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EXAMPLE SHEET 3

. Let U be a flow domain and let ® : U — X be a smooth map satisfying ®° o ' = ®5** wherever

this makes sense. Show that @ is a local flow of a vector field v on X, which you should define.
(a) Compute the coordinate expression for the Lie derivative of a 1-form S, and of a tensor 7}, °,
along a vector field v.

(b) Write down the flow of the vector field v = 29, — y 9, on R?, and hence compute the Lie
derivative L, of the 1-form x dy directly from the definition.

. Prove Cartan’s magic formula £, = d(w«a) + ty(da), for a vector field v and r-form « on a

manifold X, as follows. Let @ : U — X be a local flow of v, and consider themap F': U — R x X
given by F(t,p) = (¢, ®'(p)), viewed as a diffeomorphism onto its image V.
(a) Prove Cartan’s formula for an r-form 8 on U, and for the vector field 0; representing trans-
lation in the R direction, by direct calculation.
(b) Use diffeomorphism-invariance under F' to obtain the result for prja and 9, @von V.
(c) Deduce the result for & and v on X.

. Let v be a vector field on X with local flow ®.

(a) Show that, for any tensor 7, if £,7 = 0 then (®")*T" = T wherever this makes sense.

(b) Let w be another vector field, with local flow ¥. For small ¢t and u, show that ®~! o ¥% o $?
is the time-u flow of (®!)*w, and deduce that if [v,w] = 0 then ®' and ¥“ commute.

. Let X and Y be manifolds of dimensions n and m, and suppose F' : X — Y is a submersion

at p. Construct an open neighbourhood U of p and a smooth map G : U — R"™™ such that
(Fly,G) : U =Y x R"™is alocal diffeomorphism at p. Deduce that there exist local coordinates
on X and Y about p and F'(p) in which F is given by projection onto the first m components.

6. Show that there is no surjective smoothmap f: X — YVifdim X < dimY.

7. Let m : X — Y be a submersion, and let D be a k-plane distribution on X transverse to the fibres,

10.

11.*

where £ = dim X — dimY. A curve in X is horizontal if it is everywhere tangent to D. Given a
point p in X and a curve 7 : [0,1] — Y with 5(0) = 7(p), show that for small ¢ > 0 there is a
unique horizontal curve v : [0,e] — X satisfying v(0) = pand 7oy = 7. If we can take ¢ = 1
then ~(1) is the parallel transport of p along 7. Show that D is integrable iff for all p there exists a
neighbourhood U of p in 7~ !(7(p)) and a neighbourhood V' of 7(p) in Y such that for all ¢ in U
and all curves 7 in V with 7(0) = 7(¢) the parallel transport of ¢ along 7 exists and depends only
on g and (1), not on the whole curve 7.

(a) By considering the map F : GL(n,R) — {symmetric matrices} given by F/(4) = AT A, show
that O(n) is an embedded Lie subgroup of GL(n,R). Identify o(n) as a subspace of gl(n,R).
(b) Show that SU(n) is a Lie subgroup of GL(n, C) and similarly identify its Lie algebra.

. For a Lie group G compute the derivatives D, .ym : gbgand D.i : g — g of the multiplication and

inversion maps m and 7 at the identity. Show that i* exchanges left-invariant and right-invariant
vector fields, and deduce that the bracket operation on g defined using right-invariant (rather than
left-invariant) vector fields differs from the usual one by a sign.

Let F : H — G be a morphism of Lie groups, i.e. a smooth map which is a group homomorphism.
Show that F(expy(§)) = expg(DeF(£)) for all ¢ € b, and deduce that D F is a Lie algebra ho-
momorphism, i.e. a linear map which respects the bracket operation. This shows, in particular,
that if H is an embedded Lie subgroup of G then the exponential map and bracket on h are the
restrictions of those on g.

Let G be a Lie group. Given an embedded Lie subgroup H, show that its left cosets induce a
foliation of GG, with tangent distribution {l¢ : { € h}. Given instead a subspace h of g, show that
the distribution {l¢ : £ € h} on G arises from a foliation iff f is actually a Lie subalgebra of g,
i.e. b is closed under the Lie bracket on g. If this holds, must h) be the Lie algebra of an embedded
subgroup of G?
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