Metric & Topological Spaces, sheet 2: 2011

- 1. Which of the following subspaces of \mathbb{R}^2 are (a) connected (b) path-connected? $B_{(x,y)}(t)$ denotes the open t-disc about $(x,y) \in \mathbb{R}^2$ and $\overline{X} = cl(X)$ denotes closure.
 - (i) $B_{(1,0)}(1) \cup B_{(-1,0)}(1)$;
 - (ii) $\overline{B_{(1,0)}(1)} \cup \overline{B_{(-1,0)}(1)}$

 - (iii) $B_{(1,0)}(1) \cup \overline{B_{(-1,0)}(1)}$ (iv) $\{(x,y) | x = 0 \text{ or } y/x \in \mathbb{Q}\}.$
- 2. (a) Let $\phi:[0,1]\to[0,1]$ be continuous. Prove that ϕ has a fixed point.
 - (b) Prove that an odd degree real polynomial has a real root.
 - (c) Let $\mathbb{S}^1 \subset \mathbb{R}^2$ denote the unit circle in the Euclidean plane (with the subspace topology) and let $f: \mathbb{S}^1 \to \mathbb{R}$ be continuous. Prove there is some $x \in \mathbb{S}^1$ such that f(x) = f(-x).
 - (d) Suppose $f:[0,1]\to\mathbb{R}$ is continuous and has f(0)=f(1). For each integer $n\geq 2$ show there is some x s.t. $f(x) = f(x + \frac{1}{n})$.
- 3. Prove there is no continuous function $f:[0,1]\to\mathbb{R}$ such that $x\in\mathbb{Q} \iff f(x)\notin\mathbb{Q}$ (where Q denotes the rational numbers).
- 4. Suppose $A \subset \mathbb{R}^n$ is not compact. Show there is a continuous function on A which is not bounded.
- 5. Is there a Hausdorff topology on [0, 1] which is weaker than the usual topology, i.e. for which $\mathcal{T}_{exotic} \subsetneq \mathcal{T}_{eucl}$?
- 6. Let X be a topological space. The one-point compactification X^+ of X is set-wise the union of X and an additional point ∞ (thought of as "at infinity") with the topology: $U \subset X^+$ is open if either
 - (i) $U \subset X$ is open in X or
 - (ii) $U = V \cup \{\infty\}$ where $V \subset X$ and $X \setminus V$ is both compact and closed in X.
 - Prove that X^+ is a topological space and prove that it is compact (N.B. regardless of whether X is compact or not!).
- 7. (i) A family of sets has the *finite intersection property* if and only if every *finite* subfamily has non-empty intersection. Prove that a space X is compact if and only if whenever $\{V_a\}_{a\in A}$ is a family of closed subsets of X with the finite intersection property, the whole family has non-empty intersection.
 - (ii) Give an example of a sequence of closed connected subsets $C_n \subset \mathbb{R}^2$ s.t. $C_n \supset C_{n+1}$ but $\bigcap_{n=1}^{\infty} C_n$ not connected.
 - (iii) If $C_n \subset X$ is compact and connected in a Hausdorff space, and $C_n \supset C_{n+1}$ for each n, show $\bigcap_{n=1}^{\infty} C_n$ is connected. [You may wish to show a compact Hausdorff space is normal, meaning any two disjoint closed subsets can be separated by disjoint open neighbourhoods.]
- 8. Let (X,d) be a compact metric space. Prove that a subspace $Z \subset X$ is compact only if every sequence in Z has a subsequence which converges in the metric to a point of Z.
 - Let X be the space of continuous functions from [0,1] to the reals $\mathbb R$ with the metric $d(f,q) = \sup\{|f(x) - q(x)| : x \in [0,1]\}$. Prove that the unit ball $\{u \in X \mid d(0,u) \le 1\}$ is not compact, where 0 denotes the obvious zero-function. [Thus the "Heine-Borel" theorem is *not* valid in arbitrary metric spaces.

9. Let M be a compact metric space and suppose that for every $n \in \mathbb{Z}_{\geq 0}$, $V_n \subset M$ is a closed subset and $V_{n+1} \subset V_n$. Prove that

$$\operatorname{diameter}(\bigcap_{n=1}^{\infty} V_n) = \inf \{ \operatorname{diameter}(V_n) \mid n \in \mathbb{Z}_{\geq 0} \}.$$

[Hint: suppose the LHS is smaller by some amount ϵ .]

10. Fix a prime p and let $a \in \mathbb{Q}$ be non-zero. One can uniquely write $a = p^n \frac{x}{y}$ with x and y coprime, $n \in \mathbb{Z}$ and xy not divisible by p. Define

$$v_p(a) = n;$$
 $v_p(0) = \infty;$ and $|a|_p = p^{-v_p(a)}, |0|_p = 0.$

- (a) Prove $v(a b) \ge \min\{v(a), v(b)\}\$ for any $a, b \in \mathbb{Q}$.
- (b) Defining $d_p(a,b) = |a-b|_p$, prove that d_p is a metric on \mathbb{Q} ; this is called the *p-adic* metric, of much importance in number theory.
- (c) Show that if p and q are distinct primes, d_p and d_q are inequivalent metrics.
- (d) Show that the sequence

1,
$$1+p$$
, $1+p+p^2$, $1+p+p^2+p^3$, ...

is Cauchy. Does it converge in (\mathbb{Q}, d_p) ?

(e)* Suppose $p \neq 2$. Choose $a \in \mathbb{Z}$ which is not a square in \mathbb{Q} and which is not divisible by p. Suppose $x^2 \equiv a \pmod{p}$ has a solution x_0 . Show there is x_1 s.t. $x_1 \equiv x_0 \pmod{p}$ and $x_1^2 \equiv a \mod{p^2}$, and iteratively that there is x_n s.t. $x_n \equiv x_{n-1} \mod{p}$ and $x_n^2 \equiv a \mod{p^{n+1}}$. Show (x_n) is a Cauchy sequence in (\mathbb{Q}, d_p) with no convergent subsequence, and deduce (\mathbb{Q}, d_p) is not complete.

[Any incomplete metric space admits a canonical completion. The completion of (\mathbb{Q}, d_{eucl}) is \mathbb{R} , a general element of which can be written as $a = \sum_{k=m}^{\infty} a_k 10^{-k}$ with $0 \le a_k \le 9$. The completion \mathbb{Q}_p of (\mathbb{Q}, d_p) comprises the expressions $\sum_{i=m}^{\infty} a_i p^i$ with $0 \le a_i \le p-1$.]

- 11. Show there are countably many pairwise non-homeomorphic connected infinite genus smooth surfaces in \mathbb{R}^3 . (The *genus* is the number of holes: muffins have genus 0, bagels have genus 1, pretzels have genus 3.) Draw an example of a smooth connected surface in \mathbb{R}^3 with infinitely many "ends" (i.e. for which complements of arbitrarily large compact sets have infinitely many connected components).
- 12* (a) Let X be a topological space and $x_0 \in X$ a distinguished point. Show that the set of connected components of the based loop space $\Omega X = \{ \gamma : [0,1] \to X \mid \gamma \text{ is continuous, } \gamma(0) = \gamma(1) = x_0 \}$ forms a group.
 - (b) Give examples in which this group is non-trivial. Can it be non-trivial and finite? Can it be non-abelian?

Ivan Smith is 200@cam.ac.uk