Algebraic Geometry

Example Sheet IV, 2024. Turn in 2,4,5 by noon on January 27th, 2025.

1. Let $X = \operatorname{Spec} A$ be affine, and let

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

be an exact sequence of quasi-coherent sheaves of \mathcal{O}_X -modules. Show that

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0$$

is exact. [You may freely use the following fact about quasi-coherent sheaves: if \mathcal{F} is a quasi-coherent sheaf on a scheme X, and $U \subseteq X$ is open affine, $U = \operatorname{Spec} A$, then $\mathcal{F}|_U = \widetilde{M}$ for some A-module M. You may find a proof of this fact in Hartshorne II, §5, Proposition 5.4. Note II, Proposition 5.6 proves a more general statement.]

2. Let \mathcal{F} be a sheaf of abelian groups on a topological space X, and suppose given a long exact sequence

$$0 \to \mathcal{F} \to \mathcal{F}^0 \xrightarrow{d^0} \mathcal{F}^1 \xrightarrow{d^1} \cdots$$

Suppose further that $H^i(X, \mathcal{F}^j) = 0$ for all i > 0 and all j. Show that

$$H^{i}(X,\mathcal{F}) = \frac{\ker d^{i} : \Gamma(X,\mathcal{F}^{i}) \to \Gamma(X,\mathcal{F}^{i+1})}{\operatorname{im} d^{i-1}(X,\mathcal{F}^{i-1}) \to \Gamma(X,\mathcal{F}^{i})}$$

for all i. Sheaves \mathcal{G} on X with $H^i(X,\mathcal{G}) = 0$ for all i > 0 are called acyclic.

3. We define a *flabby* (*flasque* in french) sheaf on a topological space X to be a sheaf \mathcal{F} such that for any inclusion $V \subseteq U$ of open sets of X, the restriction morphism $\mathcal{F}(U) \to \mathcal{F}(V)$ is surjective.

We will prove, for an open covering \mathcal{U} of a topological space X and a flabby sheaf \mathcal{F} on X, that $\check{H}^p(\mathcal{U},\mathcal{F})=0$ for all p>0.

[Note: You may want to use Zorn's Lemma in what follows.]

a) Show that if

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

is an exact sequence of sheaves on X and \mathcal{F}_1 is flabby, then $\mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is surjective for any open set $U \subseteq X$.

b) Show that if

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$$

is an exact sequence of sheaves with \mathcal{F}_1 and \mathcal{F}_2 flabby, then \mathcal{F}_3 is flabby.

c) Show that if

$$0 \to \mathcal{F}_0 \to \cdots \to \mathcal{F}_{p-1} \to \mathcal{F}_p \to \mathcal{F}_{p+1} \to \cdots$$

is a long exact sequence of flabby sheaves, then

$$0 \to \mathcal{F}_0(U) \to \cdots \to \mathcal{F}_{p-1}(U) \to \mathcal{F}_p(U) \to F_{p+1}(U) \to \cdots$$

is exact.

d) If \mathcal{F} is a sheaf on X, $U \subseteq X$ an open set, denote by (as usual) $\mathcal{F}|_U$ the sheaf on X defined by $\mathcal{F}|_U(V) = \mathcal{F}(V \cap U)$. For an open covering \mathcal{U} of X, let

$$\mathcal{C}^p(\mathcal{U},\mathcal{F}) = \prod_{i_0,\dots,i_p \in I} \mathcal{F}|_{U_{i_0} \cap \dots \cap U_{i_p}}$$

so that

$$C^p(\mathcal{U}, \mathcal{F}) = \Gamma(X, \mathcal{C}^p(\mathcal{U}, \mathcal{F})).$$

Define boundary maps $\delta: \mathcal{C}^p(\mathcal{U}, \mathcal{F}) \to \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})$ in the same manner as was done for C^p . Show that the sequence

$$0 \to \mathcal{F} \to \mathcal{C}^0(\mathcal{U}, \mathcal{F}) \to \mathcal{C}^1(\mathcal{U}, \mathcal{F}) \to \cdots$$

is exact.

e) Show that if \mathcal{F} is flabby, so is $\mathcal{C}^p(\mathcal{U},\mathcal{F})$. Combine this fact with c) and d) to conclude that $\check{H}^p(\mathcal{U},\mathcal{F}) = 0$ for p > 0.

- 4. Let $X = \mathbb{A}^2_k = \operatorname{Spec} k[x,y]$, $U = X \setminus \{(x,y)\}$ (removing the maximal ideal corresponding to the origin). By choosing a suitable affine cover of U, show that $H^1(U, \mathcal{O}_U)$ is naturally isomorphic to the infinite dimensional k-vector space with basis $\{x^iy^j \mid i,j < 0\}$. Thus in particular U is not affine.
- 5. Let X be a subscheme of \mathbb{P}^2_k defined by a single homogeneous polynomial $f(x_0, x_1, x_2) = 0$. Assume that $(1,0,0) \notin X$. Then show X can be covered by the two affine open subsets $U = X \cap D_+(x_1)$, $V = X \cap D_+(x_2)$. Now compute the Čech complex explicitly and show that

$$\dim H^0(X, \mathcal{O}_X) = 1$$

 $\dim H^1(X, \mathcal{O}_X) = (d-1)(d-2)/2$

where d is the degree of f.

universal property.

If you are familiar with concept *genus* of a non-singular projective curve from Part II algebraic geometry, in fact $\dim H^1(X, \mathcal{O}_X)$ agrees with the genus, so you have calculated the genus of a plane curve.

- 6. (a) Let B be an A-algebra, M a B-module. An A-derivation of B into M is a map $d: B \to M$ such that (1) d is additive; (b) d(bb') = bd(b') + b'd(b) for all $b, b' \in B$; (c) d(a) = 0 for all $a \in A$. The module of relative differentials of B over A is a B-module $\Omega_{B/A}$ equipped with a derivation $d: B \to \Omega_{B/A}$ which is universal, i.e., for any $d': B \to M$ a derivation, there exists a B-module homomorphism $f: \Omega_{B/A} \to M$ such that $d' = f \circ d$. We construct $\Omega_{B/A}$ as follows. Let $f: B \otimes_A B \to B$ be the A-algebra homomorphism given by $f(b \otimes b') = bb'$, $I = \ker f$. Set $\Omega_{B/A} = I/I^2$ and $d: B \to I/I^2$ given by $db = 1 \otimes b b \otimes 1$. Show that $\Omega_{B/A}$, d satisfies the above
 - (b) Calculate $\Omega_{A/k}$, where $A = k[x_1, \dots, x_n]$. Show that this is the free A-module generated by symbols dx_1, \dots, dx_n and $d(f) = \sum_i (\partial f/\partial x_i) dx_i$.
 - (c) In lecture, we defined $\Omega_{X/Y}$ for a separated morphism $f: X \to Y$ to be the conormal sheaf of the closed immersion $\Delta: X \to X \times_Y X$. Show that if $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} A$ with B an A-algebra, then $\Omega_{X/Y}$ is the sheaf associated to the B-module $\Omega_{A/B}$.
 - (d) Conclude that $\Omega_{\mathbb{A}^n_k/\operatorname{Spec} k}$ is the free rank n $\mathcal{O}_{\mathbb{A}^n}$ -module generated by symbols dx_1, \ldots, dx_n .