1 (i) Use the Cauchy integral formula to compute

$$\int_{|z|=1} \frac{e^{\alpha z}}{2z^2 - 5z + 2} \, dz$$

where $\alpha \in \mathbb{C}$.

(ii) By considering the real part of a suitable complex integral, show that if $r \in (0, 1)$,

$$\int_0^{\pi} \frac{\cos n\theta}{1 - 2r\cos\theta + r^2} \, d\theta = \frac{\pi r^n}{1 - r^2} \qquad \text{and} \qquad \int_0^{2\pi} \cos(\cos\theta)\cosh(\sin\theta) \, d\theta = 2\pi.$$

2 Find the Laurent expansion (in powers of z) of $1/(z^2 - 3z + 2)$ in each of the regions:

 $\{z \mid |z| < 1\}; \quad \{z \mid 1 < |z| < 2\}; \quad \{z \mid |z| > 2\}.$

3 Classify the singularities of each of the following functions:

$$\frac{z}{\sin z}$$
, $\sin \frac{\pi}{z^2}$, $\frac{1}{z^2} + \frac{1}{z^2 + 1}$, $\frac{1}{z^2} \cos\left(\frac{\pi z}{z + 1}\right)$.

- 4 Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Prove that if any one of the following conditions hold, then f is constant:
 - (i) $f(z)/z \to 0$ as $|z| \to \infty$.
 - (ii) There exists $b \in \mathbb{C}$ and $\epsilon > 0$ such that for every $z \in \mathbb{C}$, $|f(z) b| > \epsilon$.
 - (iii) f = u + iv and |u(z)| > |v(z)| for all $z \in \mathbb{C}$.
- 5 Let $f: D(a, r) \to \mathbb{C}$ be holomorphic, and suppose that z = a is a local maximum for $\operatorname{Re}(f)$. Show that f is constant.
- 6 (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)| < M(1+|z|)^k$ for all z.
 - (ii) Show that an entire function f is a polynomial if and only if $|f(z)| \to \infty$ as $|z| \to \infty$.

(iii) Let f be a function which is analytic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq |z|^k$ for all z with |z| sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).

7 (i) (Schwarz's Lemma) Let f be analytic on D(0, 1), satisfying $|f(z)| \le 1$ and f(0) = 0. By applying the maximum principle to f(z)/z, show that $|f(z)| \le |z|$. Show also that if |f(w)| = |w| for some $w \ne 0$ then f(z) = cz for some constant c.

(ii) Use Schwarz's Lemma to prove that any conformal equivalence from D(0,1) to itself is given by a Möbius transformation.

8 (i) (The Identity Theorem) Let f be holomorphic on a domain D, and let (a_n) be a sequence of distinct elements of D which converges to a limit $a \in D$. Show that if $f(a_n) = 0$ for every n, then f = 0.

(ii) Let f be an entire function such that for every positive integer n, f(1/n) = 1/n. Show that f(z) = z.

- (iii) Let f be an entire function with $f(n) = n^2$ for every $n \in \mathbb{Z}$. Must $f(z) = z^2$?
- (iv) Let f be holomorphic on D(0,2). Show that for some integer n > 0, $f(1/n) \neq 1/(n+1)$.

9 (Casorati-Weierstrass theorem) Let f be holomorphic on $D(a, R) \setminus \{a\}$ with an essential singularity at z = a. Show that for any $b \in \mathbb{C}$, there exists a sequence of points $z_n \in D(a, R)$ with $z_n \neq a$ such that $z_n \to a$ and $f(z_n) \to b$ as $n \to \infty$.

Find such a sequence when $f(z) = e^{1/z}$, a = 0 and b = 2.

[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, an analytic function takes *every* complex value except possibly one.]

- 10 Let $D \subset \mathbb{C}$ be a simply-connected domain which does not contain 0. Show that there exists a branch of the logarithm on D.
- 11 Show that the power series $\sum_{n=1}^{\infty} z^{n!}$ defines an analytic function f on D(0,1). Show that f cannot be analytically continued to any domain which properly contains D(0,1).

Comments and corrections to a.j.scholl@dpmms.cam.ac.uk