$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{|z-a|=r} \frac{f(z)}{(z-w)^{n+1}} \, dz.$$

- 2 Let g(z) = p(z)/q(z) be a rational function with $\deg(q) \ge \deg(p) + 2$. Show that the sum of the residues of f at all its poles equals zero.
- 3 Evaluate the following integrals:

(a)
$$\int_0^{\pi} \frac{d\theta}{4 + \sin^2 \theta}$$
 (b) $\int_0^{\infty} \sin x^2 dx$
(c) $\int_0^{\infty} \frac{x^2}{(x^2 + 4)^2 (x^2 + 9)} dx$ (d) $\int_0^{\infty} \frac{\ln (x^2 + 1)}{x^2 + 1} dx$

4 For $\alpha \in (-1, 1)$ with $\alpha \neq 0$, compute

$$\int_0^\infty \frac{x^\alpha}{x^2 + x + 1} \, dx$$

- 5 Use Rouché's Theorem to give another proof of the Fundamental Theorem of Algebra.
- 6 Let $p(z) = z^5 + z$. Find all z such that |z| = 1 and Im p(z) = 0. Calculate Re p(z) for such z. Hence sketch the curve $p \circ \gamma$, where $\gamma(t) = e^{2\pi i t}$ and use your sketch to determine the number of z (counted with multiplicity) such that |z| < 1 and p(z) = x for each real number x.
- 7 (i) For a positive integer N, let γ_N be the square contour with vertices $(\pm 1 \pm i)(N + 1/2)$. Show that there exists C > 0 such that for every N, $|\cot \pi z| < C$ on γ_N .

(ii) By integrating $\frac{\pi \cot \pi z}{z^2 + 1}$ around γ_N , show that

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth \pi}{2}$$

- (iii) Evaluate $\sum_{n=0}^{\infty} (-1)^n / (n^2 + 1)$.
- 8 (i) Show that $z^4 + 26z + 2 = 0$ has exactly three zeroes with 5/2 < |z| < 3.
 - (ii) Prove that $z^5 + 2 + e^z$ has exactly three zeros in the half-plane $\{ z \mid \text{Re}(z) < 0 \}$.
 - (iii) Show that the equation $z^4 + z + 1 = 0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z \mid |z| = 3/2\}$.
- 9 Show that the equation $z \sin z = 1$ has only real solutions. [*Hint: Find the number of real roots in the interval* $[-(n+1/2)\pi, (n+1/2)\pi]$ and compare with the number of zeros of $z \sin z - 1$ is a square box $\{|\text{Re } z|, |\text{Im } z| < (n+1/2)\pi\}$.]
- 10 (i) Let $w \in \mathbb{C}$, and let γ , $\delta \colon [0,1] \to \mathbb{C}$ be closed curves such that for all $t \in [0,1]$, $|\gamma(t) \delta(t)| < |\gamma(t) w|$. By computing the winding number of the closed curve $\sigma(t) = \frac{\delta(t) w}{\gamma(t) w}$ about the origin, show that $I(\gamma; w) = I(\delta; w)$.

(ii) If $w \in \mathbb{C}$, r > 0, and γ is a closed curve which does not meet D(w, r), show that $I(\gamma; w) = I(\gamma; z)$ for every $z \in D(w, r)$.

(iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ , then the function $w \mapsto I(\gamma; w)$ is a locally constant function on U.

Supplementary examples — these are not part of the examples sheet, but are provided as a starting point for revision, or for the addicted. Myriad examples of integrals may be found in past tripos questions.

S1 Evaluate the following integrals:

(a)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx \quad \text{where } a, \ m \in \mathbb{R}^+$$

(b)
$$\int_{0}^{2\pi} \frac{\cos^3 3t}{1 - 2a \cos t + a^2} dt \quad \text{where } a \in (0, 1)$$

(c)
$$\int_{-1}^{1} \frac{\sqrt{1 - x^2}}{1 + x^2} dx \quad (\text{"dog-bone" contour"})$$

(d)
$$\int_{-\infty}^{\infty} e^{-ax^2} e^{-itx} dx \quad \text{where } a > 0, \ t \in \mathbb{R}$$

(e)
$$\int_{0}^{\infty} \frac{\cosh ax}{\cosh x} dx \quad \text{where } a \in (-1, 1)$$

(f)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx \quad \text{where } t \in \mathbb{R}$$

S2 By integrating $z/(a - e^{-iz})$ round the rectangle with vertices $\pm \pi, \pm \pi + iR$, prove that

$$\int_0^\pi \frac{x \sin x}{1 - 2a \cos x + a^2} \, dx = \frac{\pi}{a} \log(1 + a)$$

for every $a \in (0, 1)$.

S3 Assuming $\alpha \ge 0$ and $\beta \ge 0$ prove that

$$\int_0^\infty \frac{\cos \alpha x - \cos \beta x}{x^2} \, dx = \frac{\pi}{2} (\beta - \alpha),$$

and deduce the value of

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx.$$