.
However, ¢,, € mW for any m, so E is not bounded. Thus any bounded set in
2(22) belongs to Zk for some K. By b), E is thus bounded in Pk, and the final
part of ¢) follows by Theorem A.17.

Statement d) follows from c¢), since Zx has the Heine-Borel property (Theorem
A.20). Since Cauchy sequences are bounded (Exercise A.9), ¢) implies that every
Cauchy sequence (¢;);en lies in some Zk. By b), (¢;)ien is Cauchy with respect to
7K, and e) follows. Statement f) is a restatement of e). Finally, g) follows from e)
together with b) and the completeness of Zk.

O

The final major result of this section concerns linear maps from Z(12) into a locally
convex space. Before we state the theorem, we introduce the notion of a bounded operator
as one which takes bounded sets to bounded sets. That is to say if X, Y are topological
vector spaces, then a linear map A : X — Y is bounded if A(E) is bounded in Y whenever
F is bounded in X.

Theorem A.23. Let Y be a locally convex topological vector space. Suppose that A :
2() =Y is a linear mapping. Then the following are equivalent:

a) A is continuous.

b) A is bounded.

c) If i — 0 in 2(Q) then A¢; — 0 inY.

d) The restrictions of A to every i C 2(Q) are continuous.

a) = b)

b) = ¢)

Let E be a bounded set in () and let W be a neighbourhood of 0 in Y. Since A
is continuous, there exists a neighbourhood V' of 0 in Z(2) such that A(V) C W.
Since F is bounded, there exists s > 0 such that £ C tV for all ¢ > s. Since A is
linear, A(E) C A(tV) =tA(V) C tW, and hence A(FE) is bounded.

By part e) of Theorem A.22, if ¢; — 0 in 2(£2), then there exists K C Q such
that ¢; — 0 in Yk . Since Pk is metrizable, there exist scalars a; — oo such that
a;¢; — 0 in Pk and hence in () by part b) of Theorem A.22. By the linearity
of A, we have

A¢Z = Oél_lA(Ozld)Z)
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c) =d)

d) = a)
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Now (a;¢;) is Cauchy in 2(f2), and hence bounded. Since A is bounded by
assumption, {A(;¢;)} is bounded. As ai_l — 0, by Lemma A.12, part d), A¢; — 0.

By part b) of Theorem A.22, we have that ¢) implies that if ¢; — 0 in Pk then
A¢; — 0. We work by contradiction. Suppose that the restriction of A to Pk is
not continuous. Then there exists a neighbourhood W of 0 in Y such that A=!(WW)
contains no neighbourhood of 0 in Y. Since Pk is metrisable, pick a metric
d which generates 7 and construct a sequence () by choosing x, such that
d(rn,0) < n~! and x, ¢ AY(W). Then z, — 0 in Pk and hence in 2(Q2), but
A(zy,) # 0, contradicting c).

Suppose that U is a convex, balanced, neighbourhood of the origin in Y and set
V = A~Y(U). Then V is convex and balanced by the linearity of A. By part a) of
Theorem A.22, V' is open in Z(Q) if Zx NV is open in P for every P C (),
but if A is continuous when restricted to each Pk, then Y NV is open in Y
from the definition of continuity. Thus V is open. Now suppose that W is any
open set in Y, and suppose ¢ € A~1(W). Since Y is locally convex, there exists
U, a convex neighbourhood of 0 in U such that A¢ + U C W. By Theorem A.11,
we may assume that U is balanced. Since A is linear, ¢ + A~1(U) C A~Y(W), and
¢+ A~Y(U) is open in 2(f2), so A is continuous.



Appendix B

Background Material: Measure Theory and
integration

In this appendix we shall briefly review some of the basics of measure theory, including
sigma algebras, measurable spaces, measures and the construction of the Lebesgue measure.
These notes follow parts of the notes from Prof. Norris’ version of the course Probability
and measure, as well as the books Real and complex analysis by Rudin, Real Analysis by
Stein and Shakarchi annd Measure Theory and Integration by M. Taylor.

B.1 Sigma algebras and measures

Given a set E, the basic goal of measure theory is to assign to certain subsets A C E a
value, p(A) which represents in some appropriate sense the ‘size’ of A. For example, if E
is finite or countable and A is any subset of E we might set u(A) to be the number of
elements in A (where p(A) may be oo if A is not finite). In this case p is defined on all
of the power set 2F. We call p the counting measure.

For E = R, it is natural to wish to define u(A) to be the ‘length’ of A. This is
unambiguous if A is some interval, but it turns out that we run into problems trying to
define the ‘length’ of an arbitrary subset of R. As a consequence, we will need to restrict
our attention to a smaller collection of sets than the power set 2K,

Definition B.1. Let E be a set. A collection £ of subsets of E is called a o-algebral if
E contains O and is closed under taking the complement and forming countable unions.

That is if A € £ then
A°={zx € E|lx g A} € &,

and if (An)52 is a sequence with Ay, € &, then
UJanee
n=1

(E,€&) is called a measurable space.

Lpronounced “sigma algebra”

163
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A measure on (E,&) is a set function p: € — [0,00] such that u(0) = 0 and p is
countably additive. That is for a sequence (Ay)22, with Ay, € € disjoint, we have:

e¢] o0
2 (U An> = ZM(ATL)
n=1 n=1
(E,&, 1) is called a measure space.

Note that (F,2F) is always a measurable space, since 2F is always a c-algebra.
Suppose (E, E, p) is a measure space and that A € £. Then we can define a new measure
space (A, E&|a,p|la) by taking E|4 = {B € £€: B C A} and defining p|a(B) = u(B) for all
B e S‘A.

Exercise B.1. Let E be finite or countable and £ = 2%,
a) Verify that if p is the counting measure, then (E, £, ) is a measure space.

b) A mass function is a map m : E — [0, 00]. Define a set-function on (E, &) by

z€EA

Show that p,, is a measure on (E, ), and moreover if p is any measure on
(E, &) then u = py, for some m.

For the examples in Exercise B.1, we can identify in a straightforward way both an
appropriate o-algebra and measure. In more general situations we may not be so lucky,
so it is very helpful to be able to appeal to abstract results to construct measure spaces
by starting with something simpler. We shall require the following Lemma, whose proof
we defer to an exercise.

Lemma B.1. Suppose that for each i € I, where I is some (not necessarily countable)
index set, & is a o-algebra of the set E. Then the intersection N;c;&E; is a o-algebra.

With this fact in hand we can define the o-algebra generated by a collection of sets.

Definition B.2. If A is a collection of subsets of E, then the o-algebra generated by A,
denoted o(A), is the intersection of all o-algebras € on E such that A C £.

Since 2F is always a o-algebra, and A C 2F, o(A) is always well defined. When (E, 7)
is a topological space, with 7 the collection of open sets, it is natural to introduce the
Borel algebra® B(E) := o(7). When E = R with it’s standard topology, we often write
B := B(R). A measure defined on the measure space (E,B(F)) is called a Borel measure.
A Borel measure which is finite on compact sets is called a Radon measure.

Exercise B.2. a) Prove Lemma B.1.

b) Let E = {1,2,3}. Find o({1}), and show that o({1}) # 2F.

2The notation B(E) assumes that the topology is obvious from context
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Exercise B.3. a) Show that if U C R is open in the standard topology, then:

o0
U= ]I,
n=1
where each I,, = (ap, b,) with a,, < by, is an open interval, and the I,,’s are

disjoint.

b) Show that B = o(.A) when A is given by:

— e

a,b)la,b € R,a < b}, the collection of all open intervals in R.

I
~
—

—
—-

— — — — — ~— ~— ~— ~—
~=

a,blla,b € R,a < b}, the collection of all closed intervals in R.
a,blla,b € R,a < b}.

e
—-
—

I
~=
—

iv = {la,b)|a,b € R,a < b}.
(—00,b)|b € R}.

vi) A= {(—o0,b]|b € R}.

vii = {(a,0)|a € R}.

I
—~~

a,0)la € R, a}.
a,b)la,b € Q,a < b}.

NN N N N N N N N
I

—

{

[Hint : reduce cases ii) —ix) to case i).]

We have a means of generating a o-algebra from a smaller collection of sets, A. We’d
like to define a measure by how it acts on A, and then ‘extend’ this measure to act
on o(A) (or some larger o-algebra containing A. For this we need both an existence
and a uniqueness result for the extension. We first introduce the idea of m-system and
d-system and establish Dynkin’s m-system Lemma, which will eventually furnish a proof
of uniqueness for extensions of measures.

Definition B.3. Let A be a collection of subsets of E. We say that

i) A is a w-system if it contains the empty set and is closed under pairwise intersection,
i.€.
e e A,
e ANBe A forall A,B € A.

it) A is a d-system if it contains E and is closed under taking differences, and countable
unions of increasing sets, i.e.

e Fec A,
e B\ A€ A forall A,B € A with A C B,

. U A, € A for all sequences (A,)2, with A, € A and A, C Apiq.

n=1
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Exercise(x). Show that if A is both a m-system and a d-system, then it is a
o-algebra.

Dynkin’s 7-system Lemma extends the previous exercise.

Lemma B.2 (Dynkin’s m-system Lemma). Let A be a w-system. Then any d-system
containing A also contains o(A).

Proof. Let D denote the intersection of all d-systems containing A. Then D is a d-system
and it suffices to show that o(.A) C D. In order to do this, we show that D is a m-system,
hence it is a o-algebra containing .4 and thus it must contain o(A) from the definition of
a(A).
We introduce
D' ={BeD|BNAecDforall Ac A}.

Clearly A C D' because A is a m-system. Next we claim that D’ is a d-system. Clearly
E € D'. Suppose By, By € D' with By C Bs, then for A € A we have:

(BQ\Bl)ﬂA:(BgﬂA)\(BlﬂA)ED

because D is a d-system and we conclude By \ By € D'. Now suppose B, € D' and
B,, C Bpy1 and let B = ;2| By. Then for any A € A, we have C), := B,NA € D,
Cn C Cpy180 Uy Cp, = BNA €D asDis ad-system. We deduce that D' is a d-system
containing A, hence D' = D by the minimality of D.
Now, we let
D' ={BeD|BNAeD foral AcD}.

By the above, we have that A C D", since D' = D. By the same arguments as above we
can check that D" is a d-system, and so D" = D and D” is a w-system as required. [J
B.1.1 Construction of measures

As described above, we are going to give a means of constructing a measure by specifying
how it behaves on some suitable collection of sets. First we introduce some notation
concerning set functions

Definition B.4. Let A be a collection of subsets of E containing (). A set function is a
function p : A — [0, 00] with (@) = 0. We say that a set function w is:

e increasing if

w(A) < u(B), forall A,B e A, with AC B,
o additive if, for all disjoint sets A, B € A with AU B € A we have:
(AU B) = p(A) + u(B),

e countably additive if for all sequence of disjoint sets (A,)>2, with A, € A and

U A, € A we have:
n=1 n=1
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e countably subadditive if for all sequences (Ay)s>, with A, € A and U321 A, € A

we have:
m (U An> <D Ay,
n=1 n=1

We shall also need to define what it means for a collection of subsets to be a ring

Definition B.5. Let A be a collection of subsets of E. We say A is a ring on E if ) € A
and for all A, B € A:
B\Ae A, AUBEeA.

We say A is an algebra if ) € A and for all A, B € A:
Ae A, AUBe A

Let us suppose that A is a ring of subsets of E, together with a countably additive
set function p : A — [0, 00]. For any set B C E, we can introduce the outer measure

Ww(B) = nf 3 plAy),
n=1

where the infimum is taken over all sequences (A,)5°; of sets such that A4, € A and
B c U2, An. If no such sequence exists we set p*(B) = co. We clearly have p*(0) = 0,
so we have a set function defined on 2F and moreover, p* is increasing. In general,
however, * will not define a measure on the measure space (£, 2%), in order for p* to be
a measure we must restrict to a smaller g-algebra. We say that A C F is p*-measurable
if, for all B C E we have:

i*(B) = w* (BN A) + " (BN A°),

and we denote by M the collection of all p*-measurable sets. One of the fundamental
results of measure theory is:

Theorem B.3 (Carathéodory’s Theorem). Suppose A is a ring of subsets of E, and
A —[0,00] is a countably additive set function. Define u*, M as above. The collection
M is a o-algebra which contains A. The set function p* : M — [0,00] is a measure on

(E,M).

We shall establish this result through several Lemmas. First, we establish countable
subadditivity of u*.

Lemma B.4. The set function p* : 28 — [0, 00] is countably subadditive.
Proof. Let B = Up2 1 By,. We wish to show

W (B) < > (Ba).

n=1
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We can easily see that if p*(B,) = oo for some n, then necessarily p*(B) = oo, so we
can focus on the case where p*(B,) < oo for all n. Fix € > 0. For each n we can find a
sequence of sets (Ay m)oo_, such that A, ,, € A with B, C UX_, A, ,, and

> wlAnm) < @ (By) + €277

m=1

Now, B C ;2 Usw_ Apm, so we have:

w(B) < Z Z M(An,m) < ZM(Bn) +e

n=1m=1 n=1
Since € was arbitrary, the result follows. O
Next we show that p* extends pu.
Lemma B.5. Suppose A € A. Then p*(A) = p(A).

Proof. Tt is obvious that u*(A) < u(A), by considering the sequence A1 = A, A, = for
n > 1, so it suffices to show p*(A) > u(A). Since p is countably additive, it is finitely
additive (take all but finitely many elements of the sequence to be the empty set). Since
Ais aring, if A, B € A with A C B, then B\ A € A. By finite additivity of u:

u(B) = u(AU (B\ A)) = p(A) + u(B\ A) > p(A)

so  is increasing. Suppose (Ay)o2; is a sequence with A,, € A. Let By = A; and
n n—1
By =J A\ | 4x
k=1 k=1

for n > 1. Then (B,)52, is a disjoint sequence, B, C A, and moreover each B, € A

since A is a ring. We have:

z <U An) =1 (U Bn) =D u(Bn) <Y nlAn),
n=1 n=1 n=1

n=1

so p is countably subadditive.
Now, suppose A € A and take any sequence (A4,)5; with 4, € A and A C U2 A,
Note that AN A, =A\ ((AUA,)\ A4),so AN A, € A. We deduce:

o0

n(A) = p <U (AmAn)> < ZM(AmAn) < ZN(An)
n=1

n=1 n=1

Taking the infimum over all such sequences, we conclude pu(A) < p*(A) and we're
done. O

Lemma B.6. M contains A.



B.1 Sigma algebras and measures 169

Proof. Suppose A € A and B C E. We need to show:
W*(B) = i (B0 A) + (B 1 A%,

Since B = (BN A) U (BN A°) and using subadditivity of u*, it is immediate that
p*(B) < p*(BNA)+ p*(Bn A°), so it suffices to show

1(B) > pf(BAA) + (B A°).

If *(B) = oo this is trivial, so we can focus on the case p*(B) < co. Fix € > 0, then
there exists a sequence (4,)2%, with 4,, € A, B C U A4, and

S i(A) < i(B) +e.
n=1

We note that: - -
BnAc |J(A.n4), BnA®c|J(A.nAa).

n=1 n=1

Recalling that 4,, N A € A and noting that A, N A°= (AU A,) \ A € A we deduce:

p (BNA)+ p*(BNAS) i,uA ﬂA)+iu(AnﬁAC):iu(An)gu*(B)—i—e.
n=1 —

n=1
Since € was arbitrary, we're done. O
Lemma B.7. M is an algebra.

Proof. From the definition of M it is immediate that £ € M and that A € M implies
A€ € M. It remains to show that M is closed under pairwise union, or equivalently
pairwise intersection (since AU B = (A°N B€)¢). Suppose that A1, A € M and B C E.
Then

' (B)

p* (BN Ay + p" (BN AY)

p (BN AN Ay)+ p* (BN AL NAS) + p* (BN AJ)

W (BNAINA) +p* (BN (A1 NA2)°N AL+ p* (BN (AN A2)° N AY)
W (BNAINA) + p* (BN (AN A2)°)

*

so A1 N Ay € M. O
Finally, we are ready to prove Carathéodory’s theorem:

Proof of Theorem B.3. We already know that M is an algebra containing A, so it suffices
to show that if (A,)52; is a sequence of disjoint sets with A,, € M, and A = ;7| Ay,

then we have:
o

AeA, w4 =) u(An)
n=1
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so that M is closed under countable unions and hence is a o-algebra, and p* is a countably
additive set function on M, hence a measure. Fix any B C FE. Since the A,, are disjoint,
we know A; N Ag =0 and A; N A = A;. We deduce:
W (B) = 1" (BN Ay + (BN A5)
=u* (BNAINA2)+p*(BNAINAS) + p*(BNATNAg) + p* (BN AT N AS)
=u* (BN AL+ u (BN Ag) + u* (BN Af N AS)

=...=> p(BNA)+u (BNATN---NAS)
k=1

Now, since BN A® C BN A{N---N AS, by the fact that p* is increasing we know
p(BNnAfN---NAS) > p*(B N A°. Hence, letting n — oo and using countable
subadditivity we find:

w(B) > S (B A + 0 (BN AY) > g (BOA) + 4 (BN AS)  (B.)
k=1
The reverse inequality holds by subadditivity, and so we have

W (B) = i (BN A) + (B 1 AY)
and thus A € M. Setting B = A in (B.1) we deduce:

pEA) = 3w (An). a
n=1

Carathéodory’s theorem gives a way to extend a countably additive set function
defined on a ring A to a measure on o(A), since we can restrict the outer measure to
o(A). It is often useful to know whether this extension of y is unique. We have the
following result:

Theorem B.8. Let i, po be measures on (E,E) with pi1(E) = pe(E) < co. Suppose
that puy = pg on A, where A is a w-system which generates £. Then g = pe on E.

Proof. Let D = {A € &|pu1(A) = p2(A)} be the collection of sets on which the measures
agree. By hypothesis F € D and A C D. We shall show that D is a d-system, so by
Dynkin’s m-system Lemma we have £ = 0(A) C D and we're done.

Suppose A, B € £ with A C B, then by additivity of the measures, we have:

pi(A) + p(B\ A) = pm(B) < oo, p2(A) + p2(B\ A) = pa(B) < o0,

so that if A, B € D then B\ A € D.

Now suppose that we have a sequence (4,)%, with A, € D and A,, C A,41 and
A = U2, A,. Then setting By = A; and B, = A, \ A,—1 for n > 1, we can write
A = U2 B, where the B,, are disjoint. Thus:

pr(A) = pi(Bn) = pa(Bn) = p2(A)
n=1 n=1

and hence A € D. Thus D is a d-system and so & = D and we’re done. O
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This result requires that E has finite measure. For many of the situations we’re
interested in this is too restrictive an assumption. We can extend the result for measures
which satisfy a weaker condition.

Corollary B.9. Let u1, o be measures on (E,E). Suppose that puy = po on A, where A
is a m-system which generates . Suppose also that E = |J;2, B;, where B; € A and the
B;’s are disjoint with uy(B;) = pe(B;) < co. Then puy = pg on €.

Proof. For each i, and for any A € &, define u(A) = u1 (AN By), pb(A) = u2(AnN By).
By assumption we have pi(E) = pb(E) < oo and moreover p(A) = ub(A) for all A € A.
Thus pi = pb on €. Further, if A € £ is any measurable set, then

p1(A) = (U(Bz‘ N A)) =Y m(BinA)
i=1 i=1
= p2(Bi N A) = (U(Bi N A)) = p2(A)
i=1 i=1

Completeness of measures

A useful feature of the measures obtained from Carathéodory’s theorem is that they have
a property known as completeness.

Definition B.6. Let (E, &, u) be a measure space. We say p is complete if for any A € €
with pu(A) =0, each subset of A also belongs to &.

A subset of a set of measure zero is sometimes known as a null set, so a complete
measure is one for which all null sets are measurable.

Lemma B.10. Suppose (E, M, u) is a measure space obtained from Carathéodory’s
theorem. Then it is complete.

Proof. Let u* be the outer measure on F whose restriction to M gives u. Suppose N C A,
where A € M with u(A) = 0. Since p* is increasing we have p*(N) < p(A) = 0, so
w*(N) = 0. For any set B C E we have:

(T AN) + ' (TN N) < @' (N) 4+ 1°(T) = (T

again using the increasing property of p*. By Lemma B.4 we know p* is subadditive,
hence

w(T) < p*(TNN) +p*(T ONS),

and thus N € M. O
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B.1.2 Lebesgue measure

We specialise now to (arguably) the most important measure, the Lebesgue measure.
This measure gives us the standard notion of volume for sets in R™. We first introduce
the rectangles in R"™.

Definition B.7. A rectangle in R™ is a set of the form:
R= (alabl] X (CZQ,bQ] X X (anabn]y

with a; < b; fori=1,...,n. We define Ar to be the collection of finite unions of disjoint
rectangles.

Exercise(x). Show that:
a) The collection of rectangles is a m-system.
b) Apg is a ring.
c) Apg generates B(R").
The main result we will establish shows:

Theorem B.11. There exists a unique Borel measure p on R™ such that, for all rectangles
R = (a1,b1] X -+ X (an, by] with a; < b; fori=1,...,n,

u(R) = (b1 —a1)(bg —az) - - - (b, — an).
The measure p is called the Lebesque measure on R™.

Proof. For any A € Ap we can write A = UY | R; for disjoint rectangles R; := (a},bi] x
- % (al, bi]. We define for such A:
n
p(A) =D (b5 — af)(bs — ab) - (b, — ap,).
i=1
Note that the decomposition of A into rectangles is not unique, however one can verify
that this is well defined and additive. If we can show that p is countable additive, then
we can apply Carathéodory’s theorem to establish the existence of the Lebesgue measure.
Suppose that (A4,)52; is a sequence of disjoint sets with A,, € Apg, such that A =
U2, A; € Ag. We wish to show that

> u(Ai) = p(A)
=1

Set B, = U, A;, note N2, B; = () as the sets A; are disjoint. Since Apg is a ring,
B, = A\ U"'A; € Ag. By finite additivity of u we have:

n—1
u(A) = u(Ai) + u(Bn),
=1
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so it suffices to prove that u(By,) — 0 as n — co. Suppose not, then there exists € > 0
such that p(B,) > 2¢ for all n. For each n we can find C, € A with C,, C B, and
w(Cp \ By) < €27". Then

o0

1B\ (CLN - N Co)) < pl(BL\C1)U...U(Bu\ Ca)) € 27" =e.

n=1

Since p(Bp) = 2¢, we must have u(CyN---NCy) =€ s0 CrN---NC, # () and so
K,=Cin---NnC, #0. Now, K, is a nested sequence of non-empty compact sets, and
so 0 # N2, K; C N2, B; which is a contradiction.

Thus, we conclude that a Borel measure p exists on R” with the required property
acting on rectangles. In order to establish uniqueness, we can invoke Corollary B.9, after
noting that the set of rectangles is a m-system and that moreover we can write R" as a
countable disjoint union of rectangles, for example by taking the rectangles of the form
z + (0,1]", where z € Z". O

We note that the Lebesgue measure is translation invariant: u(B + z) = u(B) for
any z € R", B € B(R™). To see this, for fixed x € R" let u,(B) = u(B). If B is a
rectangle, then p;(R) = u(R) (since by —ay = (by —x1) — (a1 —x1), etc.) so by uniqueness
1y = p. We also note that Carathéodory’s theorem actually shows us that the Lebesgue
measure is actually defined on M, a larger o-algebra than B(R™). We call M the algebra
of Lebesgue measurable sets. By construction, we have that the Lebesgue measure is
complete when R” is equipped with M as o-algebra, however it is not complete on the
Borel algebra. For any Lebesgue measurable subset £ C R™ we can define the natural
restriction of Lebesgue measure to E, which we also refer to as the Lebesgue measure.

Lemma B.12 (Borel regularity of Lebesgue measure). Suppose A € M is Lebesgue
measurable. Then for any € > 0 there exists an open set O and a closed set C' such that

CCcAcCO and:
wO\A)<e,  p(A\C)<e

If u(A) < oo, then we may take C' to be compact.

Proof. First, let us assume p(A) < co. From the definition of Lebesgue measurability, we
know that

p(A) = i (A) = inf Y~ p(An),
n=1

where the infimum is taken over all sequences (A,)>%; of sets such that A, € Ar and
A C U A,. Since each A, € Ag is a finite disjoint union of rectangles, we may assume
without loss of generality that each A, is a rectangle. Fix ¢ > 0. We can choose A,, such
that:

. > €
inf Y ju(An) < p(A) + 5
n=1
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For each rectangle A,,, we can find a rectangle A,, with A,, C A and u(A4,) < p(A, )+
Then let O = U2 A° By construction, A C O and O is open. Moreover,

0) <D nlAn) <Y pA) + 53027 <
n=1 n=1 n=1

We deduce that
w(O\ A) <e.

Now suppose p(A) = oo. Set A = AN {|z| < k}, then pu(Ax) < oo, so we can find
an open Oy with (O \ Ay) < €27F. We set O = U2 0. Then O is open and A C O.
Moreover,

O\ A= (U100 \ A= JOx\ 4) c |J(Or\ Ap)
k=1 k=1

so that
w(O\ A) < ZM O\ Ag) <

We have thus established the first part of the proof. For the second part, we note that
if A is measurable, then so is A°, and hence there exists an open O with A¢ C O and
uw(O\ A€) < e. Set C = O°. This is closed and C' C A. Moreover, A\C = C°\ A° = O\ A°¢
SO

w(A\ C) <e.

For the final observation, note that if p(A) < oo, then since Ay is an increasing
sequence with UyAr = A, we have that limg_,o (Ax) = pu(A) < oo, so there exists
k such that p(A\ Ag) = p(A) — u(Ax) < §. Let C C A be a closed set such that
w(Ar \ C) < §. We have u(A\ C) = u((A\ Ax) U (Ax \ C)) < ¢, and moreover C is a
subset of a bounded set, hence compact. ]

We next show

Lemma B.13. Let A C R™. Suppose that for any € > 0 there exists an open set O and a
closed set C such that C C A C O and:

w(O\C) <e
Then A = By UN, where N C By where By, By € B(R™) with u(Bg) = 0.
Proof. For each i, we can find O; open and C; closed such that C; C A C O; and
w(0;\ Cy) < 27°,

We have that By = U2, C; € B(R™) from the properties of o-algebras. Furthermore, let
By =N2,(0; \ C;). Again By € B(R"), and moreover:

((B2) < p (NP (03\ Gy)) <27
for any n, so u(Bz) = 0. Since A\ B; C By we are done. n
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Now, noting that the union of a Borel set and a null set is Lebesgue measurable by
the completeness of Lebesgue measure, we have established:

Theorem B.14. Suppose A C R™. The following are equivalent:
i) A is Lebesgue measurable.

it) For any € > 0 there exists an open set O and a closed set C such that C C A C O
and:

w0\ 0) < e

iii) A= By UN, where N C By where By, By € B(R™) with pu(Bsg) = 0.

B.2 Measurable functions

We next wish to introduce the idea of a measurable function between two measurable
spaces. Suppose (E, ) and (G, G) are measurable spaces. We say f : E — G is measurable
if f71(A) € & whenever A € G. Note the similarity to the definition of continuous maps
between topological spaces. If (G,G) = (R, B), then we simply refer to a measurable
function on (E,&). If? (G,G) = (R, B[0,00]), we refer to a non-negative measurable
function. While convenient, this nomenclature has the slightly unfortunate consequence
that a non-negative measurable function need not be a measurable function. If F is a
topological space and £ = B(E), then a measurable function on (E, ) is called a Borel
function on E.

Exercise B.4. a) Suppose (G, G) is a measurable space and F is any set. Show
that if f: E — (G is any function, the collection:

U9 ={f(4): Aeg},
is a g-algebra, known as the pull-back o-algebra.

b) Suppose (F,€) and (G, G) are measurable spaces, with G = o(A) for some
collection A. Further suppose that f : F — G has the property that
f7H(A) € € for all A € A. Show that

{AcG:f YA e&
is a o-algebra containing A4 and deduce that f is measurable.

c¢) Suppose (E,£) is a measurable space. Show that f : E — R is measurable if
and only if

Y (=00, N) :={z € E: f(zx) <A} €&, forall XeR.
and f : [0, 00] is measurable if and only if

AN :={z e E:0< f(z) <A} €&, forall0< )< oo.

3We give [0, 0] a topology by saying U C [0,00] is open if and only if tan™!(U) is open in the
standard topology of [0, ], where by convention tan(z/2) = +oo0.
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Exercise B.5. Suppose E, G are topological spaces equipped with their Borel
o-algebras.

a) Show that any continuous function f : F — G is measurable. Deduce that
in particular any continuous function f : £ — R is a Borel function.

b) Show that if g : G — R is continuous, and f : F — G is measurable then
g o f is measurable.

c) Let G = R”, with its canonical basis (e;)! ;. Show that f : E — G is
measurable if and only if each component function f; = (f,e;) : E — R is
measurable.

An important feature of the class of measurable functions (and indeed a strong
motivation for the development of the theory) is that it behaves well under limiting
operations.

Theorem B.15. Suppose (E,E) is a measurable space and (fn)52, is a sequence of
non-negative measurable functions. Then the functions fi + afo for a > 0 and f1fs are
measurable, as are

inf f,, sup f,, liminff,, limsup f,.
n n n n

In particular, if f,(x) = f(x), then f is measurable.
The same results hold for (not necessarily non-negative) measurable functions, provided
the limiting functions are real valued (i.e. don’t take the values £00).

Proof. By Exercise B.4 we know that f; ([0, A))f5 ([0, \)) € & for any 0 < A < co. Now,
for any 0 < X\ < o0:

(fitafe) ' (0,M)= | Hf<Ar-ar}n{g<rie€.

reQ,r>0

so f1 + afs is measurable. We also note that f2 is measurable, since (f2)~1([0,))) =
f (o, /\%)) € £. Combining these two results, and noting

fife = i (fi+ f)? = (A — f)?)

we deduce that fi fo is measurable. Next, we note that
{inf £, < A} = J{fo <A}

so inf, f, is measurable. Similarly,

{sup fu < A} = U (ﬂ{fn < r}>

reQ,r< n

so sup,, fn is measurable. Finally, we note that limsup,, f, = infy gy, where g =
sup,> fn and liminf,, f, = supy hy, where hy, = inf,,>; fn. The last conclusion follows
since if f,,(x) converges, then lim,, f,(z) = limsup,, fn(z) = liminf, f,(x).

The proofs in the real valued case follow, mutatis mutandis. O
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We establish one further result concerning measurable functions, before moving on to
discuss the interaction between measurable functions and measures.

Exercise B.6. Suppose (F,€) is a measurable space and f is a measurable
function on E. Show that the functions f*, f~,|f| defined by:

f+($) = max{f(x),O}, f_(:lj') = max{_f($)70}7 ‘f| = f++f_7
are non-negative measurable functions.

Theorem B.16 (Monotone Class Theorem). Let (E,E) be a measurable space and let A
be a m-system generating £. Suppose V s a vector space of bounded functions f: E — R
such that:

i) 1€V andly €V forall A€ A;

it) if fn €'V for allm and f is a bounded function such that 0 < f, < fpy1 and fr, — f
pointwise, then f € V.

Then V' contains every bounded measurable function.

Proof. Let D ={A € & :14 € V}. Then the assumptions on V ensure D is a d-system
containing A, so D = £. Since V is a vector space, it must contain all finite linear
combinations of indicator functions of measurable sets. If f is a bounded non-negative
measurable function, then f,, = 27™|2"f| is such a function, and moreover f, is an
increasing sequence which tends to f pointwise, so f € V. Since any bounded measurable
function can be written as the difference of two bounded non-negative measurable functions
we're done. O

We shall now see how measurable functions interact with measures. Firstly, we note
that a measurable function can be use to induce a measure on its image, given a measure
on its domain. Suppose (E,€) and (G, G) are measurable spaces, u is a measure on (E, &)
and f: F — G is a measurable function. We can define a measure on (G, G), f.u, called
the push-forward or image measure by:

fep(A) = p(f71(A)), for all A € G.

Next we consider convergence in the context of a measurable space (E, &, u). Given
some property P conditioned on a point « € E, we say that P holds almost everywhere
in E if

p({z € E: P(x) is false}) = 0.
For example, we can consider R equipped with the Lebesgue measure, and introduce
the Dirichlet function f(z) =1 for x € Q, f(xz) = 0 otherwise. Then we can say ‘f = 0
almost everywhere’. In circumstances where the choice of measure is ambiguous, one
sometimes writes p-almost everywhere. We often abbreviate almost everywhere to a.e.

If (fn)52, is a sequence of measurable functions on (E, &, ), we say f, — f almost
everywhere if

p{z € E: folx) # f(2)}) = 0.
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Another notion of convergence that we can consider is convergence in measure. We say
that f, — f in measure if

pw({z e E:|folx)— f(x)] >€}) -0, foralle>D0.
The connection between these two notions is captured by

Theorem B.17. Suppose (E,&, ) is a measure space, and (fn)52; is a sequence of
measurable functions on E. Then:

i) Suppose u(E) < oo, then if f, — f almost everywhere, then f, — f in measure.

i) If fn — f in measure, then there exists a subsequence (fn,)p>, such that fn, — f
almost everywhere.

Proof. 1) By considering f, — f, assume wlog f, — 0 a.e.. Fix € > 0, then for any n:

u ( N Alfnl < e}> < ul{lfal < )

m>=n

Now, set Ap, =(,,,5,{[fm| < €}. We have A,, C Ay, 11 and

S UA” <= there exists N such that |f,(z)| <eforalln > N.
n

Thus as n — oo, we have:
1(An) 2 p({z: fu(z) = 0}) = p(E).

ii) Again, wlog suppose f, — 0 in measure. Set n; = 1. For each k£ > 1 we can find
ng > Ng41 such that
al{l fu| > 1/k}) <27,
Now, let

A = U {z € E:|fn, (x)] >1/m}.

m>k

we have that x € (), Ay if and only if for any k there exists m > k such that
| frn(z)| > 1/m. Thus x & (), Ak if and only if there exists k such that for any
m = k we have |f,, (x)] < 1/m and we conclude f,, — 0 for all & ("), A;. Now,
Agy1 C Ag so, for any m:

u <ﬂAk> < () = gt [ U o @) > 1/m)
k

m=>k

<D #l{lfan (@) > 1/m}) <27

m>k

we conclude that p ([, Ax) = 0 and thus f,, — 0 a.e..
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Exercise B.7. Let E = [0, 1] be equipped with the Lebesgue measure. Con-
struct a sequence of functions f, : [0,1] — [0, 1] such that f, — f in measure,
but (fn(2))5; does not converge for any = € [0, 1].

A final result concerns the measurability of a function which equals a measurable
function almost everywhere.

Lemma B.18. Let (E,E, 1) be a complete measure space, and let f be a measurable
function on E. If g: E — R is such that f = g almost everywhere, then g is measurable.

Proof. Under the assumptions, N = {f # ¢} is null, hence measurable by the completeness
hypothesis, and p(N) = 0. Fix a € R. By assumption A = {f < a} is measurable, and if
we can show that B = {g < a} is measurable then we will be done. Now, BN A° C N, so
by completeness A N B¢ is measurable, hence

B=AU(BnNA"

is measurable. O

B.3 Integration

We now wish to define a notion of integration for measurable functions on some measure

space (E, &, u). We approach this by first considering the case of non-negative measurable

functions. These can be approximated from below by simple functions, which are finite

linear combinations of characteristic functions on which the integral can be easily defined.
We say f is simple if

k
f = Z an]lAn
n=1

where o, € R and A,, € £. For a non-negative simple function it is natural to define the
integral as:

k
p(f) = Z anp(An)
n=1
Here, by convention 0 - co = 0. Alternative notations which we will make use of are:
u(f) = / fdp = / f(@)dp(z)
E E

We note that ay,, A, are not uniquely determined by f, however u(f) is independent of
the particular representation we choose.

Exercise B.8. a) Show that if 0 < ay,, 5, < 00, Ay, By, € £ satisty

k l
Z an]lAn = Z Bn]any
n=1 n=1
then

k l
Z anpi(An) = Z Bni(Bn).
n=1 n=1
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b) If f, g are simple functions and a,b > 0, show that

i) plaf +bg) = ap(f) + bu(g)-
i) 16 £ < g then u(f) < plg).
iii) f =0 a.e. if and only if u(f) = 0.

For a non-negative measurable function, we define the integral to be:

p(5) = [ fdu=sup{utg) g simple with 0 < g < f}.

By the results of Exercise B.8 this is consistent with the previous definition when f is
simple. Note that p(f) is permitted to take the value co. We also note that if f, g are
non-negative measurable functions with f < g, then

/ Jdp < / gdu.
FE E

It also follows immediately from the definition that for any € > 0 there exists a simple
function f. such that

L= sddn= [ (7= odu<e

To define the integral for functions which may take both positive and negative values,
we first recall that if f is measurable then f*, f~ |f| are non-negative measurable
functions. We say that f is integrable if p(|f]) < oo, in which case we define:

u(f) = u(f*) —pu(f7).

Note that f < g if and only if f* < g™ and f~ > g, so that f < g implies u(f) < p(g).
In particular, we have that |u(f)| < u(|f|). By our comment above, for any € > 0 we can
find a simple function f. such that

/Iffe!du<6
FE

since we can approximate both f* and f~ by appropriate simple functions.

If at most one of u(f*) or u(f~) is infinite, then we can still define u(f) by the
same formula, but if both u(f*) and u(f~) are infinite then we can’t sensibly assign a
value to u(f). We can also consider the case where f takes values in R™. In this case we
pick a basis (e;)!; for R" and write f =Y | fie;. We say f is integrable if each f; is

integrable and we define:
Jfdu= </ fz’dﬂ> e
Jora=2 (],

This naturally gives a definition for functions taking complex values by the isomorphism
C~R2%
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B.3.1 Convergence theorems

A fundamental result in the Lebesgue theory of integration is the monotone convergence
theorem, sometimes called Beppo Levi’s Lemma. Suppose (E, &, i) is a measure space
and that (f,)2° is a sequence of non-negative measurable functions which is increasing,
ie. fo(z) < foyi1(z) for all 2 € E and n > 1. Then for each z € E the limit
f(z) = limy, 00 fn(x) exists in [0, 00]. We know that f is measurable, and the monotone
convergence theorem asserts that p(f) = limy,— o0 p(fn)-

Theorem B.19 (Monotone convergence theorem). Let (f,)22, be an increasing sequence
of non-negative integrable functions on a measure space (E,E, p) converging to f. Then

fdp = lim/fnd,u.
/E/‘ n—oo E

Proof. Let M = sup,, u(fn). We wish to show that M = u(f). Since f,, is an increasing
sequence, we have f, < f so that p(f,) < u(f). As this holds for all n, we deduce:

M < p(f) = sup{p(g) : g simple, g < f}.
If we can show that for any simple function g with 0 < g < f we have u(g) < M then

we’re done. Suppose
m
9= Z apl g,
i=1

is such a function, where we may assume Ay € £ are disjoint without loss of generality.
We define

gn(x) = min{g(z), 27" [2" fn]}.

Then (g,,)22 is an increasing sequence of simple functions, satisfying g, < f, < f and
gn — g- Fix 0 < € < 1. Define the sets Ay, by

n={r€A;:gn(x) =2 (1 —€)ax}

Then since g, is an increasing sequence, we have Ay, ,, C Ay 1. So by countable additivity
we have p1(Ay,) — n(Ag) as n — oo. By construction we have

Ta,9n = (1 - €)agly,,

SO
w(La,gn) = (1 — €)arp(Agn)

Now, noting that g, = > ;" 14, 9n, and using the linearity result of Exercise B.8 we see

wgn) = (1=€) > anp(Ap,) = (1 Zaku (Ax) = (1 = €e)u(g).
k=1

Now, u(gn) < pu(fn) < M, so we have (1—€)u(g) < M for any € > 0, hence pu(g) < M. O

A straightforward corollary of this result is the following:
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Corollary B.20. Suppose (fn)>2, is a sequence of non-negative measurable functions
on a measure space (E,E, p). Then

()= (o)

Another useful corollary:

Corollary B.21. Suppose (fn)2> 1 s a decreasing sequence of bounded measurable func-
tions on a measure space (E,E, ). Then

/ fdp = tim / Fudp.

Proof. We take g, = f1 — fn, since the f,, are bounded this is well defined (i.e we don’t
have to assign a value to co — 00). Then (g,)02 is an increasing sequence and we can
apply the usual monotone convergence theorem. O

Exercise(x). Give an example to show that Corollary B.21 fails if the bound-
edness assumption is dropped.

With the monotone convergence theorem in hand, we can readily show that the
integral satisfies the properties we would expect.

Theorem B.22. Suppose f,g are non-negative measurable functions on a measure space
(E,E, 1) and a,b > 0 are constants. Then:

i) /E(af—i-bg)d,u—a/Efd,u—i-b/Egdu
it) Iffégthen/Efduéngdu

iii) / fdu =0 if and only if f =0 almost everywhere.
E

Proof. Let
fo(@) = min{2"[27"f(z)],n},  gn(z) =min{2"|27"g(z)], n}.

Then (fn)221, (grn)5% is an increasing sequence of non-negative simple functions tending
to f, g respectively, and clearly (af,+bgn)5; is an increasing sequence tending to af +bg.
Since these are simple functions, we have:

/ (afn +bgn)dp = a/ fndup + b/ gndp
E E E

and by the monotone convergence theorem, we can take the limit n — oo to establish 7).
Point ii) we already noted follows directly from the definition of the integral.

Finally, if f = 0 almost everywhere, then we have u(g) = 0 for any simple g < f, and
thus p(f) = 0. Now suppose f(x) # 0 almost everywhere. Then there exists € > 0 such
that if A = {f > e} then pu(A) > 0. Then g = 1 4¢€ is a non-negative simple function with
g < f and p(g) = en(A) > 0, hence p(f) > 0. O
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We can extend this result to functions taking values in R as follows:

Theorem B.23. Suppose f, g are integrable functions on a measure space (E,E, u) and
a,b € R are constants. Then:

i) /E(af—I—bg)du:a/Efdu—i-b/Egdu

i) 111 <gthen [ fan< [ gan
E E

i11) If f =0 almost everywhere then /Efd,u =0.

Proof. Note that it follows immediately from the definition that pu(—f) = —u(f). Suppose
then that a > 0. We have:

plaf) = plaf™) — plaf™) = ap(f) —ap(f~) = ap(f).

We also note that (f +g)t — (f+9) " =f+g=f"+9g" —f~ —g~ . As a consequence
(f+9)"+f +g =(f+9)~ + f"+g", where both sides are sums of non-negative
measurable functions, hence:

w(f+9)) +u(f)+ulg™) =uw((f+9)7) +ulf*) +nugh)

and on rearranging:

w(f+9)=uw((f+9)")—w((f+9)7) = n(f") —n(f7)+ulg") —nlg™) = u(f) + nlg).

Combining our observations gives i). Noting that f < g implies 0 < g — f, we deduce
0 < u(g) — p(f) and thus 4i) holds. Finally, if f = 0 almost everywhere, then f*, f~ =0
almost everywhere thus p(f) = 0. O

Suppose (E, &, 1) is a measure space. If A € £ and f is integrable, then so is f1 4.
Recall also that A inherits a measure space structure in a natural way (A,E|a, ula)-
It is relatively straightforward to see that f|4 is integrable, and that we can define

unambiguously
[ gdni= [ srada= [ fladula,
A E A

By our linearity result i) above, if A, B are disjoint measurable sets, then

/Afdqu/deﬂz AUdeu-

We also note that by i) we have that if | f| < K almost everywhere and p(F) < oo, then
f is integrable and
/ fdp
E

A useful consequence of the monotone convergence theorem connects the Lebesgue
integral to the Riemann integral.

< Ku(E).
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Theorem B.24. Let A = (a1,b1] X -+ X (an,by] be a rectangle in R™, and suppose
f: A — R is bounded. Then f is Riemann integrable* if and only if f is continuous
almost everywhere. If so, f is integrable with respect to Lebesque measure, p, on A and

moreover
K74 f dr = f d,u
/A (x) /A ’

where Z [ denotes the Riemann integral.

Proof. Since f is bounded, we may assume that 0 < f < K for some K, without loss of
generality. We consider a sequence of partitions P, of A such that P, is a refinement
of P,, and the mesh of P,, — 0. Correspondingly, we construct two sequences of functions,
S fn by
fo= 2o i fley fu= 3 sup Sl
TEPn TE€EPn

which satisfy - B

Since each m € P, is a rectangle, it is certainly Lebesgue measurable and so in’?n
are in fact simple functions. Moreover,

[ fau=16P0. [ Fadn =070,
A A

where U, L are the usual upper and lower sums associated to a partition. The function f
is Riemann integrable if and only if L(f, P,),U(f,P,) have a common limit as n — oo,
i.e:
U(f,Pn) — %/ f(z)dx, L(f, Pn) — %/ f(z)dx, asn — occ.
A A

(f n)jl’ozl is a monotone increasing sequence, bounded above by f, so there exists a bounded

measurable function f < f such that f = lim, e in = sup in Similarly, there exists a
bounded measurable function f > f > f such that f=1lim, o f,, = inf in By applying

monotone convergence to (f )2, and (f,)5%; we have:

Jp/n=1

lim/f du—/fdué/fdué lim /fndu

We deduce that f is Riemann integrable if and only if

/A Jdp = /A fdu=2% /A f(z)da.

This occurs if and only if f = f almost everywhere.
We define the set of boundary points of P, to be:

B, = U orn A
TEPn

4For a discussion of the Riemann integral in R™ see Spivak: “Calculus on maniolds”.
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Clearly u(By) = 0, so the set B = U, B, also has measure zero. Suppose = ¢ B, then
f(z) = f(=x) if and only if f is continuous at 2. We conclude that f is Riemann integrable

if and only if f is continuous almost everywhere. Since f < f < f in this case, we deduce
that f is almost everywhere equal to f and the result follows by Lemma B.18. O

This result, that Riemann integrability is equivalent to almost-everywhere continuity,
is known as Lebesque’s criterion for integrability. In practice, many of the explicit integrals
we encounter are Riemann integrals, and this gives us access to the standard toolkit to
compute them. Where there’s no possibility for ambiguity, we will often use the standard
notation [dz or [ d"z, etc. to denote Lebesgue integration.

The next convergence result for integrals we shall require allows us to drop the
assumption that our sequence is monotone, but at the cost of a weakened result.

Lemma B.25 (Fatou’s Lemma). Suppose (f,)32 is a sequence of non-negative measur-
able functions on a measure space (E,E, ). Then

/ liminf f,dp < liminf/ fnd
E n—oo E

n—0o0

Proof. Let g, = inf,,>p fin. Then (g,)72; is an increasing sequence of non-negative
measurable functions, which tends to liminf f,. Thus by monotone convergence

/ gndi — / liminf f,du.
E E n—o0
On the other hand, for k£ > n we have:

g?’b < fk7

hence
/ gndp < / frdp forallk >n = / gndp < inf / Jrdp.
E E E k>n B

Now, as n — o0
inf / frdp — lim inf/ frndu,
kzn /g n—oo fp
and we’re done. O

Exercise(x). Construct a sequence (f,)o2; of functions f, : [0,1] — [0, c0)
satisfying the hypotheses of Fatou’s Lemma such that the inequality is strict.

The next convergence result we shall establish is an especially useful one, and in
particular will be invoked on many occasions during the course.

Theorem B.26 (The Dominated Convergence Theorem). Suppose that (E,E,u) is a
measure space and that (fn)>2, is a sequence of measurable functions such that:

i) There exists an integrable function g such that |f,| < g.

it) fo(z) = f(z) for all x.
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/Efnd,u—>/Efdu.

Proof. By Theorem B.15, f is measurable, and since |f| < g, we further have that f is
integrable. We have

Then f is integrable and:

0<gxfu—9=x/f,

so that liminf g = f,, = ¢ &= f. By Fatou and properties of lim inf, lim sup we have:

/gdu—l—/ fd,u:/ lirninf(g—i-fn)d,uSliminf/(g-l—fn)du:/gd,u—Himinf/ fndu
E E E E E E

/ gdu—/ fdu —/ liminf(g — fn)dp < liminf/ (9 — fn)du = / gd,u—limsup/ fndu
E E E E E E

Rearranging, we have:

[ tdn<timint [ g <tmsup [ fudu< [
FE FE E E

hence

liminf/ fndu:hmsup/ fnd,u:/ fdu,
E E E

and we’re done. O

We note that the hypotheses can be weakened slightly: suppose the hypotheses hold
almost everywhere, so that X = {x € F : hypotheses fail} has measure zero, then by
applying the Dominated Convergence Theorem to f,1 xc, we can recover the same result.

Exercise B.9. Here p is the Lebesgue measure on R.

a) Show that f :[0,1] — R given by f(z) = % is Lebesgue integrable, and that

1
1

fdu = lim%/ —dzx.
/[0,1} =0 Jo VT

b) Suppose f :[0,1] — R is Riemann integrable on every interval [e, 1], € > 0
and moreover

1
%/mem<c

for some C independent of €. Show that f is Lebesgue integrable with

1
/ fdp = lim%/ f(z)dx.
[0,1] e—0 6

c¢) Suppose f : R — R is Riemann integrable on every interval [—R, R] and
moreover

R
# [ l@le<c
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for some C independent of R. Show that f is Lebesgue integrable with

Afduz}%ﬂo%/_lj%f(x)dx

Give an example of a function such that

R
lim %/ f(z)dzx
R—o0 —R
exists, but f: R — R is not Lebesgue integrable.

B.3.2 Product measures and Tonelli-Fubini

Given two measure spaces (F, &, 1) and (F, F,v), we wish to construct a measure space
on ' x F. We say a subset F x F'is a rectangle if it is of the form A x B, with A € £,
B € F. We denote by £ X F the collection of finite disjoint unions of rectangles. Note
that if A; € £, B; € F then

(Al X Bl) n (AQ X Bg) = (Al N AQ) X (Bl M Bg),
(Al X Bl) U (A2 X Bg) = (Al X By \ BQ) U ((Al U Ag) X (Bl N BQ)) U (Ag X Bg \ Bl)

where the right-hand side of the second line is a disjoint union of rectangles. Finally, since
(A1 X B1)¢ = (E x BY) U (A] x F),

we see that £ X F is an algebra (hence a ring). We denote by £ ® F the o-algebra
generated by £ K F. We define a set function 7 : € X F — [0, c0] by

N N
™ <U(Ai X Bz’)) = ZM(Ai)V(Bz'),

i=1

where the rectangles A; x B; € € x F,i=1,..., N, are assumed to be disjoint. Now
suppose that (A; x B; ) °, is a sequence of dlSJOlnt rectangles such that

UijBj:AxBESX}".
j=1

We claim that

= Z 1(A;)v(Bj)

j=1

To see this, we note:

1a(2)1p(y) = Laxp(z,y) Zm <, (2,Y) Zm (v)
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Integrating with respect to x, using Corollary B.20 we see
o0 o0
P = Y 1a, ) [ Lade = L, Wu(4)
j=1 j=1

Integrating again with respect to y, by the same argument we find:

o0

p(A)u(B) =Y u(A;)v(By).
j=1

Note that this immediately implies that 7(C) is well defined for C' € £ K F, independent
of how C' is represented as a finite union of rectangles. We also note that £ X F, 7 satisfy
the conditions of Carathéodory’s theorem, Theorem B.3, thus we can define an outer
measure ™" on E x F, whose restriction to £ ® F gives a measure, which agrees with
on £ X F. We call this measure on £ ® F the product measure, p X v.

Note that the product measure p x v will not in general be unique. However, it will
be if (E,&, ) and (F,F,v) are o-finite. We say (E, &, u) is o-finite if there exists a
countable collection {A;}°; C A of disjoint measurable sets, with p(A4;) < oo, such that
E = UA;. If both (E,&, u) and (F, F,v) are o-finite, then £ X F satisfies the conditions
to enable us to apply Corollary B.9 to deduce that p x v is the unique measure on £ ® F
such that

(1 % V)(A x B) = u(A)u(B).

A Dbrief note of caution before we consider integration on product spaces. If E, F
are topological spaces and &, F are the Borel g-algebras on their respective spaces, then
£ ® F contains the Borel o-algebra of £ x F with the product topology. However, the
two need not be equal in general. One important case where we do have equality is when
E, F are o-compact metric spaces®. In particular this is the case when E = R", F' = R™.
By the uniqueness of Lebesgue measure, we have that the product measure restricted to
B(R™) x B(R™) = B(R" x R™) is the Lebesgue measure on R" ™.

We now wish to consider integration of a measurable function defined on E x F. If
f:ExXF —>R and z € F,y € F, we define the x—section, f, and y-section, fY as:

fo(y) = () = f(z,y).
We also introduce the z-section and y-section of a set A C E x F as:
Ay ={yeF:(z,y) € A}, AV ={x e F:(z,y) € A}.
Note that A, C F, AY C E and we have
(La)e =1, (1a)! =Tav,

Lemma B.27. [fAc EQF, then Ay € F forallxz € E, AY € £ for ally € F. More
generally, if f is € ® F-measurable, then f; is F-measurable and fY is E-measurable.

5A topological space is o-compact if it is the union of countably many compact sets.
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Proof. Let
C={ACExF:A,cFforallzec E,AY € £ forall y € F'}

Certainly every measurable rectangle is in C. We also have:

J=1

Ud | =UM),, (@A) =4,
j=1 "

and similarly for AY, so that C is a o-algebra and thus £ ® F C C. For the final part we
note that for

(f)719) = (f719),, (NS = (19",
whence the result follows. O

Next we prove a special case of the Tonelli and Fubini theorems, where we restrict
attention to the characteristic functions of a measurable set/

Lemma B.28. Suppose p,v are finite, and let A € £EQ F. Then
v v(dn), Y p(AY)

are measurable functions, and

(3 0)(A) = [ v(Adnte) = [ pan)aviy).

E

Proof. Let C consist of all sets A € £ ® F for which the conclusion of the Lemma holds.
Clearly C contains all rectangles, and these form a m-system. If we can show that C is a
d-system, then we will be done by Lemma B.2.

Clearly E x F € C. Suppose A, B € C with B C A. Then(A\ B), = A, \ By, so°
v((A\ B)z) = v(Az) — v(By), hence x — v((A\ B);) is measurable, and

(1> V)(A\ B) = (u x v)(A) = (px v)(B) = | v(Az)dp(z) —/ v(Bg)du(x)

F E
- / V((A\ B)o)dp(a)
E

A similar argument for (A \ B)Y shows A\ B € C.

Now suppose A, € C with A, C A,+1 and let A = U,A,,. Then by countable
additivity we have (z — v((An)z))52; is a monotone increasing sequence of functions
with limit v(A,). By monotone convergence we have v(A;) is measurable, with

[ ndnta) =t [ v((An)duta) = T o x ) (A) = X v(A),
E n—oo E n—oo

where in the final inequality we use countable additivity for g x v. A similar argument
for p(AY) establishes that A € C and we’re done. The extension to the case where u, v
are assumed o-finite is straightforward, and left as an exercise. O

5This is where the assumption that v is finite is required
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Exercise(x). Show that Lemma B.28 holds if u, v are only assumed to be
o-finite.

We now prove two very closely related results, Tonelli’s Theorem and Fubini’s Theorem.
They are often referred to together as the Tonelli-Fubini theorem.

Theorem B.29 (Tonelli). Assume (E,&, ), (F,F,v) are o-finite measure spaces. Sup-
pose f: E x F — [0,00] is a non-negative measurable function. Then so are f., f¥, and
setting:

() = /F L@dvy),  gly) = /E £ () dp(z),

we have that h : E — [0,00], g : F' — [0,00] are non-negative measurable functions on
their respective domains with:

EXFfd(u X V)= /Ehdu = /ngy. (B.2)

Proof. Take (f,)52; a monotone increasing sequence of non-negative simple functions
with f,, — f. Letting

hin() = /F Fe@dr(y),  guly) = /E (fo)? () du(a),

we have

Fud(p % v) = fE oy dlpt = /F ndv, (B.3)

by the previous Lemma and the linearity of the integral. For each z € FE, we have
that ((fn)z)52; is a monotone increasing sequence with (fy); — fz and similarly for
((fn)¥)s2 . Thus, we have (h,)52, is an increasing sequence of functions with h, — h,
and similarly for g, by the monotone convergence theorem. Thus we can pass to the limit
in (B.3) by the monotone convergence theorem to obtain (B.2). O

ExXF

Theorem B.30 (Fubini). Assume (E,E&, ), (F,F,v) are o-finite measure spaces. Sup-
pose f: B x F — R is an integrable function. Then f, : ' — R is integrable for p-almost
everyx € E, as is fY : E — R for v-almost every y. Thus

h(x) = /F L), aly) = /E £ () dp(), (B.4)

are defined almost everywhere. We have that h : E — R, g : F — R are integrable
functions on their respective domains, and:

/EXFfd(uxy):/Ehdu:/ngu. (B.5)

Proof. Write f = ft — f~, with f* non-negative and integrable. By Tonelli applied to
f* we find h*, g% such that

/ fEd(p x v) :/ hEdu = / grdv.
ExXF E F
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The first integral is finite by assumption, so we must have that h*, g are finite almost
everywhere, and moreover are integrable. Thus h = h™ — h™ and g = g7 — g~ satisfy
(B.4) and we also deduce (B.5). O

In the particular case where £ = R", I' = R equipped with their Borel sets and
Lebesgue measure, then we conclude that if f: R"™ x R™ — R with

/ (@, y)| dedy < oo
Rn+m

/n < - f(a:,y)dy> dz = /m ( . f(x,y)d:c) dy = /an f(2)dz

with obvious notation.

In combination, Tonelli-Fubini together with the Dominated Convergence Theorem
are very powerful, and typically suffice for the majority of convergence related results
that we require in standard analysis.

Exercise B.10. Let (f,)7%; be a sequence of measurable functions f,, : R — R

such that
o0
Z/ | fn| dz < 0.
n=1 R

Show that: -
f@) =" falx)
n=1

converges for a.e. x € R™, and
oo
/ fdx = Z fndz.
R™ 1 J/R™

B.4 The LP-spaces

Given a measure space (F, &, i), we say that a measurable complex-valued” function f
belongs to LP(E, u) for some p < 1 < oo if

Il = ( /E f\”du); = (u(If1))7 < oo.

We say that f € L£L®(F,pu) if f is bounded almost everywhere, that is there exists
0 < K < oo such that

p({lf ()] > K}) = 0.

If so, then we define

[l oo := nf{ K= u({[f(z)| > K}) = 0}

We can show:

"We can also assume f is real-valued
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Lemma B.31. For1 < p < oo, the function f — || f||;» defines a seminorm on L>(E, ).
That is:

i) |||l is non-negative:

Ifllpe =0,  forall f € LP(E,p).

ii) |||l » is homogeneous:

IMlle = Ao s forall f € LP(E, ), A € C.

iii) ||-||» satisfies the triangle inequality:
1f+9lle < fllze + Mgl forall f,g € L2(E, p).

Proof. See Exercise B.11. O

We note that the crucial property that is missing and prevents LP(E, u) from being a
normed space is positivity, i.e. that ||f||;, = 0 if and only if f = 0. By Theorem B.22, we
know that || f||;, = 0 if and only if f = 0 holds almost everywhere. In order to construct
a normed space, we must quotient out the elements of £P(E, ) which satisfy || f||,, = 0.
To do this, we introduce an equivalence relation according to:

f~g <= f—g=0ae.

It is straightforward to see that ~ defines an equivalence relation on LP(FE,u) and
moreover, by the reverse triangle inequality

feg = Al = llgllz -

Thus we can define a new space
LP(E,p) = LP(E, 1)/ ~,
and |[|-||;, descends to a norm on the quotient space by:

1A~ e = [1f Il -

In practice, we usually elide the distinction between the function f € LP(E, p) and the
equivalence class of functions [f]. € LP(E, ), so it is standard to speak of a function f
belonging to LP(E, it). One should always remember, however, that in general statements
about elements of LP(E, ) hold at most almost everywhere. It is immediate that we have

Lemma B.32. The space LP(E, 1), equipped with the norm ||-||;,, is a normed vector
space.

In the case where E = R" equipped with the o-algebra of Lebesgue measurable sets
and the Lebesgue measure, we typically write LP(R™) instead of LP(R"™,dz) to denote the
associated spaces.
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Exercise B.11. Let (E,&, 1) be a measure space. Show that ||-||;, defines a
seminorm on LP(E, ) for 1 < p < oo:

a) First check that the homogeneity and non-negativity properties are satisfied.
b) Establish the triangle inequality for the special cases p = 1, oc.
c¢) Next prove Young’s inequality: if a,b € R, and p,q¢ > 1 with p~t +¢ 1 =1
then:
a? bl

ab < — +
p q

Hint: set t = p~', consider the function log[taP + (1 — t)b] and use the
concavity of the logarithm

d) With® p,q > 1 such that p~'+¢~! = 1, show that if || f||;, = 1 and ||g||;, = 1
then

/ |fgldp <1
FE

Deduce Hélder’s inequality:
/Elfgldu <l llgllpa,  forall f € LP(E, p), y€ LYUE,p).
e) Show that if f,g € LP(FE, p)

Iy < gl dp g gl© dp
IF +9lz < | VI +9P dut [ 1]l +9P"d
Apply Hélder’s inequality to deduce:

-1
1 + gl < (Lf e + lgllze) 1 + gliZs

and conclude
1f +alle < IFlle + llgll e -
This is Minkowski’s inequality.

Exercise B.12. a) Suppose that p(E) < co. Show that if f € LP(E, p1), then
f e LYE,p) for any 1 < g < p, with

pP—q
[fllpe < w(E) @ (| fll -

b) Suppose that f € LPO(E, u) N LPL(E, ) with pg < p1 < 0o. For 0 < 6 < 1,

define py by . P

Po po b1
Show that f € LPo(F, n) with

1-6 0
1l oo < I Fllzeo [[fI1Zor -

8We permit p, ¢ to take the value co with the convention co™! =0



194 Appendix B Background Material: Measure Theory and integration

B.4.1 Completeness

The most important property of the LP-spaces is that in fact, they are complete, i.e. they
are Banach spaces. To establish this, we first prove the following result.

Lemma B.33. Suppose (E, &, u) is a measure space and 1 < p < co. Let (gn)s>; be a
sequence with g, € LP(E, ) such that

0
Z lgnllp < o0
n=1

then there exists f € LP(E, u) such that

[eS)
Zgn = f7
n=1

where the sum converges pointwise almost everywhere, and in LP(E, u).

Proof. Fix representative’ functions g, € LP(E, 1) corresponding to each g, € LP(E, ).
Define hy,, h : E — [0, 00] by

n 00
k=1 k=1

Note that (hy)72 is a monotone increasing sequence of non-negative measurable functions,
converging pointwise to h, so by the monotone convergence theorem we have

hPdp = lim [ hPdp.
/;v n—oo E

By Minkowski’s inequality we see

n o
hnllze <D gklle <K = llgill o -
k=1 k=1

It follows that h € LP(E, p) with ||h||;, < K, which in particular implies that h is finite
almost everywhere. At each point = such that h(z) < oo, we have that Y o gi(x)
converges absolutely, hence converges by the completeness of C. We deduce that Y7, gk
converges pointwise almost everywhere and we define:

fla) = > orey gk(x) if the sum converges
Lo otherwise

Now, we have that |f| < h, which implies || f||;, < ||| ;» < K, and moreover:

n p n p
F=Y ar| < (|f|+Z|§k|) < (2h)7.
k=1 k=1

9We typically don’t state this point explicitly, but on this occasion we will make the distinction
between £P and L*
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Since hP is integrable, by the Dominated Convergence Theorem (Thm B.26) we deduce

that
/ 'f ng

which implies Y72, g, converges to f in LP. Noting that a different choice of represen-
tatives g, will result in hy, h, f which differ from those defined above only on a set of
measure zero, since the union of countably many sets of measure zero also has measure
zero we are done. O

du — 0, asn— oo,

With this result in hand, we are able to establish

Theorem B.34 (Riesz-Fischer Theorem). Suppose (E,E,u) is a measure space and
1<p<oo. Then LP(E, ) is complete.

Proof. To prove completeness, suppose (f)5; is a Cauchy sequence with respect to the
LP-norm. It suffices to show there exists f € LP(F, u) with f, — f in LP. We split the
cases p < oo and p = oo.

1. First suppose 1 < p < co. Then by the Cauchy property we can find a subsequence
(fny)72, such that

ankJrl - fnkHLP < 27",

Set gk = fnyy — Jn,- By construction we have:

oo o
Z 9kl » < 2271@ =1
k=1 k=1

so by Lemma B.33 there exists g € LP(F, ) such that
o0
o=y
k=1

with the sum converging pointwise a.e. and in LP. Noting that f,, , = fn, + Zi:l Gk,
we deduce that (fy,, )32 converges in LP to some f € LP(E, u). It follows by a standard
argument using the fact it is a Cauchy sequence that (f,)5%, converges to f in LP.

2. Now consider the case p = co. Since (fy,) is Cauchy in L*°(E, p), for each m € N there
exists n such that for any j,m > n we have

1 C
|fi(x) — fr(z)] < po- for all z € Ny, .,
where p (N g,m) = 0. Let

N=J Njkm:

j7k7m
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then u(N) = 0 and further we have that for any m € N there exists n € N such that
for 5,k > n:

sup [fy(a) = fula)| < ;- (B.6)

so by the completeness of C we have that for each x € N¢ we have f;(z) — f(x) for
some f(r) € C We let f(z) =0 for z € N, so that f : E — C. Sending k — oo in
(B.6) we see that for j > n

1
sup |f5(x) = F)] < o

whence we conclude that || f]|;« < co and f; — f in L™, O
Note that we have in fact proved the stronger result:

Corollary B.35. Suppose (fn)>2, is a Cauchy sequence in LP(E,u) for 1 < p < oo.
Then there exists a subsequence (fp, )5, which converges pointwise almost everywhere.

B.4.2 Density

It is often useful, when discussing topological spaces to identify dense subsets consisting
of ‘nice’ or ‘concrete’ objects, for example elements of (Q can be easily discussed, while
a general element of R is typically expressible only as some limit of elements of Q. In
the main body of the course we shall establish that C2°(R") is dense in LP(R"™). For a
general measure space, we don’t necessarily have a notion of continuity or smoothness,
but we can show

Theorem B.36. Let S be the set of all complex, measurable, simple functions on E such
that:

u({z s(z) # 0}) < oo.
Then S is dense in LP(E, ) for 1 < p < oo.

Proof. Clearly S C LP(E, u). Now, suppose f > 0 with f € LP(E, u) and let
fo(x) = min{2"[27" f(z) ], n}.

We have f, € S and 0 < f, < f, so that f, € LP(E,pu). Further, we know that
fn(z) = f(x) and moreover

|f = ful? < 1FI7,
so by the Dominated convergence Theorem (Thm B.26) we deduce

/Wf—nfmw+o
E

hence f, — f in LP. A general (i.e. complex valued) element of LP(FE, ) may be written
as:

F=1 =0 il = 1),

where fF, fzi are non-negative elements of LP(FE, i), hence the result follows. O
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