
Complex analysis IB 2007 — lecture notes

A J Scholl1

These are the notes I used to give the course — the lectures may have deviated
from these in a few places (in particular, there may be corrections I made in the
course which haven’t made it into these notes).

1 Basic notions

1.1 Introduction

Course builds on notions from real analysis. Particularly important: uniform
convergence. Also will use various notions from metric spaces at times (mainly to
do with compactness). If you haven’t done the metric space course yet, you’ll have
to take some things on trust and fill in the gaps next term.

1.2 Complex differentiation

Recall notions:

• D(a, r) = open ball (disc) of radius r > 0, centre a ∈ C.

• An open set in C is a subset U ⊂ C such that, for every a ∈ U , there exists
ε > 0 such that D(a, r) ⊂ U

• Curve is a continuous map from a closed interval γ : [a, b] → C. It is con-
tinuously differentiable (or C1) if γ′ exists and is continuous on [a, b] (at
endpoints a, b this means one-sided derivative).

• An open set U ⊂ C is path-connected if for every z, w ∈ U there exists a
curve γ : [0, 1] → U with endpoints z, w. If such a γ exists then one can
find another curve in U with the same endpoints which is polygonal (a finite
sequence of line seqments).

Definition. A domain is a non-empty path-connected open subset of C.

This course is for the most part about complex-valued functions f : U → C, where
U ⊂ C is an open subset or domain. Given such a function f we may write
f(x+ iy) = u(x, y) + iv(x, y) where u, v : U → R are the real and imaginary parts
of f (we identify U with a subset of R2 via C ' R2).

1Comments and corrections to a.j.scholl@dpmms.cam.ac.uk
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Definition. (i) f : U → C is differentiable at w ∈ U if the limit

f ′(w) := lim
z→w

f(z)− f(w)

z − w

exists (the derivative of f at w).

(ii) f : U → C is holomorphic2 at w ∈ U if there exists r > 0 such that f is
differentiable at all points of D(w, r). f is holomorphic on U if it is differentiable
at all w ∈ U (this is equivalent to f being holomorphic at all w ∈ U).

Complex differentiation satisfies the same formal rules (for derivatives of sum,
product, quotient, chain rule, and inverse functions) as differentiation of functions
of one real variable (and the proofs are identical).

Definition. An entire function is a holomorphic function f : C→ C.

Example: polynomials.

If p(z), q(z) are polynomials, with q not identically zero, then p/q is a holomorphic
function on the complement in C of the zero-set of q.

Let’s compare this with differentiability for functions of 2 variables. Recall that if
U ⊂ R2 is open and u : U → R then u is said to be differentiable at (c, d) ∈ U if
there exists (λ, µ) ∈ R2 such that

u(x, y)− u(c, d)− (λ(x− c) + µ(y − d))√
(x− c)2 + (y − d)2

→ 0 as (x, y)→ (c, d)

and then Du(c, d) = (λ, µ) is the derivative of u at (c, d). If this holds then
λ = ux(c, d) and µ = uy(c, d) are equal to the partial derivatives of u at (c, d).

Theorem 1.2.1 (Cauchy-Riemann equations). f : U → C is differentiable at w =
c+ id ∈ U iff the functions u, v are differentiable at (c, d) and

ux(c, d) = vy(c, d), uy(c, d) = −vx(c, d). (1)

If this holds then f ′(w) = ux(c, d) + ivx(c, d).

Proof. From the definition, f will be differentiable at w with derivative f ′(w) =
p+ iq if and only if

lim
z→w

f(z)− f(w)− f ′(w)(z − w)

|z − w|
= 0

2Some old (and not-so-old) texts use the term regular. The term analytic is also commonly
employed — see Remark 2.5 below.
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or equivalently, splitting into real and imaginary parts, if and only if

lim
(x,y)→(c,d)

u(x, y)− u(c, d)− (p(x− c)− q(y − d))√
(x− c)2 + (y − d)2

= 0

and

lim
(x,y)→(c,d)

v(x, y)− v(c, d)− (q(x− c) + p(y − d))√
(x− c)2 + (y − d)2

= 0

since
f ′(w)(z − w) = (p(x− c)− q(y − d)) + i(q(x− c) + p(y − d)).

So f is differentiable at w with derivative f ′(w) = p + iq if and only if u, v are
differentiable at (c, d) with Du(c, d) = (p,−q) and Dv(c, d) = (q, p), whence the
result.

Remarks. (i) For example, applying to the function f(z) = z̄, so that u(x, y) =
x, v(x, y) − y, we see that ux = 1, vy = −1, and so f(z) is nowhere complex
differentiable.

(ii) If one just wants to show that the differentiability of f at w implies that the
partial derivatives exist and satisfy (1), one can proceed more simply: Let h be
real, and first letting z = w + h, we have

f ′(w) = lim
h→0

f(w + h)− f(w)

h

= lim
h→0

u(c+ h, d)− u(c, d)

h
+ i

v(c+ h, d)− v(c, d)

h
= ux(c, d) + ivx(c, d).

Next letting z = w + ih, we get

f ′(w) = lim
h→0

f(w + ih)− f(w)

ih

= lim
h→0

v(c, d+ h)− v(c, d)

h
− iu(c, d+ h)− u(c, d)

h
= ux(c, d) + ivx(c, d).

(iii) Leter we’ll see that if f is holomorphic then so is f ′. This being so, it follows
that all the higher partial derivatives of u and v exists, and we may differentiate
the Cauchy-Riemann equations again to get

∂2u/∂x2 = ∂2v/∂y∂x, ∂2u/∂y2 = −∂2v/∂x∂y,

and so (using the fact that ∂2v/∂x∂y = ∂2v/∂y∂x, since the 2nd partial derivatives
are continuous)

∂2u/∂x2 + ∂2u/∂y2 = 0 (2)
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which is Laplace’s equation (we also say that u is a harmonic function). Similarly,
v also satisfies Laplace’s equation, in other words

The real and imaginary parts of a holomorphic function are harmonic
functions.

Corollary 1.2.2. Let f = u + iv : U → C. Suppose the functions u, v have
continuous partial derivatives everywhere on U and that they satisfy the Cauchy-
Riemann equations (1). Then f is holomorphic on U .

Proof. Since the partial derivatives are continuous on U , u and v are differentiable
on U (Analysis II). The result follows by 1.2.1.

Remark. Later we shall show that the converse of Corollary 1.2.2 is true. In fact, if
f : U → C is holomorphic then Corollary 2.5.2 will show that its derivative is also
holomorphic, hence in particular that the partial derivatives of u, v are continuous.

Corollary 1.2.3. Let f : D → C be holomorphic on a domain D, and suppose
that f ′(z) = 0 for all z ∈ D. Then f is constant on D.

Proof. Follows from the analogous result for differentiable functions on a path-
connected subset of R2.

1.3 Power series

Recall:

Theorem 1.3.1 (Radius of convergence). Let (cn)n∈N be a sequence3 of complex
numbers. Then there exists a unique R ∈ [0,∞], the radius of convergence of the
series, such that the series

∞∑
n=0

cn(z − a)n, z, a ∈ C

converges absolutely if |z − a| < R and diverges if |z − a| > R. If 0 < r < R
then the series converges uniformly on {|z − a| ≤ r}. The radius of convergence
is given by

R = sup{r ≥ 0 | |cn| rn → 0}.

Theorem 1.3.2. Let f(z) =
∑∞

n=0 cn(z − a)n be a complex power series4 with
radius of convergence R > 0. Then:

3For me, N = {0, 1, 2, . . . }.
4If one is pedantic one should write “let

∑
. . . be a power series with radius of convergence

R > 0, and let f : D(a,R)→ C be the function it represents” .
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(i) f is holomorphic on D(a,R);

(ii) its derivative is given by the series

∞∑
n=1

ncn(z − a)n−1,

which also has radius of convergence R;

(iii) f has derivatives of all orders on D(a,R), and f (n)(a) = n!cn.

(iv) If f vanishes identically on some disc D(a, ε) then cn = 0 for every n.

Proof. We can assume, making a change of variables, that a = 0.

First we show that the derived series has radius of convergenceR. Since |ncn| ≥ |cn|
its radius of convergence can be no greater than R. And if |z| < R1 < R then the
derived series converges by comparison with

∑
|cn|Rn−1

1 , since

|n| cnzn−1

|cn|Rn−1
1

= n

(
|z|
R1

)n−1

→ 0.

Next consider the series, for |z|, |w| < R

∞∑
n=1

cn

(n−1∑
j=0

zjwn−1−j
)

(3)

I claim that for every ρ < R this series converges uniformly on the set {(z, w) |
|z| , |w| ≤ ρ}. In fact for the n-th term we have the bound∣∣∣cn(n−1∑

j=0

zjwn−1−j
)∣∣∣ ≤ n |cn| ρn−1 = Mn, say,

and
∑
Mn converges since ρ < R, so by the Weierstrass M -test, the series con-

verges uniformly. Hence the series converges on {(z, w) | |z| , |w| < R} to a
continuous function g(z, w).

Next, if z 6= w we can rewrite (3) as

g(z, w) =
∞∑
n=1

cn
zn − wn

z − w
=
f(z)− f(w)

z − w

whereas if z = w it reduces to

g(w,w) =
∞∑
n=1

ncnw
n−1.
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So since g is continuous, fixing w and letting z → w we get

lim
z→w

f(z)− f(w)

z − w
=
∞∑
n=1

ncnw
n−1

so f ′(w) exists and equals g(w,w), as required. This proves (i) and (ii). Then (iii)
follows by induction on n. Finally, if f vanishes identically on a disc about z = a
then f (n)(a) = 0 for all n, so by (iii) all the cn are zero.

Remark. We shall use the continuity of g(z, w) later on (in Theorem 3.2.1).

Definition. The complex exponential function is defined by

ez = exp z =
∞∑
n=0

zn

n!
.

Proposition 1.3.3. (i) exp(z) is an entire function, and (d/dz) exp(z) = exp(z).

(ii) For all z, w ∈ C, exp(z + w) = exp(z) exp(w) and exp(z) 6= 0.

(iii) If z = x+ iy then ez = ex(cos y + i sin y).

(iv) exp(z) = 1 if any only if z ∈ 2πi.

(v) If w ∈ C then there exists z ∈ C with exp(z) = w iff w 6= 0.

Proof. (i) RoC=∞. Differentiate term-by-term.

(ii) Obviously e0 = 1. Let w ∈ C. Define F (z) = exp(z + w) exp(−z). Then
F ′(z) = 0, so F is constant, hence F (z) = F (0) = exp(w). Taking w = −z gives
exp(z) exp(−z) = 1 so exp(z) 6= 0.

(iii) ez = exeiy by (ii), then use Maclaurin series for sin, cos.

(iv), (v) Follows from (iii).

We now turn to the logarithm function. By definition, if z ∈ C we say that w ∈ C
is a logarithm of z if exp(w) = z. From Proposition 1.3.3(v), z has a logarithm iff
z 6= 0; and by (iv) if z 6= 0 then z has an infinite number of logarithms, differing
from one another by integer multiples of 2πi.

Unlike for real numbers, there is no preferred logarithm of a given complex number;
both πi and −πi are logarithms of −1 and there is no mathematical reason to
choose one over the other.

Definition. Let U ⊂ C \ {0} be an open set. We say that continuous function
λ : U → C is a branch of the logarithm if for exery z ∈ U , λ(z) is a logarithm of z
— equivalently, if exp(λ(z)) = z.

Will see later that any branch of the logarithm is in fact automatically holomorphic.
The following is often a useful choice:
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Definition. Let U = C \ {x ∈ R | x ≤ 0}. The principal branch of the logarithm
is the function Log : U → C given by

Log(z) = ln |z|+ i arg(z)

where arg(z) is the unique argument of z in the range (−π, π).

As the name suggests, Log(z) is indeed a branch of the logarithm. In fact, Log is
continuous on U , since the function z 7→ arg(z) is continuous on U ,5 and for any
z ∈ U ,

exp Log(z) = eln|z|(cos arg(z) + i sin arg(z)) = z.

Proposition 1.3.4. (i) log is holomorphic on U , with derivative 1/z.

(ii) If |z| < 1 then

log(z) =
∞∑
n=1

(−1)n−1zn

n
.

Proof. (i) Inverse of chain rule.

(ii) The power series has radius of convergence 1. Differentiating both sides, see
that the difference is a constant, then put z = 0.

Notice that there is no way to extend Log(z) to a holomorphic function on C\{0},
since

lim
θ→π−

Log(eiθ) = π but lim
θ→π+

Log(eiθ) = lim
θ→π+

θ − 2π = −π

Later (Theorem 2.1.4) we’ll see that there is no branch of the logarithm defined
on C− {0}.
Fractional/complex powers: zα = exp(αLog z).

d/dz(zα) = αzα−1, but (zw)α 6= zαwα in general.

1.4 Conformal maps

Let f : U → C be a holomorphic function on an open subset U ⊂ C. Let w ∈ U and
suppose that f ′(w) 6= 0. We investigate the properties of the mapping determined
by f in a neighbourhood of w. For this consider a simple C1-curve through w

γ : [−1, 1]→ U, γ(0) = w

5Projection onto the unit circle z 7→ z/ |z| is a continuous map C \ {0} → {|z| = 1}, which
maps U to {|z| = 1} \ {−1}; and θ 7→ eiθ is a homeomorphism from (−π, π) to {|z| = 1} \ {−1}.
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satisfying γ′(0) 6= 0. Writing γ(t) = w + r(t)eiθ(t), one sees that arg(γ′(0)) = θ(0)
is the angle that γ makes with a line through w parallel to the real axis. Consider
the image δ of γ by f , so that δ(t) = f(γ(t)). Then

δ′(t) = γ′(t)f ′(γ(t)), arg δ′(0) = arg γ′(0) + arg f ′(w) + 2πn

for some n ∈ Z, since f ′(w) 6= 0. So the direction of δ at f(w) is the direction
of γ at w, rotated by a constant angle arg f ′(w). In other words, the mapping f
preserves angles at the point w. We say that f is conformal at w is this is the
case.

A special but impostant case is when f : D → C is holomorphic on a domain D
with f ′ 6= 0, and is 1-to-1, to that f : D ∼−→ f(D). In this case we say that f is a
conformal equivalence between D and f(D) — sometimes one just says that f is
a conformal mapping.

An important example of conformal equivalence is given by the Moebius map

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad = bc 6= 0

which is a conformal equivalence from the Riemann sphere C ∪ {∞} to itself.
Other examples are given (for n ≥ 1) by z 7→ zn, which is a conformal equivalence
between {z ∈ C\{0} | 0 < arg z < π/n} and the upper half-plane {z ∈ C | Im(z) >
0}, with inverse mapping the principal branch of z1/n; and by the exponential

exp: {z ∈ C | −π < arg(z) < π} → C \ {x ∈ R | x ≤ 0}

with inverse Log(z), the principal branch of the logarithm. Using a combination
of functions of this kind one can construct many non-trivial examples of conformal
mappings. Underpinning all of these is the Riemann Mapping Theorem, which
implies in particular the following:

Let D ⊂ C be any domain bounded by a simple closed curve. Then
there exists a conformal equivalence D ∼−→ D(0, 1) between D and the
open unit disc.

2 Complex integration I

2.1 Integrals along curves

Familiarity with basic notions of integration of real-valued functions of a real vari-
able is assumed. If f : [a, b] → C is complex function which is (say) continuous,
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then its integral is defined as∫ b

a

f(t) dt =

∫ b

a

Re(f(t)) dt+ i

∫ b

a

Im(f(t)) dt.

The following estimate is basic:

Proposition 2.1.1. ∣∣∣∣∫ b

a

f(t) dt

∣∣∣∣ ≤ (b− a) sup
a≤t≤b

|f(t)| (4)

with equality if and only if f is constant.

Proof. Let θ = arg
(∫ b

a
f(t) dt

)
, and set M = supa≤t≤b |f(t)|. Then∣∣∣∣∫ b

a

f(t) dt

∣∣∣∣ =

∫ b

a

e−iθf(t) dt =

∫ b

a

Re(e−iθf(t)) dt ≤
∫ b

a

|f(t)| dt ≤M(b− a)

(the second equality because the left-hand side is real) giving (4). For the second
part, we may assume that f is not identically zero. If we have equality in (4)
then both the inequalities above must be equalities. The second is an equality iff
|f(t)| = M , so that |f | is constant; the first is an equality iff eiθ = arg(f(t)), which
means that arg(f) is constant. Taken together this means f is constant.

Let γ : [a, b]→ C be a C1-curve, γ(t) = x(t) + iy(t). Then as |γ′(t)|2 = (dx/dt)2 +
(dy/dt)2, it makes sense to define the arc length of γ as the integral

length(γ) :=

∫ b

a

|γ′(t)| dt.

We say that γ is simple if γ(t1) 6= γ(t2) unless t1 = t2 or {t1, t2} = {a, b}. If γ is a
simple curve then length(γ) is just the length of (the image of) γ.

Definition. Let f : U → C be continuous, and let γ : [a, b] → C be a C1 curve.
The integral of f along γ is∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

Basic properties:

• linearity
∫
γ
c1f1(z) + c2f2(z) dz = c1

∫
γ
f1(z) dz + c2

∫
γ
f2(z) dz.
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• additivity: if a < a′ < b and γ1 : [a, a′] → U , γ2 : [a′, b] → U are given by
γi(t) = γ(t) then ∫

γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz

• inverse path: if (−γ) : [−b,−a] → U is the curve (−γ)(t) = γ(−t) then∫
−γ f dz = i

∫
γ
f dz.

• reparameterisation: if φ : [a′, b′] → [a, b] is C1 and φ(a′) = a, φ(b′) = b then
if δ = γ ◦ φ : [a′, b′]→ U , have

∫
γ
f dz =

∫
δ
f dz.

This means that we may (and often shall) restrict attention to curves γ : [0, 1]→
C.

Let γ : [a, b] → C be a (continuous) curve. Suppose we have a = a0 < a1 < · · · <
an−1 < an = b such that for each 0 ≤ i < m the restriction γi of γ to [ai−1, ai] is
C1. We then say that γ is a piecewise continuously differentiable, or piecewise-C1

curve, and define ∫
γ

f(z) dz =
n−1∑
i=1

∫
γi

f(z) dz.

By additivity this does not depend on the decomposition.

Remarks. (i) We will often abuse notation by identifying γ with its image in C
— for example, we may say “f is non-zero on γ” — although it must always be
remembered that γ is a map from an interval to C, and not a subset of C. (For
example, a curve and its inverse path have the same image, but the integrals along
them are different.)6

(ii) Appearances can be deceptive: one should not read too much into the notion
of C1 curve. In particular, a C1-curve need not have a tangent at every point,
even if it is simple. For example, the curve γ : [0, 1]→ C given by

γ(t) =

{
1 + i sin πt if 0 ≤ t ≤ 1/2

sin πt+ i if 1/2 ≤ t ≤ 1

is a C1 curve which has no tangent at t = 1/2.

Precisely, it is easy to show that if γ′(t0) 6= 0 then the curve γ(t) has a tangent at
t = t0, (in fact a tangent vector is just γ′(t0)). But a C1-function γ : [0, 1] → C
can have zero derivative at infinitely many points.

6Some writers use the notation [γ] or γ∗ to denote the image of γ, but I find this pedantic.
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By suitable reparameterisation one can replace any piecewise-C1-curve by a C1-
curve — simply replace each C1 segment γi with γi ◦ hi, for any monotonic C1

bijection hi : [ai−1, ai]→ [ai−1, ai] with h′i(ai−1) = h′i(ai) = 0.

It’s convenient to be able to combine curves as well. If γ : [a, b] → C, δ : [c, d] →
C are curves with γ(b) = δ(c) then we can define their sum to be the curve
γ + δ : [a, b+ d− c]→ C given by

t 7→

{
γ(t) if a ≤ t ≤ b

δ(t+ c− a) if b ≤ t ≤ b+ d− c

Recall that in the last lecture we defined a piecewise C1-curve to be a curve
γ : [a, b] → C for which there exists a decomposition a = a0 < a1 < · · · < an = b
for which the restriction γi of γ to the subinterval [ai−1, ai] is continuously differ-
entiable, for each 1 ≤ i ≤ n. So γ = γ1 + · · ·+ γn is a sum of C1-curves.

Unless otherwise stated, by “curve” we shall henceforth always mean
“piecewise-C1 curve”.

Proposition 2.1.2. For any continuous f : U → C and any curve γ : [a, b]→ U ,∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ length(γ) sup
γ
|f | .

Proof. By additivity we may assume that γ is a C1-curve. If M = supγ |f | then∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))| |γ′(t)| dt

≤M

∫ b

a

|γ′(t)| dt = M length(γ).

Proposition 2.1.3. If fn : U → C(n ∈ N) and f : U → C are continuous func-
tions, and γ : [a, b]→ U is a curve such that fn → f uniformly on (the image of)
γ, then ∫

γ

fn(z) dz →
∫
γ

f(z) dz

Proof. Let Mn = supγ |f − fn|. Then by definition of uniform convergence Mn →
0, and by the previous result∣∣∣∣∫

γ

f(z) dz −
∫
γ

fn(z) dz

∣∣∣∣ ≤Mn length(γ)→ 0.
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Theorem 2.1.4 (“Fundamental Theorem of Calculus”). If F : U → C is holo-
morphic [and F ′ is continuous] and γ : [a, b]→ U is a curve, then∫

γ

F ′(z) dz = F (γ(b))− F (γ(a)).

If moreover γ is closed, then
∫
γ
F dz = 0.

(We say γ : [a, b]→ C is closed if γ(a) = γ(b).)

In particular, if f is the derivative of a holomorphic function on U , then the integral∫
g
f dz depends only on the endpoints of γ.

Later (2.5.2) we shall see that the condition “F ′ is continuous” is automatically
satisfied.

Proof.∫
γ

F ′(z) dz =

∫ b

a

F ′(γ(t))γ′(t) dt =

∫ b

a

(d/dt)(F (γ(t))) dt = [F (γ(t))]ba

Example:
∫
γ
zn dz where γ is the circular path γ : [0, 1]→ C, γ(t) = Re2πit, R > 0.

If n 6= −1 then f is the derivative of zn+1/(n+1), which is holomorphic on C\{0}
(even on C if n ≥ 0), so

∫
γ
f(z) dz = 0.

However if n = −1 we don’t know a holomorphic function on any open subset
of C containing γ with derivative 1/z — the natural candidate, Log(z), being
only holomorphic on the “cut-plane”. Instead compute from the definition: since
γ′(t) = 2πiRe2πit, ∫

γ

z−1 dz =

∫ 1

0

R−1e−2πit · 2πiRe2πit dt = 2πi.

Since this is 6= 0, we can deduce from FTC that there does not exists a holomorphic
function on any open subset of C containing the circle {|z| = R}, whose derivative
is 1/z. In particular, there is no branch of the logarithm defined on C \ {0}.
Rather strikingly, it turns out that the converse to this is true:

Theorem 2.1.5 (converse of FTC). Let f : D → C be continuous on a domain D.
If
∫
γ
f(z) dz = 0 for all closed γ in D, then there exists a holomorphic F : D → C

with F ′ = f .
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Proof. Pick a point a0 ∈ D. If w ∈ D, pick any curve γw : [0, 1] → D with
γw(0 + a0), γw(1) = w, and define

F (w) =

∫
γw

f(z) dz.

We’ll show that F is holomorphic on D with derivative f .

Now fix some w ∈ D, choose r > 0 such that D(w, r) ⊂ D. If |h| < r, let
δh : [0, 1] → D be the line segment δh(t) = w + th from w to w + h. Then the
integral of f around the closed path γw + δh + (−γw+h) is by hypothesis zero,7

hence

F (w+h) =

∫
γw+δh

f(z) dz = F (w)+

∫
δh

f(z) dz = F (w)+hf(w)+

∫
δh

f(z)−f(w) dz

(5)
and therefore ∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ =

∣∣∣∣1h
∫
δh

f(z)− f(w) dz

∣∣∣∣
≤ length(δh) |h|−1 sup

δh

|f(z)− f(w)|

≤ sup
|z−w|≤|h|

|f(z)− f(w)| → 0 as |h| → 0

so F is differentiable at w with derivative f(w).

We shall use the following variant of this as an intermediate result:

Lemma 2.1.6. Let D be a disc (or more generally, any convex or starlike domain),
and let f be continuous on D. If

∫
γ
f(z) dz = 0 for every triangle γ in D, then

there exists a holomorphic function F on D with F ′ = f .

Proof. First we define the terms:

• an open subset U ⊂ C is convex if for every a, b ∈ U the line segment
{tb+ (1− t)a | t ∈ [0, 1]} from a to b lies in U ;

• U is starlike if there exists a0 ∈ U such that for every b ∈ U the line segement
from a0 to b lies in U .

Obviously disc =⇒ convex =⇒ starlike =⇒ domain. The domain U occurring
in the definition of log(z) is starlike but not convex.

For the proof, define F (w) as in the proof above, taking γw to be the straight-line
path from a0 to w (which is contained in D by the assumption on D). Then the
closed curve γw + δh+ (−γw+h) is a triangle, so (5) still holds under the hypothesis
on f .

7The same argument shows that F (w) is independent of the choice of curve γw.
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2.2 Cauchy’s theorem for a disc

Cauchy’s theorem states that, if f is holomorphic on a domain D and γ : [a, b]→ D
is a closed curve, then under certain hypotheses on D and γ,

∫
γ
f(z) dz = 0. There

are various versions of Cauchy’s theorem, which differ only in their hypotheses.
The basic version, from which all others are derived, applies to the simplest kind
of domain — a disc.

Notation for a triangle.

Theorem 2.2.1. Let f : U → C be holomorphic, ∆ ⊂ U a triangle. Then∫
∂∆
f(z) dz = 0.

Proof. Let L = length(∆), and let I =
∣∣∫
∂∆
f(z) dz

∣∣. Bisecting the sides of ∆

gives 4 subtriangles ∆(i) (i = 1, 2, 3, 4) and we have∫
∂∆

f(z) gz =
4∑
i=1

∫
∂∆(i)

f(z) gz

since the integrals along the lines joining the midpoints of the sides of ∆ cancel in
pairs. Therefore, for some j ∈ {1, 2, 3, 4} we have∣∣∣∣∫

∂∆(j)

f(z) dz

∣∣∣∣ ≥ 1

4
I.

Denote ∆(j) by ∆1. Iterating, we obtain a sequence of nested triangles

∆ = ∆0 ⊃ ∆1 ⊃ ∆2 ⊃ . . .

such that

length(∂∆n) = 2−nL and

∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ ≥ 4−nI.

Now ∩n∈N∆n = {w}, a single point8. Then the function

g(z) =
f(z)− f(w)

z − w
− f ′(w)

8Since the perimeter of ∆n tends to 0, clearly the intersection can contain at most one point.
Let wn ∈ ∆n be arbitrary; then |wn − wn+1| ≤ length(∆n) → 0 so w = limwn exists; and for
every n ∈ N, w ∈ ∆n since ∆n is closed and wm ∈ ∆n for m ≥ n.
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is continuous on D with g(w) = 0. Therefore

4−nL ≤
∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣
=

∣∣∣∣∫
∂∆n

f(z)− f(w)− (z − w)f ′(w) dz

∣∣∣∣ since

∫
∂∆n

dz =

∫
∂∆n

z dz = 0

≤ 2−nL sup
z∈δn
|(z − w)g(z)|

≤ 2−nL · 2−nL sup
z∈∆n

|g(z)|

and so I ≤ L2 sup∆n
|g| → 0 as n→∞, since g(w) = 0. Hence I = 0.

It is important for later use to know that the theorem holds under (apparently)
weaker hypotheses.

Theorem 2.2.2. Let S ⊂ U be a finite subset, and assume that f : U → C is
continuous on U and holomorphic on U \ S. Let ∆ ⊂ U be a triangle. Then∫
∂∆
f(z) dz = 0.

Proof. By subdividing ∆ we may assume that S = {a} is a singleton, and a ∈ ∆.
Let M = sup∆ |f | < ∞. If ∆′ ⊂ ∆ is any smaller triangle containing the point a
then subdivision and the previous result shows that∣∣∣∣∫

∂∆

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
∂∆′

f(z) dz

∣∣∣∣ ≤M length(∂∆′)

so by letting the length of ∆′ tend to zero, we have the result.

Corollary 2.2.3 (Cauchy’s theorem for a disc). Let D be a disc (or convex or
starlike domain) and f : D → C a function which is holomorphic except possibly
at a finite number of points, where it is continuous. Then for any closed γ in D,∫
γ
f(z), dz = 0.

Proof. Combine Lemma 2.1.6 and Theorem 2.2.2.

2.3 Cauchy integral formula for a disc

Theorem 2.3.1. Let D = D(a, r) be a disc and f : D → C holomorphic. For
every w ∈ D and ρ with |w − a| < ρ < r,

f(w) =
1

2πi

∫
|z−a|=ρ

f(z)

z − w
dz.
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Proof. Apply Corollary 2.2.3 to the function

g(z) =

{
(f(z)− f(w)/(z − w) if z 6= w

f ′(w) if z = w.

This gives∫
|z−a|=ρ

f(z)

z − w
dz =

∫
|z−a|=ρ

f(w)

z − w
dz =

∞∑
n=0

∫
|z−a|=r

f(w)
(w − a)n

(z − a)n+1
dz = 2πif(w)

using the geometric series

1

z − w
=

1

(z − a)(1− (w − a)/(z − a))
=
∞∑
n=0

(w − a)n

(z − a)n+1
(6)

which converges uniformly for |z − a| = ρ (so that we may interchange integration
and summation, by Proposition 2.1.3)).

Corollary 2.3.2 (The Mean-Value Property). If f : D(w,R)→ C is holomorphic,
then for every 0 < r < R,

f(w) =

∫ 1

0

f(w + re2πit) dt.

Remark. The corollary can be restated as saying that f(w) equals the average
value of f on any circle with centre w.

Proof. Take w = a in the Theorem, and parameterise the circle of integration as
γ(t) = w + re2πit, t ∈ [0, 1].

2.4 First applications of CIF

Theorem 2.4.1 (Liouville’s Theorem). Every bounded entire function is constant.

Proof. Let f : C → C be an entire function such that |f | < M , and let w ∈ C.
Then if R > |w|

|f(w)− f(0)| = 1

2π

∣∣∣∣∫
|z|=R

f(z)

(
1

z − w
− 1

z

)
dz

∣∣∣∣
=

1

2π

∣∣∣∣∫
|z|=R

f(z)

z(z − w)
dz

∣∣∣∣
≤ 1

2π
× 2πR× M

R(R− |w|)
→ 0 as R→∞

which shows that f(w) = f(0).
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Theorem 2.4.2 (Fundamental Theorem of Algebra). Every non-constant polyno-
mial with complex coefficients has a complex root.

Proof. Let P (z) = zn + cn−1z
n−1 + · · ·+ c1z + c0 be a polynomial of degree n > 0.

Then |P (z)| → ∞ as |z| → ∞, so there exists R such that |P (z)| > 1 for all z
with |z| > R. Consider f(z) = 1/P (z). If P has no complex zeroes then f is
entire, and so (being continuous) f is bounded on {|z| ≤ R}. As |f(z)| < 1 when
|z| > R, f is a bounded entire function, so by Liouville’s Theorem f is constant;
contradiction.

Theorem 2.4.3 (Local maximum modulus principle). Let f : D(a, r) → C be
holomorphic. If for every z ∈ D(a, r), |f(z)| ≤ |f(a)|, then f is constant.

Proof. By the Mean-Value Property we have, for 0 < ρ < r,

|f(a)| =
∣∣∣∣∫ 1

0

f(a+ ρe2πit) dt

∣∣∣∣ ≤ sup
|z−a|=ρ

|f(z)|

and by hypothesis equality holds, so by Proposition 2.1.1 |f(z)| = |f(a)| for all z
on the circle |z − a| = ρ. Since this holds for all ρ, |f | is constant on D(a, r). By
the Cauchy–Riemann equations, this implies that f is constant9.

2.5 Taylor expansion

Theorem 2.5.1. Let f : B(a, r) → C be holomorphic. Then f has a convergent
power series representation on B(a, r):

f(z) =
∞∑
n=0

cn(z − a)n

where

cn =
f (n)(a)

n!
=

1

2πi

∫
|z−a|=ρ

f(z)

(z − a)n+1
dz for any 0 < ρ < r.

9|f | = c constant =⇒ ff̄ = c2, so (unless c = 0, in which case f = 0) f̄ = c2/f is also
holomorphic. Then by Cauchy–Riemann equations for f and f̄ we see at once that f is constant.
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Proof. If |w − a| < ρ < r then by the Cauchy Integral Formula

f(w) =
1

2πi

∫
|z−a|=ρ

f(z)

z − w
dz

=
1

2πi

∫
|z−a|=ρ

f(z)
∞∑
n=0

(w − a)n

(z − a)n+1
dz

=
∞∑
n=0

(
1

2πi

∫
|z−a|=ρ

f(z)
1

(z − a)n+1
dz

)
(w − a)n

where we have used (6) and the interchange of integration and summation is justi-
fied by the uniform convergence of the geometric progression. So f has a convergent
power series representation on B(a, ρ) for any ρ < r, and the rest of the theorem
follows.

Corollary 2.5.2. If f : U → C is holomorphic then its derivatives of all orders
exist and are holomorphic.

Remark. A function f : U → C is said to be analytic if for every a ∈ U , f can
be represented by a convergent power series on some B(a, r) ⊂ U . (By Theorem
1.3.2(iv), this power series is unique).

Theorem 1.3.2 shows that analytic functions are homolorphic. Theorem 2.5.1
shows that every holomorphic function is analytic. So in complex analysis the
words “analytic” and “holomorphic” are interchangeable (and indeed many au-
thors define analytic to be what we have termed holomorphic).

However in real analysis there is a big difference. We say by analogy that a function
f : (a, b)→ R is analytic if for every c ∈ (a, b) there exists an interval (c− r, c− r)
on which f can be represented as a convergent power series in (x− c). There are
many functions which are infinitely differentiable but which are not analytic. In
particular, if f : R → R is C∞ then it can happen that the Taylor series of f at
the origin has RoC zero. Even if the RoC is positive, the function defined by the
Taylor series may not be equal to f .

From now one, we shall use “holomorphic” and “analytic” interchangeably.

We next prove the converse to Cauchy’s Theorem:

Corollary 2.5.3 (Morera’s Theorem). Let D be a disc and f : D → C be a con-
tinuous function such that

∫
γ
f(z) dz = 0 for every closed curve γ in D. The f is

homolorphic.

Proof. By Theorem 2.1.5, f = F ′ for a holomorphic F : D → C. The previous
corollary then implies that f is holomorphic.
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Here’s an application of Morera’s theorem.

Corollary 2.5.4. Let D ⊂ C be open and a, b ∈ R. Let φ : D × [a, b] → C be
continuous, such that for each s ∈ [a, b] the function z 7→ φ(z, s) is holomorphic
on D. Then

g(z) =

∫ b

a

φ(z, s) ds

is holomorphic on D.

Remark. One can also show (example sheet — use the CIF representation for
∂φ/∂z) that (∂/∂z)φ(z, s) is continuous in s and that

g′(z) =

∫ b

a

∂φ

∂z
(z, s) ds

Lemma 2.5.5. Let f : [a, b]×[c, d]→ R be continuous. Then the functions f1 : x 7→∫ d
c
f(x, y) dy and f2 : y 7→

∫ b
a
f(x, y) dx are also continuous, and satisfy∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy. (7)

Proof. This is a simple form of Fubini’s theorem in integration theory. For the
proof, since f is continuous on a compact subset of R2, f is uniformly contin-
uous. Therefore given ε > 0 there exists δ > 0 such that |x− x0| < δ implies
|f(x, y)− f(x0, y)| < ε, which in turn implies that |f1(x)− f1(x0)| ≤ (d − c)ε.
Hence f1 is continuous.

For the second part, recall that a step function on a rectangle R = [a, b]× [c, d] is a
finite linear function of characteristic functions of subrectangles [a′, b′]×[c′, d′] ⊂ R.
Every continuous function on R is a uniform limit of step functions, and for step
functions the identity (7) is obvious.

Proof of Corollary 2.5.4. We may assume that D is a disc, and will apply Morera’s
theorem. For any closed curve γ : [0, 1]→ D we have∫

γ

g(z) dz =

∫ 1

0

(∫ b

a

φ(γ(t), s) ds

)
γ′(t) dt

=

∫ b

a

(∫ 1

0

φ(γ(t), s)γ′(t) dt

)
ds

=

∫ b

a

(∫
γ

φ(z, s) dz

)
ds = 0.

by the previous lemma10 and Cauchy’s Theorem 2.2.3 for a disc.

10Since γ need only be pw-C1 one needs to break the integral over γ up into integrals over C1

curves before applying the lemma.
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Let f : D(w,R)→ C be holomorphic, and write f as a power series
∑
cn(z −w)n

converging on D(w,R). If f is not identically zero on D(w,R) then not all of the
coefficients cn can vanish; let m = min{n ∈ N | cn 6= 0}. Then f(z) = (z−w)mg(z)
where g(z) =

∑∞
n=m cm(z − w)n−m is holomorphic on D(w,R) and g(w) 6= 0. If

m > 0 we say that f has a zero of order m at z = w. Clearly m is the least n such
that f (n)(w) 6= 0.

Theorem 2.5.6 (Principle of Isolated Zeroes). Let f : D(w,R)→ C be holomor-
phic and not identically zero. Then there exists 0 < r ≤ R such that f(z) 6= 0 for
0 < |z − w| < r.

Proof. Suppose f(w) 6= 0. Then by continuity of f , there exists r > 0 such that
f(z) 6= 0 for z ∈ D(w, r).

Otherwise, f has a zero of order m > 0 at z = w, so f(z) = (z − w)mg(z) with g
holomorphic and nonzero at z = w. So there exists r > 0 such that g is nonzero
on D(w, r), and then f(z) 6= 0 for 0 < |z − w| < r.

2.6 Analytic continuation

The fact that holomorphic functions are analytic has an interesting and impor-
tant consequence — a holomorphic function on a domain D is determine by its
restriction to a disc in D.

Theorem 2.6.1 (Uniqueness of analytic continuation). Let D′ ⊂ D be domains,
and f : D′ → C be analytic. There is at most one analytic function g : D → C
such that g(z) = f(z) for all z ∈ D′.

Such a function g, if it exists, is said to be an analytic continuation of f to D.

Proof. Let g1, g2 : D → C be analytic continuations of f to D. Then h = g1 −
g2 : D → C is analytic and h(z) = 0 on D′. It suffices to prove h is identically zero
on D′. To do this, define

D0 = {w ∈ D | h is identically zero on some open disc D(w, r)}
D1 = {w ∈ D | h(n)(w) 6= 0 for some n ≥ 0}.

Then since h has a convergent power series expansion about each point w ∈ D,
we see by Theorem 1.3.2 that D = D0 ∪D1 and D0 ∩D1 = ∅. Moreover both D0

and D1 are open subsets of C. So as D is connected, one of Di is empty, and as
D0 ⊃ D′ 6= ∅ we must have D1 = ∅, so that D = D0 and h = 0 on all of D.

Combining this with Theorem 2.5.6 we get:
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Corollary 2.6.2 (“Identity Theorem”). Let f, g : D → C be analytic on a domain
D. If S = {z ∈ D | f(z) = g(z)} contains a non-isolated point, then f = g on D.

Proof. Let w ∈ S be a non-isolated point11. The function f − g is holomorphic on
D and vanishes on S, so has a non-isolated zero at w. Therefore f − g vanishes
identically on an open disc with centre w by Theorem 2.5.6, hence by the previous
result f = g on D.

Remark. Given an analytic function f : D′ → C and an overdomain D ⊃ D′ it
is in general a hard problem to determine whether or not f can be analytically
continued to D. Typically f may be given by a convergent power series. Contrast
the following series, both of radius of convergence 1:

• f(z) =
∑∞

n=0 z
n, which has an analytic continuation to C \ {1} given by

g(z) = 1/(1− z).

• f(z) =
∑∞

n=0 z
n2

. One can show (although not easily) that f cannot be
analytically continued to any domain D properly containing D(0, 1). (One
says that the circle {|z| = 1} is a natural boundary for the power series.)

Moreover one can show that for any domain D′, there exists an analytic function
f : D → C which cannot be analytically continued to any strictly larger domain
D ⊃ D′.

3 Complex integration II

3.1 Winding number

Suppose γ : [a, b] → C is a closed curve, and that w ∈ C is not in the image of
γ. We want to define mathematically “the number of times γ winds around w”.
There are two ways to do this, and it is important to understand both.

The “naive” method is the following: suppose that we have written

γ(t) = w + r(t)eiθ(t) (8)

for continuous functions r, θ : [a, b] → R, r(t) > 0. Obviously r(t) = |γ(t)− w| is
uniquely determined. Then the angle swept out by γ(t) around w is the difference
θ(b)− θ(a), so we define the winding number or index of γ about w as

I(γ;w) =
θ(b)− θ(a)

2π
.

11i.e. for every ε > 0, there exists z ∈ S with 0 < |z − w| < ε.
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If θ and θ1 both satisfy (8) then their difference is a continuous function with
values in 2πZ, so is constant. Therefore if θ exists, then I(γ;w) is well-defined.
However the existence is not entirely trivial.

Theorem 3.1.1. If γ : [a, b]→ C \ {w} is a continuous curve, then there exists a
continuous function θ : [a, b]→ R with

γ(t) = w + r(t)eiθ(t), r(t) = |γ(t)− w| .

Proof. We can after translation assume that w = 0. First note that if the image of
γ lies in the 1/2-plane D = {Re(z) > 0} then we may take θ(t) = arg γ(t) where
arg is the principal branch of the argument, which is continuous on D. Similarly
if γ has image in the 1/2-plane {Re(z/eiα) > 0} then θ(t) = α + arg(γ(t)/eiα will
do.

The natural guess would be to just add or subtract 2π from arg γ(t) each time that
γ crosses the negative axis. But since it could cross infinitely many times (even
uncountably many times), this will not work.

Note that replacing γ by γ/ |γ| doesn’t change the problem, so we may assume
that |γ(t)| = 1. Next, since γ is continuous on [a, b] it is uniformly continuous, so
there exists ε > 0 such that if s, t ∈ [a, b] with |s− t| < ε, then |γ(s)− γ(t)| <

√
2.

Now subdivide: consider a = a0 < a1 < · · · < aN = b where an − an−1 < 2ε. Then
if t ∈ [an−1, an], we have

∣∣γ(t)− γ(an−1+an

2
)
∣∣ < √2, i.e. the image of [an−1, an]

lies in a semicircle, so in a half-plane. So by the above, for each n there exists a
continuous θn : [an−1, an] → R such that γ(t) = eiθn(t) for all t ∈ [an−1, an], and
so θn−1(an) = θ(an) + 2πBn, Bn ∈ Z. Adding suitable integer multiples of 2π to
each θn we can assume that Bn = 0, and then the θn’s fit together to define a
continuous θ.

The second approach is by integration. From now on we again only consider
piecewise-C1 curves.

Lemma 3.1.2. Let γ : [a, b]→ C− {w} be a (piecewise-C1) closed curve. Then

I(γ;w) =
1

2πi

∫
γ

dz

z − w
. (9)

Proof. Write γ(t) = w + r(t)eiθ(t) as in the theorem. Then as γ is piecewise C1 so
are r and θ, and∫

γ

1

z − w
dz =

∫ b

a

γ′(t)

γ(t)− w
dt =

∫ b

a

r′(t)

r(t)
+ iθ′(t) dt

= [ln r(t) + iθ(t)]ba = i(θ(b)− θ(a)) = 2πiI(γ;w).
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Remark. In fact some authors (e.g. Ahlfohrs) take (9) as the definition of winding
number. Although elegant this seems a bit artificial (for example, it is then non-
trivial to prove it is integer-valued).

Proposition 3.1.3. If γ : [0, 1]→ D(a,R) is a closed curve and w /∈ D(a,R) then
I(γ;w) = 0.

Proof. The hypothesis implies that D(a,R) is contained in the 1/2-plane U = {z |
Re(z − w)/(a − w) > 0}. So there is a branch of arg(z − w) which is continuous
on U , and then 2πI(γ;w) = arg(γ(1)− w)− arg(γ(0)− w) = 0.

Remark. For piecewise-C1 curves one could use Lemma 3.1.2 and appeal to Cauchy’s
theorem for a disc, since 1/(z−w) is holomorphic on B(a,R) if w /∈ B(a,R). (This
is a sledgehammer approach, though.)

Definition. Let U ⊂ C be open.

(i) A closed curve γ in U is homologous to zero in U if for every w /∈ U , I(γ;w) = 0.

(ii) U is simply connected if every closed curve γ in U is homologous to zero.

Remark. This is not the same as the usual topologist’s definition of simply-connected
(which is that every closed curve is null-homotopic), but for open subsets of the
plane it can be shown to be equivalent. See the example sheet for another equiv-
alent definition (the complement of D in the Riemann sphere CP1 is connected).
One can also prove that the definition remains the same if one considers all con-
tinuous curves, piecewise-C1 curves or even just polygonal curves.

It is convenient sometimes to generalise the notion of closed curve. By a cycle in
an open subset U ⊂ C, we mean a formal sum of closed curves in U

Γ = γ1 + · · ·+ γn.

If f : U → C is continuous, we then define∫
Γ

f(z) dz =
n∑
i=1

∫
γi

f(z) dz

and likewise I(Γ;w) =
∑
I(γi;w) if w does not lie on any of the curves γi. A cycle

is said to be homologous to zero in U if I(γ;w) = 0 for all w /∈ U . Notice that
although this holds if each γi is homologous to zero, the converse is not true. For
example, take U = C \ {a} and Γ = γ1 + γ2 where γi : [0, 1] → U are the circles
γ1(t) = a+ r1e

2πit, γ2(t) = a+ r2e
−2πit, ri > 0.
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3.2 Cauchy’s integral formula (general case)

Theorem 3.2.1. Let f : D → C be holomorphic, and let γ be a closed curve (or
cycle) in D which is homologous to zero. Then for all w ∈ D \ γ,

1

2πi

∫
γ

f(z)

z − w
dz = I(γ;w)f(w) (i)

and ∫
γ

f(z) dz = 0. (ii)

Proof. (i) Consider the function g : D ×D → C defined by

g(z, w) =


f(z)− f(w)

z − w
if z 6= w

f ′(w) if z = w.

Since f is analytic on D we can conclude from the proof of Theorem 1.3.2 that
g is continuous, and for fixed z it is an analytic function of w. We want to show
that if w ∈ D \ γ then

∫
γ
g(z, w) dz = 0 — by the definition of winding number,

this will prove (i). To do this, consider the function h defined by

h(w) =


∫
γ

g(z, w) dz if w ∈ D∫
γ

f(z)

z − w
dz if w ∈ E :={w ∈ C \ γ | I(γ;w) = 0}.

Since γ is homologous to zero in D we have D ∪ E = C, and if w ∈ D ∩ E the
given definitions of h(w) coincide. So h is defined on all of C, and is holomorphic
by Corollary 2.5.4. Moreover if R is sufficiently large then |w| > R implies that
I(γ;w) = 0 (by Proposition 3.1.3) and so

|h(w)| ≤
length(γ) supγ |f |

|w| −R
→ 0 as |w| → ∞.

so by Liouville’s Theorem 2.4.1 h is identically zero.

For (ii), simply apply (i) to the function (z − w)f(z), for any w ∈ D \ γ.

Corollary 3.2.2 (Cauchy’s theorem for simply-connected domains). Let f be holo-
morphic on a simply-connected domain D. Then for all closed curves γ in D,∫
γ
f(z) dz = 0.

24



3.3 Singularities and the Laurent expansion; the residue
theorem

Just as a holomorphic function on a disc D(a, r) can be expanded as a series in
powers of (z − a), we’ll see that a function which is holomorphic on D(a, r) \ {a}
can be expanded as a series in positive and negative powers of (z − a). In fact a
rather stronger result holds.

Theorem 3.3.1. Let f be holomorphic on an annulus A = {z ∈ C | r < |z − a| <
R}, where 0 ≤ r < R ≤ ∞. Then:

(i) f has a unique convergent series expansion on A

f(z) =
∞∑

n=−∞

cn(z − a)n (10)

(ii) For any ρ ∈ (r, R) the coefficient cn is given by

cn =
1

2πi

∫
|z−a|=ρ

f(z)

(z − a)n+1
dz.

(iii) If r < ρ′ ≤ ρ < R then the series converges uniformly on the set {z ∈ C |
ρ′ ≤ |z − a| ≤ ρ}

Proof. Start with the CIF: given w ∈ A, choose r < ρ2 < |w − a| < ρ1 < R and
consider the cycle γ = γ1 − γ2, where γi is the circle |z − a| = ρi. Then γ is
homologous to zero in A, hence f(w) = f1(w) + f2(w) where

f1(w) =
1

2πi

∫
|z−a|=ρ1

f(z)

z − w
dz, f2(w) = − 1

2πi

∫
|z−a|=ρ2

f(z)

z − w
dz.

The integral for f1 can be expanded just as in the proof of the Taylor series to get
f1(w) =

∑∞
n=0 cn(w − a)n, where

cn =
1

2πi

∫
|z−a|=ρ1

f(z)

(z − a)n+1
dz for all n ≥ 0. (11)

For the f2 integral use the convergent geometric series

−1

z − w
=

1/(w − a)

1− (z − a)/(w − a)
=

∞∑
m=1

(z − a)m−1

(w − a)m

which converges uniformly for |z − a| = ρ2, giving f2(w) =
∑∞

m=1 dm(w − a)−m

where

dm =
1

2πi

∫
|z−a|=ρ2

f(z)

(z − a)−m+1
dz for all m ≥ 1. (12)
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Writing n = −1 then gives the series expansion (i).

To show (ii) and (iii), suppose that we have any convergent series (10) on A,
and let r < ρ′ ≤ ρ < R . Then the power series

∑∞
n=0 cn(z − a)n must have

radius of convergence ≥ R, so converges uniformly on {|z − a| ≤ ρ}. Likewise,
putting u = 1/(z − a), the series

∑∞
n=1 c−nu

n must have radius of convergence
≥ 1/ρ′, so converges uniformly on {|u| ≤ 1/ρ′}. So (10) converges uniformly on
{ρ′ ≤ |z − a| ≤ ρ} and therefore in particular can be integrated term-by-term
along any curve in this set; so∫

|z−a|=ρ

f(z)

(z − a)m+1
dz =

∞∑
n=−∞

cn

∫
|z−a|=ρ

(z − a)n−m−1 dz = 2πicm.

Remark. Note that the proof of this result shows in particular that if f is holomor-
phic on the annulus A, then f = f1 + f2 where f1 is holomorphic for |z − a| < R
and f2 is holomorphic for |z − a| > r.

The theorem in particular applies when a function has an isolated singularity, that
is f is holomorphic on D(a,R) \ {a} (a punctured disc). For such a function f , let∑
cn(z − a)n be its Laurent expansion. There are three cases:

(i) cn = 0 for all n < 0. In this case the Lauent expansion is just a power se-
ries, so converges on the (unpunctured) disc D(a,R), and defines an analytic
function on D(a,R). We say f has a removable singularity at z = a. Typ-
ically this arises when f is given by some formula which is not well-defined
at z = a; for example, take a = 0 and f(z) = (ez − 1)/z.

(ii) There exists k > 0 such that cr 6= 0 but cn = 0 for all n < −k. In this case
we say f has a pole of order k at z = a. Example: ez/z11.

(iii) None of the above: cn 6= 0 for infinitely many negative n. We say f has an
essential singularity at z = a.

Let’s explore this trichotomy further. We assume f : D(a,R) \ {a} → C is holo-
morphic.

Proposition 3.3.2. f has an isolated singularity at z = a iff (z − a)f(z)→ 0 as
z → a.

Proof. If it has an isolated singularity then the Laurent series for (z − a)f(z) is a
power series with zero constant term, so vanishes at z = a. In the other direction,
if (z − a)f(z)→ 0, consider the function g on D(a,R) given by

g(z) =

{
(z − a)2f(z) if z 6= a

0 if z = a.
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Then g is holomorphic on D(a,R) with g′(a) = limz→a(z−a)f(z) = 0 and g(a) = 0,
so has a power series expansion

∑
n≥2 cn(z − a)n. Dividing by (z − a)2 shows that

the Laurent series for f is a power series.

Proposition 3.3.3. f has a pole at z = a iff |f(z)| → ∞ as z → a. Moreover,
TFAE:

(i) f has a pole of order k at z = a.

(ii) f = (z − a)−kg(z) where g : D(a,R)→ C is homolomorphic and g(a) 6= 0.

(iii) f(z) = 1/h(z) where h is holomorphic at z = a with a zero of order k.

Proof. First prove (i) ⇐⇒ (ii). Given f with a pole, multiplying the Laurent
series by (z−a)k gives a power series with non-zero constant term, defining g, and
the converse is clear. series for f with (z − a)−k times the Taylor series for g.

Next, (ii) ⇐⇒ (iii), since g is holomorphic at z = a with g(a) 6= 0 iff 1/g is
holomorphic at z = a.

Finally, suppose f has a pole at z = a. Then by (ii), |f | → ∞ at z = a. Conversely,
if |f | → ∞ at z = a, then for some r > 0, f is non-zero for 0 < |z − a| < r.
Therefore 1/f is holomorphic for 0 < |z − a| < r and 1/f → 0 at z = a. By
the previous proposition, 1/f has a removable singularity at z = a. So there is a
function h, holomorphic on D(a, r), with 1/f(z) = h(z) for 0 < |z − a| < r. As
1/f → 0 at z = a, h has a zero at z = a.

Combining these gives:

Proposition 3.3.4. f has an essential singularity at z = a iff |f | has no limit (in
R ∪ {∞}) as z → a.

In fact even more is true:

Theorem 3.3.5 (Casorati-Weierstrass). Let f : D(a,R) → C have an essential
singularity at z = a. Then for any w ∈ C and any r, ε > 0, there exist z with
0 < |z − a| < r and |f(z)− w| < ε.

This is easy to prove (example sheet). Much harder is the “big Picard theorem”:

Theorem 3.3.6. Let f have an essential singularity at z = a. Then there exists
b ∈ C such that, for any w 6= b and r > 0 there exists z with 0 < |z − a| < r and
f(z) = w.

In other words, in any neighbourhood of an essential singularity, an analytic func-
tion misses at most one value. (To see why one value can be skipped, consider the
function exp(1/z) which is never 0.)
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For one point of view, a pole is not a singularity at all. Consider the Riemann
sphere C∪{∞}, usually denoted CP1 or Ĉ. A holomorphic function f on D(a,R)\
{a} with a pole at z = a defines a function f̂ : D(a,R)→ CP1, which is said to be
holomorphic. So the only “genuine” singularities are essential singularities (hence
the name).

If D is a domain and S ⊂ D is set of isolated points in D, then function f : D\S →
C with at worst poles12 at the points in S is said to be meromorphic.

Definition. Let f : D(a,R) \ {a} → C be holomorphic with Laurent expansion∑∞
n=−∞ cn(z−a)n. The residue of f at z = a is the number Resz=a f(z) = c−1 ∈ C.

The principal part of f at z = a is the series
∑−1

n=−∞ cn(z − a)n.

Proposition 3.3.7. If γ ia a closed curve in D(a,R) \ {a} then∫
γ

f(z) dz = 2πiI(γ; a) Resz=a f(z).

In particular,
∫
|z−a|=r f(z) dz = 2πiResz=a f(z).

Proof. Using uniform convergence of the Laurent expansion this reduces to the
computation of

∫
γ
(z − a)n dz, which equals 2πiI(γ; a) if n = −1, and equals zero

otherwise (since then (z − a)n+1/(n+ 1) is an antiderivative).

The situation is simplest when f has a pole of order k at z = a. Then its principal
part P (z) at z = a is just a polynomial in 1/(z − a) of degree k with no con-
stant term, so defines an analytic function on C \ {a} which vanishes at infinity.13

Moreover, the difference f − P has a removable singularity at z = a.

Remark. (Can be omitted at first reading.) For a general singularity, if Paf is
the principal part of f at z = a then Paf = h(u) where h is a power series in
u = 1/(z−a) with no constant term, and which converges for all u with |u| > 1/R.
So it converges for all u ∈ C, and vanishes at u = 0. In particular, the series for
Paf defines an analytic function on C \ {a} which vanishes at infinity.

Now suppose now that f is meromorphic on D, and that {ai, . . . , am} are poles of
f in D (not necessarily all of them). Let fi be the principal part of f at z = ai.
Then g = f −

∑
i fi is meromorphic on D with removable singularities at z = ai.

This is important because we can then prove:

Theorem 3.3.8 (Residue Theorem). Let f be meromorphic on D. Let γ be a
closed curve in D, which is homologous to zero in D. Assume that f has no

12i.e. poles or removable singularities
13informal language for “tends to zero as |z| → ∞”.
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poles on γ, and has a finite number of poles in D with {a1, . . . , am} for which
I(γ; ai) 6= 0. Then ∫

γ

f(z) dz = 2πi
m∑
i=1

Resz=ai
f(z).

Notice that this includes Cauchy’s theorem and the Cauchy Integral Formula as
special cases.

Proof. Let g = f−
∑
fi as above. Then by Cauchy’s Theorem,

∫
γ
g(z) dz = 0, and

from Proposition 3.3.7,
∫
γ
fi(z) dz = 2πiI(γ; ai) Resz=ai

fi(z) = 2πiI(γ; ai) Resz=ai
f(z).

Remark. One can show that the set of poles w ∈ D with I(γ;w) 6= 0 is always
finite, if γ is homologous to zero.

In fact, let V = {w ∈ C | I(γ;w) = 0}. Then V ⊂ C is open (by continuity of
winding number, see Ex.II.15, and contains a set of the form {|z| > R} by 3.1.3.
Also since γ is homologous to zero in D, V ∪D = C. So the complement K = C\V
of V is a compact (closed and bounded) subset of D. Since f only has isolated
singularities in D, by Bolzano–Weierstrass only finitely many or them lie in K.

This result is useful as a theoretical tool and also for calculation (examples will
come later). For the latter, it is convenient to have another formulation which does
not involve winding number. The “traditional” formulation of Cauchy’s theorem
is: let f be holomorphic on and within a simple closed curve γ; then

∫
γ
f(z) dz = 0.

This begs the question of what the phrase “inside” γ means. The answer is supplied
by the Jordan curve theorem: if γ is a simple closed curve, then its complement is
the disjoint union of two domains, exactly one of which is bounded. The bounded
domain determined by γ (the “inside” of γ) is moreover simply-connected. It’s
not necessary to prove this (and the general proof is quite hard) since we can use
winding number to finesse it:

Definition. A cycle γ bounds a domain D if I(γ;w) = 1 for every w ∈ D and
I(γ;w) = 0 for all w /∈ D ∪ γ.

Suppose γ is a closed curve or cycle which bounds a domain D. Let f be a function
which is holomorphic on D ∪ γ, meaning that there is an open set U containing
D ∪ γ on which f is defined and homorphic. Then γ is homologous to zero in U
(by definition). So from the earlier results we get:

Theorem 3.3.9. Let γ bound a domain D.
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(i) [Cauchy’s theorem and integral formula] Let f be holomorphic on D∪ γ. Then∫
γ
f(z) dz = 0, and for every w ∈ D,∫

γ

f(z)

z − w
dz = 2πif(w).

(ii) [Residue theorem] Let f be meromorphic on D ∪ γ, with no poles on γ. Then∫
γ

f(z) dz = 2πi
∑
w

Resz=w(f)

where the sum is over all poles of f in D.

3.4 Evaluation of definite integrals

As a break from the string of theoretical results, will use the residue theorem to
compute some integrals.

Typical examples: ∫ 2π

0

1

5 + 4 cos θ
dθ;

∫ 2π

0

cos 11θ

(5 + 4 cos θ)2
dθ

For computing definite integrals, need to be able to compute residues effectively.
Summarise:

(i) If f has a simple pole at z = a then the Laurent expansion is c−1(z− a)−1 +
c0 + . . . , so Resz=a f(z) = limz→a(z − a)f(z).

(ii) If f = g/h where g, h are holomorphic at z = a, g(a) 6= 0 and h has a simple
zero, then Resz=a f(z) = g(a)/h′(a).

(iii) If f = (z − a)−kg(z) with g holomorphic, then Resz=a f(z) = the coefficient
of (z − a)k−1 in the Taylor series of g, which is f (k−1)(a)/(k − 1)!.

Unfortunately there is no easy analogue of (ii) for poles of higher order.

The other main class of integrals which can be evaluated using complex integration:∫ ∞
−∞

cosmx

x2 + 1
dx m ∈ R;

∫ ∞
0

sinx

x
dx

Lemma 3.4.1. Let f be holomorphic on D(a,R)−{a} with a simple pole at z = a.
for 0 < r < R let γr : [α, β]→ C be the path t 7→ a+ reit. Then

lim
r→0

∫
γr

f(z) dz = (β − α)i.
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Proof. Write f(z) = c/(z − a) + g(z) where g is holomorphic on D(a,R). Then∣∣∣∣∫
γr

g(z) dz

∣∣∣∣ ≤ (β − α)r sup |g| → 0 as r → 0

and so

lim
r→0

∫
γr

f(z) dz =

∫
γr

c

(z − a)
dz = (β − α)i.

Lemma 3.4.2 (Jordan’s Lemma). If for some r > 0, f is holomorphic on {|z| > r}
and zf(z) is bounded, then for any α > 0,∫

γR

f(z)eiαz dz → 0 as R→∞

where γR : : [0, π]→ C, γR(t) = Reit.

Proof. By hypothesis, there exists C such that |f(z)| ≤ C/ |z| for |z| sufficiently
large. Recall sin t ≥ 2t/π for t ∈ [0, π/2]. Then if z = Reit, 0 ≤ t ≤ π,

∣∣eiαz∣∣ = e−αR sin t ≤

{
e−αRπt/2 for 0 ≤ t ≤ π/2

e−αRπt
′/2 for 0 ≤ t′ = π − t ≤ π/2

The absolute value of the part of the integral for t ∈ [0, π/2] is then∣∣∣∣∣
∫ π/2

0

eiαRe
it

f(Reit) iReitdt

∣∣∣∣∣ ≤
∫ π/2

0

e−αRtC dt =
1

αR
(1− e−αRπ/2)→ 0

A similar calculation bounds the other part of the integral.

Remark. In practice one can always avoid Jordan’s lemma just by performing a
simple integration by parts.

Another example: ∫ ∞
0

xα

1 + x2
dx, 0 < α < 1

3.5 The argument principle; Rouché’s theorem

Proposition 3.5.1. Let f have a zero (pole) of order k > 0 at z = a. Then
f ′(z)/f(z) has a simple pole (order 1) at z = a, with residue k (respectively −k).
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Proof. If f has a zero of order k at z = a then f(z) = (z − a)kg(z) where g is
holomorphic and non-zero at z = a. Then

f ′(z)

f(z)
=

k

z − a
+
g′(z)

g(z)

whence the result. For a pole we have f(z) = (z − a)−kg(z) and proceed in the
same way.

Theorem 3.5.2 (Argument principle). Let γ be a closed curve (or cycle) bounding
a domain D, and let f by meromorphic on D ∪ γ. Assume that f has no zeroes
and poles on γ, and N zeroes and P poles in D (counted with multiplicity). Then

N − P =
1

2πi

∫
γ

f ′(z)

f(z)
dz = I(Γ; 0)

where Γ = f ◦ γ is the image of γ under the mapping f .

Proof. Notice that Γ lies in C \ {0} since f has no zero or pole on γ. So writing
w = f(z), we have

I(Γ; 0) =
1

2πi

∫
Γ

dw

w
=

1

2πi

∫
γ

f ′(z)

f(z)
dz

Now apply the residue theorem to f ′(z)/f(z) and the previous proposition.

The name of this theorem can be explained as follows. We suppose that γ : [0, 1]→
C is a closed curve. Then the theorem says that 2π(N − P ) is the change in
argument of f(z) as z traces γ.

This has an important consequence. If f is nonconstant and holomorphic at z = a
and f(a) = b, we say that the local degree of f at z = a is the order of the zero of
f(z)− b at z = a, and denote it degz=a f(z); it is a positive integer.

Proposition 3.5.3. The local degree of f at z = a equals the winding number
I(f ◦ γ, f(a)) for any circle γ(t) = a+ re2πit, t ∈ [0, 1] of sufficiently small radius.

Proof. Apply the argument principle to f(z) − f(a). As it has isolated zeroes, it
is nonzero for 0 < |z − a| ≤ r if r is sufficiently small.

Theorem 3.5.4 (Local mapping degree). Let f : D(a,R)→ C be holomorphic and
nonconstant, with local degree degz=a f(z) = d > 0. Then if r > 0 is sufficiently
small, there exists ε > 0 such that, for every w with |w − f(a)| ≤ ε, the equation
f(z) = w has exactly d roots in D(a, r).
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Proof. Let b = f(a), and let r > 0 be such that f(z)−b and f ′(z) are both nonzero
for 0 < |z − a| ≤ r. Let γ be the circle with centre z = a and radius r. Then
Γ = f ◦ γ is a closed curve not containing b. Choose ε > 0 such that Γ does
not meet D(b, ε). Then if w ∈ D(b, ε), the number of zeroes (counted according
with multiplicity) of f(z) − w in D(a, r) equals I(Γ;w) by the argument. But
I(Γ;w) = I(Γ; b) = d. Since r was chosen such that f ′ is nonzero on D0(a, r), the
zeroes are all simple.

Corollary 3.5.5 (Open mapping theorem). A non-constant holomorphic function
f : D → C maps open sets to open sets.

Proof. It’s enough to show that for every a ∈ D and every sufficiently small r > 0,
there exists ε > 0 such that f(D(a, r)) ⊃ D(f(a), ε), which follows at once from
the previous result.

Theorem 3.5.6 (Rouché’s Theorem). Let γ bound a domain D, and let f and g
be holomorphic on D∪γ. If |f | > |g| on γ then f and f +g have the same number
of zeroes in D.

Note that as |f | < |g| on γ the f and f + g are never zero on γ.

Proof. It suffices to show that h = 1 + (g/f) has the same numbers of zeroes as it
has poles in D. By the Argument Principle, that holds iff I(h ◦ γ; 0) = 0. But the
hypothesis implies that h(z) ∈ D(1, 1) for all z on γ, hence h ◦ γ is contained in
D(1, 1) and so by proposition 3.1.3 I(h ◦ γ; 0) = 0.

Typical practical application is to determine the approximate location of the zeroes
of (say) a polynomial P (z) of degree d ≥ 1. By the Fundamental Theorem of
Algebra we know P has d zeroes in C, and by simple estimates we can get an
upper bound for their size; with Rouché’s Theorem can often do better.

Ex: P (z) = z4 + 6z + 3. Then on the circle |z| = 2 we have 16 = |z4| > 15 =
6 |z|+ 3 ≥ |6z + 3|, so by Rouché’s Theorem, z5 and P (z) have the same number
of zeroes with |z| < 2. So all the zeroes of P (z) satisfy |z| < 2. But also if |z| =
then 6 = |6z| > 4 ≥ |z4 + 3|, so P (z) and 6z have the same number of zeroes with
|z| < 1. So P (z) has one zero with |z| < 1 and three zeroes with 1 < |z| < 2.

We can also count zeroes in a half-plane by using a semicircular path. See the
example sheet for examples of this and other kinds.

3.6 Uniform limits of analytic functions

Definition. Let U ⊂ C be an open set, and fn : U → C a sequence of functions.
We say {fn} is locally uniformly convergent on U if for every a ∈ U there exists
an [open] neighbourhood B(a, r) ⊂ U on which {fn} is uniformly convergent.
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Example: The sequence of functions fn = 1/(1 − zn) is locally uniformly on
B(0, 1) but is not uniformly convergent on D(0, 1). (It is uniformly convergent on
every D(a, r) with r < 1.)

Theorem 3.6.1. A sequence of functions fn : U → C is locally uniformly conver-
gent if and only if it converges uniformly on all compact subsets of U .

Proof. Suppose fn → f uniformly on compact subsets. Then in particular if a ∈ U
the sequence {fn} converges uniformly on any closed neighbourhood B(a, r) ⊂ U
of a in U , so {fn} → f locally uniformly.

Conversely, suppose {fn} converges locally uniformly on U , and let K ⊂ U be a
compact subset. For each a ∈ K there exists an open neighborhood B(a, ra) ⊂ U
on which {fn} converges uniformly. As K is compact, there is a finite subset
S ⊂ U such that

⋃
a∈S B(a, ra) ⊃ K. Hence {fn} converges uniformly on K.

We now have a generalisation of Theorem 1.3.2:

Theorem 3.6.2. Let {fn} be a sequence of analytic functions on U which is locally
uniformly convergent. Then the limit function f is analytic, and the sequence {f ′n}
converges locally uniformly to f ′.

Proof. Let D = B(a, r) ⊂ U be any disc. Then by Cauchy’s theorem, for any
closed curve γ in D,

∫
γ
fn(z) dz = 0. Now fn → f uniformly on γ (since γ is

compact) so f is continuous and∫
g

f(z) dz = lim
n→∞

∫
γ

fn(z) dz = 0

(by Proposition 2.1.3) and so by Morera’s theorem f is holomorphic on D.

Next, by Cauchy’s formula, for any w ∈ B(a, r/2)

|f ′(w)− f ′n(w)| = 1

2π

∣∣∣∣∫
|z−a|=r

f(z)− fn(z)

(z − w)2
dz

∣∣∣∣
≤
r sup|z−a|=r |f(z)− fn(z)|

r2/4
.

By the first part and Theorem 3.6.1 fn → f uniformly on {|z − a| = r}, and
therefore f ′n → f ′ uniformly on B(a, r/2).

Example 1: consider the series (z ∈ C \ Z)

f(z) =
∞∑

n=−∞

1

(z − n)2
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which converges by comparison with
∑

1/n2. If w ⊂ C \Z choose r > 0 such that
|w − n| ≥ 2r for every n ∈ Z. Then for all z ∈ D(w, r), |z − n| ≥ max{r, |n| −
|w| − r} and so∣∣∣∣ 1

(z − n)2

∣∣∣∣ ≤ min

{
1

r2
,

1

(n− |w| − r)2

}
= Mn say

and as
∑∞

n=1Mn converges, the series defining f is uniformly convergent for
|z − w| ≤ r. So it is locally uniformly convergent, so f(z) is analytic on C \ Z.
At z = n ∈ Z is clearly has a double pole with principal part (z − n)−2. Equally
clearly, f(z + 1) = f(z).

Consider now the function g(z) = π2 cosec2 πz = (π/ sinπz)2, which is analytic
on C \ Z. At z = n ∈ Z it clearly has a double pole. We have limz→0 z

2g(z) =
(limz→0 sin(πz)/πz)−2 = 1, and g is even, so its principal part at the origin is z−2.
Since sin(z + π) = − sin z, g(z + 1) = g(z) so the principal part at z = n is also
(z − n)−2.

We show that f(z) = g(z). Since both functions have the same principal parts at
every z = n ∈ Z, we know that f = g + h for an entire function h. We’ll show
h = 0, using Liouville’s theorem.14

If z = x± iy with |x| ≤ 1/2 and y > 0 then

|g(z)| = 4π2

|eπixe±πy − e−πixe∓πy|2
≤ 4π2

|eπy − e−πy|2
→ 0 as y →∞

and

|f(z)| ≤
∞∑

n=−∞

1

|x± iy − n|2
≤ 1

y
+ 2

∞∑
n=1

1

(n− 1/2)2 + y2
→ 0 as y →∞

14Here is another way to show h = 0. First notice that

f
(z

2

)
+ f

(z + 1
2

)
=
∑
m∈Z

4
(z − 2m)2

+
4

(z − 2m+ 1)2
=
∑
n∈Z

4
(z − n)2

= 4f(z)

g
(z

2

)
+ g
(z + 1

2

)
=

π2

sin2 πz/2
+

π2

cos2 πz/2
=

π2

sin2(πz/2) cos2(πz/2)
= 4g(z)

and therefore the entire function h satisfies 4h(z) = h(z/2) + h((z + 1)/2). Consider any R > 1,
and let the maximum of |h| on {|z| ≤ R} be M = |h(w)|. Then |w/2| ≤ R and |(w + 1)/2| ≤ R,
so

4M = |4h(w)| =
∣∣∣∣h(w2 )+ h

(w + 1
2

)∣∣∣∣ ≤ ∣∣∣h(w2 )∣∣∣+
∣∣∣∣h(w + 1

2

)∣∣∣∣ ≤M +M = 2M

which implies that M = 0. So for every R > 1, h is identically zero on {|z| ≤ R}, hence h = 0.
This ingenious argument is the Herglotz trick.
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Since f(z) = f(z + 1) and g(z + 1) = g(z) the same estimates hold for any x ∈ R.
This implies that h(x+ iy)→ 0 as |y| → ∞, uniformly in x. Now for any Y > 0,
h(z) is bounded on the rectangle {z = x + iy | |x| ≤ 1/2, |y| ≤ Y }, and so as
h(z+ 1) = h(z) is also bounded on the strip {z = x+ iy | |y| ≤ Y }. So this means
that h is bounded on C, hence is constant, and as h(z) → 0 for Im(z) → ∞ the
constant is zero. We have therefore obtained the identity

π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2
.

From this further series expansions may be obtained. For example, we have
(d/dz)(π cotπz) = −π2 cosec2 πz. On the other hand we can also consider the
series

f1(z) =
1

z
+

∞∑
06=n=−∞

(
1

z − n
+

1

n

)
=

1

z
+
∞∑
n=1

2z

z2 − n2

(the extra terms 1/n are required since
∑

1/(z−n) is divergent). which converges
by comparison with

∑
1/n2. A similar calculation as for f(z) shows that the series

is locally uniformly convergent, hence f1(z) is analytic on C\Z, and differentiating
term-by-term gives df1/dz = −f = −π2 cosec2 πz. Therefore f1(z) − π cot πz is
constant, and since both functions are odd, the constant must be 0. Therefore

πcotπz =
1

z
+

∞∑
06=n=−∞

(
1

z − n
+

1

n

)
Consequence:

∞∑
n=1

1

n2
=

1

2
lim
z→0

(
π2

sin2 πz
− 1

z2

)
=

1

2
lim
z→0

(
π2z2 − sin2 πz

z2 sin2 πz

)
=

1

2
lim
z→0

(
π2z2 − (π2z2 − π4z4/3 + . . . )

π2z4 − . . .

)
=
π2

6

We can also obtain the infinite product for the sine function:

sin πz = πz

∞∏
n−1

(
1− z

n

)(
1 +

z

n

)
= πz

∞∏
n=1

(
1− z2

n2

)
(first written by Euler) by taking logarithmic derivatives of each side.

Example 2: the Gamma function.

Consider the integral

Γ(z) =

∫ ∞
0

e−ttz−1 dt =

∫ ∞
0

φ(z, t) dt. (13)
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Theorem 3.6.3. The integral (*) defines a holomorphic function on the right half-
plane {Re(z) > 0}, which can be analytically continued to a meromorphic function
Γ on C whose only poles are simple poles at z = −m = 0,−1,−2, . . . with residue
(−1)m/m!. It satisfies Γ(z) = (z−1)Γ(z−1) and for every n ≥ 1, Γ(n) = (n−1)!.

Proof. For every z ∈ C, the integral
∫∞

1
φ(z, t) dt converges. If z = x+ iy then for

0 < t ≤ 1, then |e−ttx−1| ≤ tx−1 and
∫ 1

0
tx−1 dt converges for x > 0. So the integral

defining Γ(z) converges on the right half-plane {z | Re(z) > 0}.
Claim Γ(z) is holomorphic on the right half-plane. To see this, let for N ∈ Z,
N ≥ 1

fN(z) =

∫ N

1/N

e−ttz−1 dt.

Then since tz−1 = exp(ln t)(z − 1) is holomorphic for any t > 0, each fN is
holomorphic on C. Let δ > 0. I claim that fN → Γ uniformly on {z | Re(z) ≥ δ}.
To see this, it’s enough to check that∫ 1/N

0

e−ttz−1 dt→ 0,

∫ ∞
N

e−ttz−1 dt→ 0 uniformly as N →∞.

So Γ(z) is holomorphic fo Re(z) > 0.

Integrating by parts gives Γ(z) = (z − 1)Γ(z − 1) if Re(z) > 1. This shows that
Γ(n) = (n − 1)! since clearly Γ(1) = 1. It also shows that for any N ≥ 0, the
function

Γ(s+N + 1)

s(s+ 1) · · · (s+N)
(∗)

equals Γ(s). But (∗) defines a meromorphic function on {Res(s) > −N}, with
simple poles at s = −m = 0,−1, . . . ,−N . So (by uniqueness of analytic continua-
tion) Γ(s) can be extended to a meromorphic function on C with simple poles at
s = 0,−1,−2, . . . , and (∗) shows that

Ress=−N Γ(s) =
Γ(1)

(−1)(−2) · · · (−N)
=

(−1)N

N !

Remark. One can also show that Γ(s) is never zero, and that its inverse has an
infinite product expansion

1/Γ(s) = eγss
∞∏
n=1

(
1 +

s

n

)
e−s/n
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where γ is Euler’s constant

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log(n)

)
.

Carefully comparing this with the infinite product for sin πz gives Euler’s identity

Γ(s)Γ(1− s) =
π

sin πz

Example: The Riemann ζ-function

ζ(s) =
∞∑
n=1

1

ns

Since |ns| = nRe(s), the series converges absolutely for Re(s) > 1 and uniformly for
Re(s) ≥ σ, for any σ > 1 (by comparison with

∑
n−σ). It is therefore an analytic

function on {s ∈ C | Re(s) > 1}.
Now since limx→1+

∑∞
n=1 n

−x = ∞, it’s clear that ζ(s) cannot be analytically
continued to any neighbourhood of s = 1. Rather surprisingly, however, it can be
analytically continued to the rest of C.

Theorem 3.6.4. The function ζ(s) has an analytic continuation to C \ {1}, with
a simple pole at s = 1. Moreover for every integer k ≥ 1

ζ(1− k) = (−1)k−1Bk

k
∈ Q

where the Bernoulli numbers Bk are defined by

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.

One has B0 = 1, B1 = −1/2, B2 = 1/6, B3 = B5 = B2r+1 = 0, B12 = −691/2370.
Bernoulli numbers crop up all over mathematics — particularly in number theory
and topology.

Proof. We first compute the following integral representation of ζ(s). Let Re(s) ≥
2 say. Then (the second equality by substituting nt for t)

Γ(s)ζ(s) =
∞∑
n=1

∫ ∞
0

ts−1e−t

ns
dt

=
∞∑
n=1

∫ ∞
0

ts−1e−nt dt

=

∫ ∞
0

ts−1

et − 1
dt
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Split the integral into
∫ 1

0
and

∫∞
0

. Then the integral∫ ∞
1

ts−1

et − 1
dt

defines an entire function of s (same proof as for the Γ-function integral). For the
other piece, let N be a positive integer and expand

t

et − 1
=

N∑
k=0

Bk
tk

k!
.+ tN+1FN(t).

Then ∫ 1

0

ts−1

et − 1
dt =

N∑
k=0

∫ 1

0

Bk
ts+k−2

k!
dt+

∫ 1

0

ts+N−1FN(t) dt

=
N∑
k=0

Bk

k!(s+ k − 1)
+ (holomorphic for Re(s) > 1−N)

which shows that Γ(s)ζ(s) has a meromorphic continuation to the entire plane
with at worst simple poles as s = 1 − k, k = 0, 1, 2, . . . , at which its residue is
Bk/k!. Now since Γ(s) has simple poles at 0,−1,−2, . . . and is no-zero elsewhere,
we deduce that ζ(s) has a meromorphic continuation to C with a simple pole at
s = 1, and that for all k ≥ 1,

ζ(1− k) = (Bk/k!)/Ress=1−k Γ(s) = (−1)k−1Bk

k
.

The function ζ(s) is important because of its connection with number theory. The
Fundamental Theorem of Arithmetic show that

ζ(s) =
∑
n≥1

n−s =
∏
p

(1 + p−s + p−2s + . . . ) =
∏
p

1

1− p−s

where the product is taken over all primes p. This proves at once that the number
of primes is infinite (if not, the product in the above equation would be a finite
product and ζ(s) would then be analytic at s = 1.). It is the beginning of a
long story of number theory, one of the high point of which is the Prime Number
Theorem, which says that

# {primes p ≤ X} ∼ X

logX
.
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