
ANALYSIS II—EXAMPLES 4 Mich. 2015

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Let F : [0, 1] × Rm → R be continuous and a = (a0, . . . , am−1) ∈ Rm.

Suppose that F is uniformly Lipschitz in the Rm variables near a, i.e. for some constant K

and an open subset U of Rm containing a, |F (t, x)− F (t, y)| ≤ K‖x− y‖ for all t ∈ [0, 1],

x, y ∈ U . Use the Picard–Lindelöf existence theorem for first order ODE systems to show

that there is an ε > 0 such that, writing f (j) for the jth derivative of f , the mth order

initial value problem

f (m)(t) = F (t, f(t), f (1)(t), . . . , f (m−1)(t)) for t ∈ [0, ε);

f (j)(0) = aj for 0 ≤ j ≤ m− 1

has a unique Cm solution f : [0, ε)→ R (see also Q2 below).

(b) Let f : R2 → R. If f is differentiable at 0 ∈ R2, and if the partial derivatives of f

exist in a neighborhood of 0, does it follow that one partial derivative is continuous at 0?

(c) Let f : [a, b]→ R2 be continuous, and differentiable on (a, b). Does it follow that there

exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a)?

2. Let x0 ∈ Rn, F : [a, b] × BR(x0) → Rn be continuous with sup
[a,b]×BR(x0)

‖F‖ ≤
R(b−a)−1 and ‖F (t, x)−F (t, y)‖ ≤ K‖x−y‖ for some K and all t ∈ [a, b], x, y ∈ BR(x0).

We showed in lecture that for each t0 ∈ [a, b], there is a unique f ∈ C([a, b];BR(x0))

solving the integral equation f(t) = x0 +
∫ t
t0
F (s, f(s)) ds, t ∈ [a, b]. Assuming that F

extends to all of [a, b]×Rn as a continuous function, show that this f is in fact the unique

function in C([a, b];Rn) solving the integral equation. (Hint: for g ∈ C([a, b];Rn) solving

g(t) = x0 +
∫ t
t0
F (s, g(s)) ds, t ∈ [a, b], let Λ+ = {t ∈ [t0, b] : ‖g(σ)− x0‖ ≤ R ∀σ ∈ [t0, t]}

and consider the possibility that sup Λ+ < b.)

3. (a) Let f = (f1, . . . , fm):Rn → Rm. Show that f is differentiable at x ∈ Rn iff each

fi:Rn → R is differentiable at x, and in this case, Df(x)(h) = (Df1(x)(h), . . . , Dfm(x)(h))

for each h ∈ Rn.

(b) Define f :R3 → R2 by f(x, y, z) = (ex+y+z, cosx2y). Without making use of partial

derivatives, show that f is everywhere differentiable and find Df(a) at each a ∈ R3. Find

all partial derivatives of f and hence, using appropriate results on partial derivatives, give

an alternative proof of this result.

4. Consider the map f :R3 → R3 given by f(x) = x/‖x‖ for x 6= 0, and f(0) = 0. Show

that f is differentiable except at 0, and that

Df(x)(h) =
h

‖x‖
− x(x · h)

‖x‖3
.

Verify that Df(x)(h) is orthogonal to x and explain geometrically why this is the case.



5. At which points of R2 is the function f(x, y) = |x||y| differentiable? What about the

function g:R2 → R defined by g(x, y) = xy/
√
x2 + y2 if (x, y) 6= (0, 0), g(0, 0) = 0?

6. Let f be a real-valued function on an open subset U of R2 such that that f(·, y) is

continuous for each fixed y ∈ U and f(x, ·) is continuous for each fixed x ∈ U . Give an

example to show that f need not be continuous on U. If additionally f(·, y) is Lipschitz

for each y ∈ U with Lipschitz constant independent of y, show that f is continuous on U .

Deduce that if D1f exists and is bounded on U and f(x, ·) is continuous for each fixed

x ∈ U, then f is continuous on U .

7. Let f :R2 → R and a ∈ R2. If D1f exists in some open ball around a and is continuous

at a, and if D2f exists at a, show that f is differentiable at a.

8. (i) If A : Rn → Rm and B : Rm → Rp are linear maps, show that B ◦A : Rn → Rp is

linear and that ‖B ◦A‖ ≤ ‖B‖‖A‖ where ‖ · ‖ is the operator norm. (ii) If A : Rn → R is

linear, show that there is a ∈ Rn such that Ax = a · x for all x ∈ Rn, and that ‖A‖ = ‖a‖,
where ‖a‖ is the Euclidean norm of a.

9. Let f :Rn → Rn be a C1 map. Suppose that ‖Df(x) − I‖ ≤ µ for some µ ∈ (0, 1)

and all x ∈ Rn, where I is the identity map on Rn and ‖ · ‖ is the operator norm. Show

that f is an open mapping, i.e. that f maps open subsets to open subsets. Show that

‖x − y‖ ≤ (1 − µ)−1‖f(x) − f(y)‖ for all x, y ∈ Rn, and deduce that f is one-to-one and

that f(Rn) is closed in Rn. Conclude that f is a diffeomorphism of Rn, i.e. that f is a

bijection with C1 inverse. What can you say about a C1 map f : Rn → Rn assumed to

satisfy only that ‖Df(x)− I‖ < 1 for all x ∈ Rn?

10. Let C = {(x, y) ∈ R2 : x3 + y3 − 3xy = 0} and define F :R2 → R2 by F (x, y) = (x, x3+

y3 − 3xy). Show that F is locally C1-invertible around each point of C except (0, 0) and

(2
2
3 , 2

1
3 ); that is, show that if (x0, y0) ∈ C\{(0, 0), (2

2
3 , 2

1
3 )} then there are open sets U

containing (x0, y0) and V containing F (x0, y0) = (x0, 0) such that F maps U bijectively to

V with inverse a C1 function. What is the derivative of the inverse function? Deduce that

for each point (x0, y0) ∈ C \{(0, 0), (2
2
3 , 2

1
3 )}, there exists an open subset I ⊂ R containing

x0 and a C1 function g: I → R such that C ∩ U = graph g ≡ {(x, g(x)) : x ∈ I}.

11. Let Mn be the space of n × n real matrices equipped with a norm. Show that

the determinant function det:Mn → R is differentiable at the identity matrix I with

D det(I)(H) = tr(H). Deduce that det is differentiable at any invertible matrix A with

D det(A)(H) = detA tr(A−1H). Show further that det is twice differentiable at I and find

D2 det(I) as a bilinear map.

12?. (i) Let f be a real-valued C2 function on an open subset U of R2. If f has a

local maximum at a point a ∈ U (meaning that there is ρ > 0 such that Bρ(a) ⊂ U and

f(x) ≤ f(a) for every x ∈ Bρ(a)), show that Df(a) = 0 and that the matrix H = (Dijf(a))

is negative semi-definite (i.e. has non-positive eigenvalues).



(ii) Let U be a bounded open subset of R2 and let f :U → R be continuous on U (the closure

of U) and C2 in U. If f satisfies the partial differential inequality ∆ f+aD1f+bD2f+cf ≥ 0

in U where ∆ is the Laplace’s operator defined by ∆ f = D11f +D22f , and a, b, c are real-

valued functions on U with c < 0 on U , and if f is positive somewhere in U , show that

sup
U

f = sup
∂ U

f

where ∂ U = U \U is the boundary of U . Deduce that if a, b, c are as above, ϕ: ∂ U → R is a

given continuous function, then for any g:R2 → R there is at most one continuous function

f on U that is C2 in U and solves the boundary value problem ∆ f+aD1f+bD2f+cf = g

in U , f = ϕ on ∂ U .


